Six Ontario utilities take 413 million kWhs off the grid since 2005

By Canada News Wire


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
A new report, released by six of Ontario's largest electricity distributors, collectively known as the Coalition of Large Distributors (CLD), is proof positive that energy conservation programs developed and launched during the past two years have made a significant dent in electricity consumption and greenhouse gas emissions (GHGs).

According to the report, titled "Shifting into Future Gear: Progress Report 2006", the 1.7 million customers located in the CLD's service territories in Southern and Eastern Ontario saved 302.5 million kilowatt-hours in 2006 - enough to power 33,611 homes for one year. The 2006 results reflect a 274 per cent increase in electricity savings over 2005 - the year in which the CLD introduced its first conservation and demand management (CDM) programs. During the past two years, the CLD has invested over $61.9 million in CDM, removed a total of 413,065,155 million kilowatt-hours from the grid and reduced CO(2) emissions by just over 116,000 tonnes.

"Since 2003, the McGuinty government has made available over $563 million for conservation initiatives through Ontario's local distribution companies", said Minister of Energy Dwight Duncan. "The Coalition of Large Distributors has shown tremendous leadership in spearheading new conservation and demand management programs - four of which are to be rolled out later this summer by utilities across the province. The Coalition is to be commended for its innovative approach, for its spirit of collaboration and for its ground-breaking work in building Ontario's conservation culture."

Some of the CDM programs being delivered by the CLD that are fast becoming household names with consumers include "Smart Avenues" (developed by Enersource Hydro Mississauga), "Fridge & Freezer Bounty" (developed by Hydro Ottawa), "Summer Challenge" and "peaksaver" (developed by Toronto Hydro-Electric System Limited), "Haul Away Your Energy Hog" (developed by PowerStream) "SmartPak" back packs (distributed by Horizon Utilities) and "Great Exchange" (launched jointly by Veridian Connections and Toronto Hydro-Electric System Limited).

The success of the 2006 CDM programs is reflected in the following highlights:

- 8,088 fridges and freezers were retired

- 12,671 energy guzzling air conditioners were removed from service

- 26,745 peaksaver residential load control devices were installed

- 78,936 seasonal incandescent light strings were retired from service

- 546,052 retail coupons were redeemed

- 1.5 million compact fluorescent bulbs were provided through mass market programs

"This is a defining moment in terms of the environment, not just in Ontario but globally," said Jack Gibbons, Chair of the Clean Air Alliance.

"Conservation and demand management programs like those developed by Ontario's Coalition of Large Distributors show what it is possible to achieve when there is political will and a serious investment of money and skilled resources."

The Coalition of Large Distributors, which consists of Enersource Hydro Mississauga, Horizon Utilities, Hydro Ottawa, PowerStream, Toronto Hydro-Electric System Limited and Veridian Connections, provides electricity for 40 per cent of Ontario's electricity customers. The utilities are founding members of powerWISE(R) - the highly-recognized conservation brand launched in 2003 by Hamilton Utilities Corporation. Their goal is to continue to develop, incubate, pilot and fully implement conservation and demand management programs that support the Government of Ontario's plans to reduce peak electricity demand in the province by 5 per cent by 2007.

Related News

NTPC bags order to supply 300 MW electricity to Bangladesh

NTPC Bangladesh Power Supply Tender sees NVVN win 300 MW, long-term cross-border electricity trade to BPDB, enabled by 500 MW HVDC interconnection; rivals included Adani, PTC, and Sembcorp in the competitive bidding process.

 

Key Points

It is NTPC's NVVN win to supply 300 MW to Bangladesh's BPDB for 15 years via a 500 MW HVDC link.

✅ NVVN selected as L1 for short and long-term supply

✅ 300 MW to BPDB; delivery via India-Bangladesh HVDC link

✅ Competing bidders: Adani, PTC, Sembcorp

 

NTPC, India’s biggest electricity producer in a nation that is now the third-largest electricity producer globally, on Tuesday said it has won a tender to supply 300 megawatts (MW) of electricity to Bangladesh for 15 years.

