Latest Electricity News - Canada

Solar Power Becomes EU’s Top Electricity Source

Solar has become the EU’s main source of electricity, marking a historic turning point in Europe’s energy mix as solar power surpasses nuclear and wind, accelerates renewable expansion, lowers carbon emissions, and strengthens the EU’s clean energy transition.

 

Why has Solar Become the EU’s Main Source of Electricity?

Solar has become the EU’s primary source of electricity due to rapid solar expansion, lower installation costs, and robust clean energy policies, which have boosted generation, reduced fossil fuel dependence, and accelerated Europe’s transition toward sustainability.

✅ Surging solar capacity and falling costs

✅ Policy support for renewable energy growth

✅ Reduced reliance on oil, gas, and coal

 

For the first time in history, solar energy became the leading source of electricity generation in the European Union in June 2025, marking a major milestone in the continent’s transition toward renewable energy. According to new data from Eurostat, more than half of the EU's net electricity production in the second quarter of the year came from renewable sources, with solar power leading the way.

Between April and June 2025, renewables accounted for 54 percent of the EU’s electricity generation, a 1.3 percent increase compared to the same period in 2024. The rise was driven primarily by solar energy, which generated 122,317 gigawatt-hours (GWh) in the second quarter—enough, in theory, to power around three million homes.

Rob Stait, a spokesperson for Alight, one of Europe’s leading solar developers, described the achievement as “heartening.” He said, “Solar’s boom is because it can generate huge energy cost savings, and it's easy and quick to install and scale. A solar farm can be developed in a year, compared to at least five years for wind and at least ten for nuclear. But most importantly, it provides clean, renewable power, and its increased adoption drastically reduces the reliance of Europe on oil and gas.”

Eurostat’s data shows that June 2025 was the first month ever when solar overtook all other energy sources, accounting for 22 percent of the EU’s energy mix. Nuclear power followed closely at 21.6 percent, wind at 15.8 percent, hydro at 14.1 percent, and natural gas at 13.8 percent.

The shift comes at a critical time as Europe continues to navigate the economic and energy challenges brought on by Russia’s ongoing war in Ukraine. With fossil fuel markets remaining volatile, countries have increasingly viewed investment in renewables as both an environmental and strategic imperative. As Stait noted, energy resilience and renewable infrastructure have now become a “strategic necessity.”

Denmark led the EU in renewable energy generation during the second quarter, producing 94.7% of its electricity from renewable sources. It was followed by Latvia (93.4%), Austria (91.8%), Croatia (89.5%), and Portugal (85.6%). Luxembourg recorded the largest year-on-year increase, up 13.5 percent, largely due to a surge in solar production. Belgium also saw strong growth, with a 9.1 percent rise in renewable generation compared to 2024.

At the other end of the spectrum, Slovakia, Malta, and the Czech Republic lagged behind, producing just 19.9%, 21.2%, and 22.1% of their electricity from renewable sources, respectively.

Stait believes the continued expansion of renewables will help stabilize and eventually lower electricity costs across Europe. “The accelerated buildout of renewables will ultimately lower bills for both businesses and other users—but slower buildouts mean sky-high prices may linger,” he said.

He added a call for decisive action: “My advice to European nations would be to keep going further and faster. There needs to be political action to solve grid congestion, and to create opportunities for innovation and manufacturing in Europe will be critical to keep momentum.”

With solar energy now taking the lead for the first time, Europe’s clean energy transformation appears to be entering a new phase—one that combines environmental sustainability with energy security and economic opportunity.

 

Related Articles

View more

Sign Up for Electricity Forum’s News Service

Weekly updates from our FREE News Service—get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Germany to Exempt Electric Cars from Vehicle Tax Until 2035

Germany is extending its vehicle tax exemption for electric cars until 2035, a federal move aimed at boosting EV sales, supporting the auto industry, and advancing the country’s transition to cleaner, more sustainable transportation.

 

Why is Germany Exempting EVs from Vehicle Tax Until 2035?

Germany is exempting electric vehicles from vehicle tax until 2035 to boost EV adoption, support its auto industry, and meet national climate targets.