Bangladesh Power Development Board (BPDP), in a market where Bangladesh's nuclear power is expanding with IAEA assistance, had invited tenders for supply of 500 MW power from India for short term (1 June, 2018 to 31 December, 2019) and long term (1 January, 2020 to 31 May, 2033). NTPC Vidyut Vyapar Nigam (NVVN), Adani Group, PTC and Singapore-bases Sembcorp submitted bids by the scheduled date of 11 January.

Financial bid was opened on 11 February, the company said in a statement, amid rising electricity prices domestically. “NVVN, wholly-owned subsidiary of NTPC Limited, emerged as successful bidder (L1), both in short term and long term for 300 MW power,” it said.

Without giving details of the rate at which power will be supplied, NTPC said supply of electricity is likely to commence from June 2018 after commissioning of 500 MW HVDC inter-connection project between India and Bangladesh, and as the government advances nuclear power initiatives to bolster capacity in the sector. India currently exports approximately 600 MW electricity to Bangladesh even as authorities weigh coal rationing measures to meet surging demand domestically.

 

Related News

View more

Washington State Ferries' Hybrid-Electric Upgrade

Washington State Hybrid-Electric Ferries advance green maritime transit with battery-diesel propulsion, lower emissions, and fleet modernization, integrating charging infrastructure and reliable operations across WSF routes to meet climate goals and reduce fuel consumption.

 

Key Points

New WSF vessels using diesel-battery propulsion to cut emissions, improve efficiency, and sustain reliable ferry service.

✅ Hybrid diesel-battery propulsion reduces fuel use and CO2

✅ Larger vessels with efficient batteries and charging upgrades

✅ Compatible with WSF docks, maintenance, and safety standards

 

Washington State is embarking on an ambitious update to its ferry fleet, introducing hybrid-electric boats that represent a significant leap toward greener and more sustainable transportation. The state’s updated plans reflect a commitment to reducing carbon emissions and enhancing environmental stewardship while maintaining the efficiency and reliability of its vital ferry services.

The Washington State Ferries (WSF) system, one of the largest in the world, has long been a critical component of the state’s transportation network, linking various islands and coastal communities with the mainland. Traditionally powered by diesel engines, the ferries are responsible for significant greenhouse gas emissions. In response to growing environmental concerns and legislative pressure, WSF is now turning to hybrid-electric technology similar to battery-electric high-speed ferries seen elsewhere to modernize its fleet and reduce its carbon footprint.

The updated plans for the hybrid-electric boats build on earlier efforts to introduce cleaner technologies into the ferry system. The new designs incorporate advanced hybrid-electric propulsion systems that combine traditional diesel engines with electric batteries. This hybrid approach allows the ferries to operate on electric power during certain segments of their routes, reducing reliance on diesel fuel and cutting emissions as electric ships on the B.C. coast have demonstrated during similar operations.

One of the key features of the updated plans is the inclusion of larger and more capable hybrid-electric ferries, echoing BC Ferries hybrid ships now entering service in the region. These vessels are designed to handle the demanding operational requirements of the Washington State Ferries system while significantly reducing environmental impact. The new boats will be equipped with state-of-the-art battery systems that can store and utilize electric power more efficiently, leading to improved fuel economy and lower overall emissions.

The transition to hybrid-electric ferries is driven by both environmental and economic considerations. On the environmental side, the move aligns with Washington State’s broader goals to combat climate change and reduce greenhouse gas emissions, including programs like electric vehicle rebate program that encourage cleaner travel across the state. The state has set ambitious targets for reducing carbon emissions across various sectors, and upgrading the ferry fleet is a crucial component of achieving these goals.

From an economic perspective, hybrid-electric ferries offer the potential for long-term cost savings. Although the initial investment in new technology can be substantial, with financing models like CIB support for B.C. electric ferries helping spur adoption and reduce barriers for agencies, the reduced fuel consumption and lower maintenance costs associated with hybrid-electric systems are expected to lead to significant savings over the lifespan of the vessels. Additionally, the introduction of greener technology aligns with public expectations for more sustainable transportation options.

The updated plans also emphasize the importance of integrating hybrid-electric technology with existing infrastructure. Washington State Ferries is working to ensure that the new vessels are compatible with current docking facilities and maintenance practices. This involves updating docking systems, as seen with Kootenay Lake electric-ready ferry preparations, to accommodate the specific needs of hybrid-electric ferries and training personnel to handle the new technology.

Public response to the hybrid-electric ferry initiative has been largely positive, with many residents and environmental advocates expressing support for the move towards greener transportation. The new boats are seen as a tangible step toward reducing the environmental impact of one of the state’s most iconic transportation services. The project also highlights Washington State’s commitment to innovation and leadership in sustainable transportation, alongside global examples like Berlin's electric flying ferry that push the envelope in maritime transit.

However, the transition to hybrid-electric ferries is not without its challenges. Implementing new technology requires careful planning and coordination, including addressing potential technical issues and ensuring that the vessels meet all safety and operational standards. Additionally, there may be logistical challenges associated with integrating the new ferries into the existing fleet and managing the transition without disrupting service.

Despite these challenges, the updated plans for hybrid-electric boats represent a significant advancement in Washington State’s efforts to modernize its transportation system. The initiative reflects a growing trend among transportation agencies to embrace sustainable technologies and address the environmental impact of traditional transportation methods.

In summary, Washington State’s updated plans for hybrid-electric ferries mark a crucial step towards a more sustainable and environmentally friendly transportation network. By incorporating advanced hybrid-electric technology, the state aims to reduce carbon emissions, improve fuel efficiency, and align with its broader climate goals. While challenges remain, the initiative demonstrates a commitment to innovation and underscores the importance of transitioning to greener technologies in the quest for a more sustainable future.

 

Related News

View more

Parsing Ontario's electricity cost allocation

Ontario Global Adjustment and ICI balance hydro rates, renewable cost shift, and peak demand. Class A and Class B customers face demand response decisions amid pandemic occupancy uncertainty and volatile GA charges through 2022.

 

Key Points

A pricing model where GA costs and ICI peak allocation shape Class A/B bills, driven by renewables cost shifts.

✅ Renewable cost shift trims GA; larger Class A savings expected.

✅ Class A peak strategy returns; occupancy uncertainty persists.

✅ Class B faces volatile GA; limited levers beyond efficiency.

 

Ontario’s large commercial electricity customers can approach the looming annual decision about their billing structure for the 12 months beginning July 1 with the assurance of long-term relief on a portion of their costs, amid changes coming for electricity consumers that could affect planning. That’s to be weighed against uncertainties around energy demand and whether a locked-in cost allocation formula that looked favourable in pre-pandemic times will remain so until June 30, 2022.

“The biggest unknown is we just don’t know when the people are coming back,” Jon Douglas, director of sustainability with Menkes Property Management Services, reflected during a webinar sponsored by the Building Owners and Managers Association (BOMA) of Greater Toronto last week. “The occupancy in our office buildings this fall, and going into the new year, could really impact the outcome of the decision.”

After a year of operational upheaval and more modifications to provincial electricity pricing policies, BOMA Toronto’s regularly scheduled workshop ahead of the June 15 deadline for eligible customers to opt into the Industrial Conservation Initiative (ICI) program had a lot of ground to cover. Notably, beginning in January, all commercial customers have seen a reduction in the global adjustment (GA) component of their monthly hydro bills after the Ontario government shifted costs associated with contracted non-hydroelectric renewable supply to reduce the burden on industrial ratepayers from electricity rates to the general provincial account — a move that trims approximately $258 million per month from the total GA charged to industrial and commercial customers. However, they won’t garner the full benefit of that until 2022 since they’re currently repaying about $333 million in GA costs that were deferred in April, May and June of 2020.

Renewable cost shift pares the global adjustment
For now, Ontario government officials estimate the renewable cost shift equates to a 12 per cent discount relative to 2020 prices, even as typical bills may rise about 2% as fixed pricing ends in some cases. Once last year’s GA deferral is repaid at the end of 2021, they project the average Class A customer participating in the ICI program should realize a 16 per cent saving on the total hydro bill, while Class B customers paying the GA on a volumetric per kilowatt-hour (kWh) basis will see a slightly more moderate 15 per cent decrease.