✅ Encourages consumers to buy zero-emission cars

✅ Protects jobs in the automotive sector

✅ Advances Germany’s clean energy transition

Germany’s federal government has confirmed plans to extend the country’s vehicle tax exemption for electric cars until 2035, as part of a renewed push to accelerate the nation’s electric mobility transition and support its struggling automotive industry. The move, announced by Finance Minister Lars Klingbeil, comes just weeks before the existing exemption was set to expire.

“In order to get many more electric cars on the road in the coming years, we need to provide the right incentives now,” Klingbeil told the German Press Agency (DPA). “That is why we will continue to exempt electric cars from vehicle tax.”

Under the proposed law, the exemption will apply to new fully electric vehicles registered until December 31, 2030, with benefits lasting until the end of 2035. According to the Finance Ministry, the measure aims to “provide an incentive for the early purchase of a purely electric vehicle.” While popular among consumers and automakers, the plan is expected to cost the federal budget several hundred million euros in lost revenue.

Without the extension, the tax relief for new battery-electric vehicles (BEVs) would have ended on January 1, 2026, creating uncertainty for automakers and potential buyers. The urgency to pass the new legislation reflects the government’s goal to maintain Germany’s momentum toward electrification amid economic headwinds and fierce international competition.

The exemption’s renewal was originally included in the coalition agreement between the Christian Democratic Union (CDU), the Christian Social Union (CSU), and the Social Democratic Party (SPD). It follows two other measures from the government’s “investment booster” package—raising the maximum gross price for EV tax incentives to €100,000 and allowing special depreciation for electric vehicles. However, the vehicle tax measure was previously in jeopardy due to Germany’s tight fiscal situation. The Finance Ministry had cautioned that every proposal in the coalition deal was “subject to financing,” leading to speculation that the EV tax break could be dropped altogether.

Klingbeil’s announcement coincides with an upcoming “automotive dialogue” summit at the Chancellery, hosted by Chancellor Friedrich Merz. The meeting will bring together representatives from federal ministries, regional governments, automakers, and trade unions to address both domestic and international challenges facing Germany’s car industry. Topics will include slowing EV sales growth in China, the ongoing tariff dispute with the United States, and strategies for strengthening Germany’s global competitiveness.

“We must now put together a strong package to lead the German automotive industry into the future and secure jobs,” Klingbeil said. “We want the best cars to continue to be built in Germany. Everyone knows that the future is electric.”

The government is also expected to revisit a proposed program to help low- and middle-income households access electric cars, modelled on France’s “social leasing” initiative. Though included in the coalition agreement, progress on that program has stalled, and few details have emerged since its announcement.

Germany’s latest tax policy move signals renewed confidence in its electric vehicle transition, despite budget constraints and a turbulent global market. Extending the exemption until 2035 sends a clear message to consumers and manufacturers alike: the country remains committed to building its clean transport future—one electric car at a time.

 

Related Articles

 

View more

New York Faces Soaring Energy Bills

New York faces soaring energy bills as utilities seek record rate hikes, aging grid infrastructure demands upgrades, and federal renewable policies shift. Consumers struggle with affordability, late payments, and rising costs of delivery and energy supply across the state.

 

Why is New York Facing Soaring Energy Bills?

New York faces soaring energy bills because utilities are raising rates to cover the costs of grid upgrades, inflation, and policy-driven changes in energy supply.

✅ Utilities seek double-digit rate hikes across the state

✅ Aging infrastructure and storm repairs increase delivery costs

✅ Federal policies and gas dependence push energy prices higher

New Yorkers are bracing for another wave of energy bill increases as utilities seek record-high rate hikes and policy changes ripple through the state’s power system. Electric bills in New York are the highest they’ve been in over a decade, and more than a million households are now at least two months behind on payments, owing utilities nearly $2 billion.

Record numbers of households have had their electricity or gas shut off this year — more than 61,000 in May alone — the highest the Public Utility Law Project (PULP) has ever recorded. “This August was the group’s busiest month ever,” said Laurie Wheelock, PULP’s executive director, citing a surge in calls to its hotline. “The top concern on people’s minds: rate hikes.”