“This is the biggest change to electricity pricing that’s happened since the introduction of ICI,” Tim Christie, director of electricity policy, economics and system planning for Ontario’s Ministry of Energy, Northern Development and Mines, told online workshop attendees. “The government is funding the out-of-market costs of renewables. It does tail off into the 2030s as those contracts (for wind, solar and biomass generation) expire, but over the next eight-ish years, it’s pretty steady at around just over $3 billion per year.”

Extrapolating from 2020 costs, he pegged average electricity costs at roughly 9.1 cents/kWh for Class A commercial customers and 13.2 cents/kWh for Class B, a point of concern for Ontario manufacturers facing high rates as well. However, energy management specialists suggest actual 2021 numbers haven’t proved that out.

“In commercial buildings, we’re averaging 10 to 12 cents for Class A in 2021, and we’re seeing more than that for about 14, 15 cents for Class B,” reported Scott Rouse, managing partner with the consulting firm, Energy@Work.

GA costs for Class B customers dropped nearly 30 per cent in the first four months of 2021 compared to the last four months of 2020, when they averaged 11.8 cents/kWh. Thus far, though, there have been significant month-to-month fluctuations, with a low of 5.04 cents/kWh in February and a high of 10.9 cents/kWh in April contributing to the four-month average of 8.3 cents/kWh.

“In 2020, system-wide GA very often averaged more than $1 billion per month,” Rouse said. “This February it dropped to $500 million, which was really quite surprising. So it is a very volatile cost.”

Although welcome, the renewable cost shift does alter the payback on energy-saving investments, particularly for demand response mechanisms like energy storage. When combined with pandemic-related uncertainty and a series of policy and program reversals alongside calls to clean up Ontario’s hydro policy in recent years, the industry’s appetite for some more capital-intensive technologies appears to be flagging.

“Volatility puts a pause on some of the innovation,” said Terry Flynn, general manager with BentallGreenOak and chair of BOMA Toronto’s energy committee. “It could be a leading edge, but it might be a bleeding edge that won’t bear any fruit because the way the commodity costs are structured will change.”

“There’s kind of a wait-and-see approach on some of these bigger investments,” Douglas concurred.

Industrial Conservation Initiative underpins commercial class divide
Turning to the ICI, Class A customers — defined as those with average monthly energy demand of at least 1 megawatt (MW) — encountered some unexpected changes to the program rules during 2020. Meanwhile, Class B customers — encompassing the vast share of commercial properties smaller than about 350,000 square feet — confront the persistent reality of electricity cost allocation that offloads the burden from larger players onto them.

Through the ICI, participating Class A customers pay a share of the global adjustment that’s prorated to their energy use during the five hours of the period from May 1 to April 30 when the highest overall system demand is recorded. This gives Class A customers the opportunity to lock in a favourable factor for calculating their share of monthly system-wide global adjustment costs if they can successful project and curtail energy loads during those five hours of peak demand. On the flipside, Class B customers pay the remainder of those system-wide costs, on a straightforward per-kWh basis, once Class A payments have been reconciled.

“Class B has sometimes been regarded as the forgotten middle child of the customer classes in Ontario where all the shifted costs in the system kind of pile up,” acknowledged Mark Olsheski, vice president, energy and environment, with Sussex Strategy Group. “Likewise, there can be big unpredictable and uncontrollable swings in the global adjustment rate from month to month and, outside of pure energy efficiency, there really is precious little opportunity or empowerment for a Class B customer to take actions to lower their bills.”

Nevertheless, COVID-19 presents a few extra hiccups for Class A customers this year. Conventionally, late May is when they receive notification of the cost allocation factor that would be used to determine their GA for the upcoming July 1 to June 30 period. This year, though, all current ICI participants will retain the factor they secured by responding to the five hours of peak demand during the 12 months from May 1, 2019 to April 30, 2020 after the Ontario government placed a temporary halt on the peak demand response aspect of the program last summer. Regardless, eligible ICI participants must formally opt into the program by June 15 or they will be billed as Class B customers.

Peak chasing resumes for summer 2021
Since peak demand hours conventionally occur from June to September, Class A customers will once again be studying forecasts intently and preparing to respond via Peak Perks as the heat wave season sets in. That should help alleviate some of the system stresses that arose last summer — prompting policy-makers to reject lobbying for a continued pause on peak demand response.

“The policy rationale was to allow consumers to focus on their operations when recovering from COVID as opposed to reducing peaks. The other issue was that we did not expect the peaks to be high last summer given COVID shutdowns,” Christie recounted. “But due to some hot weather, more people at home and also the lack of ICI response, we saw peaks we haven’t seen in many, many years come up last summer. So the peak hiatus has ended and this summer we’ll be back to responding to ICI as per normal.”

Among Class A customers, owners/managers of office and retail facilities generally have the most to lose from a billing formula tied to the energy demand of more densely occupied buildings in the summer of 2019. However, they could be much more competitively positioned for 2022-23 if their buildings remain below full occupancy and energy demand stays lower than usual this summer.

“Where we can improve is the IESO (Independent Electricity System Operator) and the LDCs (local distribution companies) need to help customers get their real-time data, especially in light of the phantom demand issue, interpret their bills and their Class A versus B scenarios much more easily and comprehensively,” urged Lee Hodgkinson, vice president, technical services, sustainability and ESG, with Dream Unlimited. “ I look for APIs (application programming interface) and direct data flow from the LDCs to the building owners so that we can access that data really easily.”

Given Class A’s historic advantages, few eligible ICI participants are expected to migrate out to Class B. From a sustainability perspective, there’s perhaps more cause to question how the ICI’s 1-MW threshold encourages strategies to move in the other direction.

“You could jack up demand in some buildings and get them into Class A basically by firing up the chillers on the weekend and then pouring cooling outside to get rid of it,” Douglas noted. “That has nothing to do with climate change strategy or sustainability, but it’s a cost- saving strategy, and, sometimes, when you look at the math, it’s hundreds of thousands of dollars you can save.”

Brian Hewson, vice president, consumer protection and industry performance with the Ontario Energy Board (OEB), confirmed the OEB is currently scrutinizing the discrepancy that leaves Class B as the only consumer group with no flexibility to curtail energy load during higher-priced periods, and will be providing advice to the Ministry of Energy. In the interim, that status does, at least, simplify tactics.

“Just reduce your kWh and it doesn’t matter what time of day because you’re paying that fixed rate for 24 hours a day. So if you can curb your demand at night, you get a big bang for your dollar,” Rouse advised.

“We do talk about rates a lot, but if you’re not using it, you’re not paying for it,” Flynn agreed. “A lot of our focus is still on really to try to reduce the number of kilowatts that we use. That seems to be the best thing to do.”

 

Related News

View more

Ontario introduces new fixed COVID-19 hydro rate

Ontario Electricity COVID-19 Recovery Rate sets a fixed price of 12.8 cents/kWh, replacing time-of-use billing and aligning costs across off-peak, mid-peak, and on-peak periods per Ontario Energy Board guidance through Oct. 31.

 

Key Points

A flat 12.8 cents/kWh electricity price in Ontario that temporarily replaces time-of-use rates from June 1 to Oct. 31.

✅ Fixed 12.8 cents/kWh, all hours, June 1 to Oct. 31

✅ Higher than off-peak 10.1, lower than mid/on-peak

✅ Based on Ontario Energy Board average cost

 

Ontario residents will now have to pay a fixed electricity price that is higher than the off-peak hydro rate many in the province have been allowed to pay so far due to the pandemic. 

The announcement, which was made in a news release on Saturday, comes after the Ontario government suspended the normal “time-of-use” billing system on March 24 and as electricity rates are about to change across Ontario. 

The government moved all customers onto the lowest winter rate in response to the pandemic as emergency measures meant more people would be at home during the middle of the day when electricity costs are the highest. 

Now, the government has introduced a new “COVID-19 recovery rate” of 12.8 cents per kilowatt hour at all times of the day. The fixed price will be in place from June 1 to Oct. 31. 