Utilities across the state are pushing for significant price increases, citing aging infrastructure, the need for climate adaptation, and higher operating costs. “We used to see single-digit rate hikes and now we see double-digit rate hikes,” said Jessica Azulay, executive director of the Alliance for a Green Economy. “That’s a new normal that is unacceptable.”

Several utilities have requested delivery rate increases of 25 percent or more, with some proposals as high as 39 percent. Upstate utilities NYSEG and RG&E are seeking to raise electric and gas bills by about $33 a month, although regulators are unlikely to approve the full amount.

The companies argue the hikes are needed “to pay for rebuilding an aging grid and expanding its capacity to meet residents’ and businesses’ service demands,” including storm repairs. They also claim the plan would create more than 1,000 jobs.

James Denn, a spokesperson for the Public Service Commission (PSC), said much of the cost pressure stems from “inflation, higher interest rates, supply chain disruptions, the global push to upgrade electrical infrastructure, and, most recently, the rising risk and uncertainty from tariffs.”

While some have blamed New York’s clean-energy transition, a PSC report found that state climate policies account for only 5 to 9.5 percent of the average household’s electric bill, or approximately $10 to $12 per month. The bulk of the increases still come from traditional spending on infrastructure, storm resilience, and system expansion.

On the supply side, costs are rising too. President Donald Trump’s recent policies have threatened renewable-energy investment nationwide, potentially adding to New York’s woes. His July “megabill” phases out a 30 percent federal tax credit for solar and wind unless projects begin construction by mid-2026. Industry experts warn that the changes could make renewables “more expensive to build” and “increase reliance on gas.”

“It just means more expensive power,” said Marguerite Wells of the Alliance for Clean Energy New York.

The state estimates Trump’s policy shifts could cost New York $60 billion in lost renewable investment. With fewer clean-energy projects moving forward, gas — which already supplies roughly half of the state’s electricity — will remain the dominant source, tying energy prices to volatile global markets.

Governor Kathy Hochul has called affordability “our greatest short-term challenge,” while consumer advocates are demanding reforms to reduce utility profits and overhaul “rate design.”

“There is definitely a groundswell of concern,” Wheelock said. “We go to meetings and we’re getting questions about rate design, like, ‘What is the revenue decoupling mechanism?’ Never had that question before.”

 

Related Articles

 

View more

Ontario Poised to Miss 2030 Emissions Target

Ontario Poised to Miss 2030 Emissions Target highlights how rising greenhouse gas emissions from electricity generation and natural gas power plants threaten Ontario’s climate goals, environmental sustainability, and clean energy transition efforts amid growing economic and policy challenges.

 

Why is Ontario Poised to Miss 2030 Emissions Target?

Ontario Poised to Miss 2030 Emissions Target examines the province’s setback in meeting climate goals due to higher power-sector emissions and shifting energy policies.

✅ Rising greenhouse gas emissions from gas-fired electricity generation

✅ Climate policy uncertainty and missed environmental targets

✅ Balancing clean energy transition with economic pressures

Ontario’s path toward meeting its 2030 greenhouse gas emissions target has taken a sharp turn for the worse, according to internal government documents obtained by Global News. The province, once on track to surpass its reduction goals, is now projected to miss them—largely due to rising emissions from electricity generation.

In October 2024, the Ford government’s internal analysis indicated that Ontario was on track to reduce emissions by 28 percent below 2005 levels by 2030, effectively exceeding its target. But a subsequent update in January 2025 revealed a grim reversal. The new forecast showed an increase of about eight megatonnes (Mt) of emissions compared to the previous model, with most of the rise attributed to the province’s energy policies.

“This forecast is about 8 Mt higher than the October 2024 forecast, mainly due to higher electricity sector emissions that reflect the latest ENERGY/IESO energy planning and assumptions,” the internal document stated.

While the analysis did not specify which policy shifts triggered the change, experts point to Ontario’s growing reliance on natural gas. The use of gas-fired power plants has surged to fill temporary gaps created by nuclear refurbishment projects and other grid constraints. In fact, natural gas generation in early 2025 reached its highest level since 2012.