The fixed price is higher than the winter off-peak price, which stood at 10.1 per kilowatt hour. However, it is lower than the mid-peak rate of 14.4 per kilowatt hour and the high-peak rate of 20.8 per kilowatt hour, even though typical bills may rise as fixed pricing ends for many households. 

“Since March 24, 2020, we have invested just over $175 million to deliver emergency rate relief to residential, farm and small business electricity consumers by suspending time-of-use electricity pricing,” Greg Rickford, the minister of energy, northern development and mines, said in a news release. 

“This investment was made to protect the people of Ontario from a marked increase in electricity rates as they did their part by staying home to prevent the further spread of the virus.”

Rickford said that the COVID-19 recovery rate is based on the average cost of electricity set by the Ontario Energy Board. 

“This fixed rate will continue to suspend time-of-use prices in a fiscally responsible manner,” he said. "Consumers will have greater flexibility to use electricity when they need it without paying on-peak and mid-peak prices, and some may benefit from ultra-low electricity rates under new time-of-use options."

 

Related News

View more

Project examines potential for Europe's power grid to increase HVDC Technology

HVDC-WISE Project accelerates HVDC technology integration across the European transmission system, delivering a planning toolkit to boost grid reliability, resilience, and interconnectors for renewables and offshore wind amid climate, cyber, and physical threats.

 

Key Points

EU-funded project delivering tools to integrate HVDC into Europe's grid, improving reliability, resilience, and security.

✅ EU Horizon Europe-backed consortium of 14 partners

✅ Toolkit to assess extreme events and grid operability

✅ Supports interconnectors, offshore wind, and renewables

 

A partnership of 14 leading European energy industry companies, research organizations and universities has launched a new project to identify opportunities to increase integration of HVDC technology into the European transmission system, echoing calls to invest in smarter electricity infrastructure from abroad.

The HVDC-WISE project, in which the University of Strathclyde is the UK’s only academic partner, is supported by the European Union’s Horizon Europe programme.

The project’s goal is to develop a toolkit for grid developers to evaluate the grid’s performance under extreme conditions and to plan systems, leveraging a digital grid approach that supports coordination to realise the full range of potential benefits from deep integration of HVDC technology into the European transmission system.

The project is focused on enhancing electric grid reliability and resilience while navigating the energy transition. Building and maintaining network infrastructure to move power across Europe is an urgent and complex task, and reducing losses with superconducting cables can play a role, particularly with the continuing growth of wind and solar generation. At the same time, threats to the integrity of the power system are on the rise from multiple sources, including climate, cyber, and physical hazards.

 

Mutual support

At a time of increasing worries about energy security and as Europe’s electricity systems decarbonise, connections between them to provide mutual support and routes to market for energy from renewables, a dynamic also highlighted in discussions of the western Canadian electricity grid in North America, become ever more important.

In modern power systems, this means making use of High Voltage Direct Current (HVDC) technology.

The earliest forms of technology have been around since the 1960s, but the impact of increasing reliance on HVDC and its ability to enhance a power system’s operability and resilience are not yet fully understood.

Professor Keith Bell, Scottish Power Professor of Future Power Systems at the University of Strathclyde, said:

As an island, HVDC is the only practical way for us to build connections to other countries’ electricity systems. We’re also making use of it within our system, with one existing and more planned Scotland-England subsea link projects connecting one part of Britain to another.

“These links allow us to maximise our use of wind energy. New links to other countries will also help us when it’s not windy and, together with assets like the 2GW substation now in service, to recover from any major disturbances that might occur.

“The system is always vulnerable to weather and things like lightning strikes or short circuits caused by high winds. As dependency on electricity increases, insights from electricity prediction specialists can inform planning as we enhance the resilience of the system.”

Dr Agusti Egea-Alvarez, Senior Lecturer at Strathclyde, said: “HVDC systems are becoming the backbone of the British and European electric power network, either interconnecting countries, or connecting offshore wind farms.

“The tools, procedures and guides that will be developed during HVDC-WISE will define the security, resilience and reliability standards of the electric network for the upcoming decades in Europe.”

Other project participants include Scottish Hydro Electric Transmission, the Supergrid Institute, the Electric Power Research Institute (EPRI) Europe, Tennet TSO, Universidad Pontificia Comillas, TU Delft, Tractebel Impact and the University of Cyprus.