The internal report cited “changing electricity generation,” nuclear power refurbishment, and “policy uncertainty” as major risks to achieving the province’s climate goals. But the situation may be even worse than the government’s updated forecast suggests.

On Wednesday, Ontario’s auditor general warned that the January projections were overly optimistic. The watchdog’s new report concluded the province could fall even further behind its 2030 emissions target, noting that reductions had likely been overestimated in several sectors, including transportation and waste management. “An even wider margin” of missed goals was now expected, the auditor said.

Environment Minister Todd McCarthy defended the government’s position, arguing that climate goals must be balanced against economic realities. “We cannot put families’ financial, household budgets at risk by going off in a direction that’s not achievable,” McCarthy said.

The minister declined to commit to new emissions targets beyond 2030—or even to confirm that the existing goals would be met—but insisted efforts were ongoing. “We are continuing to meet our commitment to at least try to meet our commitment for the 2030 target,” he told reporters. “But targets are not outcomes. We believe in achievable outcomes, not unrealistic objectives.”

Environmental advocates warn that Ontario’s reliance on fossil-fuel generation could lock the province into higher emissions for years, undermining national efforts to decarbonize Canada’s electricity grid. With clean power expected to play a central role in both industrial growth and climate action, the province’s backslide represents a significant setback for Canada’s overall emissions strategy.

As Ontario weighs its next steps, the tension between energy security, affordability, and environmental responsibility continues to define the province’s path toward a lower-carbon future.

 

Related Articles

 

View more

Alberta Leads Canada’s Renewable Surge

Alberta Leads Canada’s Renewable Surge showcases how the province is transforming its power grid with wind, solar, and hydrogen energy projects that reduce carbon emissions, create sustainable jobs, and drive Canada’s clean electricity future.

 

Key Points: Alberta Leads Canada’s Renewable Surge

It is a national clean energy initiative showcasing Alberta’s leadership in renewable electricity generation, grid modernization, and sustainable economic growth.

✅ Expands solar, wind, and hydrogen projects across Alberta

✅ Reduces emissions while strengthening grid reliability

✅ Creates thousands of clean energy jobs and investments

Alberta is rapidly emerging as a national leader in clean electricity, driving Canada’s transition to a low-carbon energy future. A federal overview highlights how the province has become the powerhouse behind the country’s renewable energy growth, phasing out coal ahead of schedule and attracting billions in clean-energy investment.

In 2023, Alberta accounted for an astonishing 92 percent of Canada’s increase in renewable electricity generation. Solar and wind developments have expanded dramatically, reducing the province’s reliance on natural gas and cutting emissions from the power sector. Alberta’s vast land area and strong wind and solar resources have made it an ideal location for large-scale renewable projects that are transforming its energy landscape.

Federal programs are helping fuel this momentum. Through the Smart Renewables and Electrification Pathways program, 49 Alberta projects have already received over $660 million in funding, with an additional $152 million announced in the 2024 federal budget. Flagship developments include the Forty Mile Wind Farm and the Big Sky Solar Power Project, each backed by $25 million in federal support. These investments are creating jobs, strengthening grid reliability, and positioning Alberta at the forefront of Canada’s clean energy transition.

Although fossil fuels still dominate Alberta’s electricity mix, a major change is underway. In 2022, coal and natural gas accounted for 81 percent of electricity generation, while renewables and other sources contributed 18 percent. However, Alberta has successfully phased out coal generation ahead of the federal deadline, marking a milestone achievement in the province’s decarbonization journey.

Alberta’s renewable expansion features some of the country’s most significant projects. The Travers Solar Project in Vulcan County generates up to 465 megawatts — enough to power about 150,000 homes. Indigenous-led solar initiatives are also expanding, supported by $160 million in federal funding that has already created more than 1,500 jobs. On the wind side, the 494-megawatt Buffalo Plains Wind Farm, Canada’s largest onshore installation, began operating in 2024, followed by the 190-megawatt Paintearth Wind facility, which signed a 15-year power purchase agreement with Microsoft.

Beyond wind and solar, Alberta is exploring new technologies to maintain a stable, low