 

Climate change

Eamonn Lannoye, Managing Director of EPRI Europe, said: “The European electricity grid is remarkably reliable by any standard. But as the climate changes and the grid becomes exposed to more extreme conditions, energy interdependence between regions intensifies and threats from external actors emerge. The new grid needs to be robust to those challenges.”

Juan Carlos Gonzalez, a senior researcher with the SuperGrid Institute which leads the project said: “The HVDC-WISE project is intended to provide planners with the tools and know-how to understand how grid development options perform in the context of changing threats and to ensure reliability.”

HVDC-WISE is supported by the European Union’s Horizon Europe programme under agreement 101075424 and by the UK Research and Innovation Horizon Europe Guarantee scheme.

 

Related News

View more

Cancelling Ontario's wind project could cost over $100M, company warns

White Pines Project cancellation highlights Ontario's wind farm contract dispute in Prince Edward County, involving IESO approvals, Progressive Conservatives' legislation, potential court action, and costs to ratepayers amid green energy policy shifts.

 

Key Points

The termination effort for Ontario's White Pines wind farm contract, triggering legal, legislative, and cost disputes.

✅ Contract with IESO dates to 2009; final approval during election

✅ PCs seek legislation insulating taxpayers from litigation

✅ Cancellation could exceed $100M; cost impact on ratepayers

 

Cancelling an eastern Ontario green energy project that has been under development for nearly a decade could cost more than $100 million, the president of the company said Wednesday, warning that the dispute could be headed to the courts.

Ontario's governing Progressive Conservatives said this week that one of their first priorities during the legislature's summer sitting would be to cancel the contract for the White Pines Project in Prince Edward County.

Ian MacRae, president of WPD Canada, the company behind the project, said he was stunned by the news given that the project is weeks away from completion.

"What our lawyers are telling us is we have a completely valid contract that we've had since 2009 with the (Independent Electricity System Operator). ... There's no good reason for the government to breach that contract," he said.

The government has also not reached out to discuss the cancellation, he said. Meanwhile, construction on the site is in full swing, he said.

"Over the last couple weeks we've had an average of 100 people on site every day," he said. "The footprint of the project is 100 per cent in. So, all the access roads, the concrete for the base foundations, much of the electrical infrastructure. The sub-station is nearing completion."

The project includes nine wind turbines meant to produce enough electricity to power just over 3,000 homes annually, even as Ontario looks to build on an electricity deal with Quebec for additional supply. All of the turbines are expected to be installed over the next three weeks, with testing scheduled for the following month.

MacRae couldn't say for certain who would have to pay for the cancellation, electricity ratepayers or taxpayers.

"Somehow that money would come from IESO and it would be my assumption that would end up somehow on the ratepayers, despite legislation to lower electricity rates now in place," he said. "We just need to see what the government has in mind and who will foot the bill."

Progressive Conservative house leader Todd Smith, who represents the riding where the project is being built, said the legislation to cancel the project will also insulate taxpayers from domestic litigation over the dismantling of green energy projects.

"This is something that the people of Prince Edward County have been fighting ... for seven years," he said. "This shouldn't have come as a surprise to anybody that this was at the top of the agenda for the incoming government, which has also eyed energy independence in recent decisions."

Smith questioned why Ontario's Independent Electricity System Operator gave the final approval for the project during the spring election campaign.

"There's a lot of questions about how this ever got greenlighted in the first place," he said. "This project was granted its notice to proceed two days into the election campaign ... when (the IESO) should have been in the caretaker mode."

Terry Young, the IESO's vice president of policy, engagement and innovation, said the agency could not comment because of the pending introduction of legislation to cancel the deal, following a recent auditor-regulator dispute that drew attention to oversight.

NDP Leader Andrea Horwath said the new Tory government is behaving like the previous Liberal government by cancelling energy projects and tearing up contracts amid ongoing debates over Ontario's hydro mess and affordability. She likened the Tory plan to the Liberal gas plant scandal that saw the government relocate two plants at a substantial cost to taxpayers.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified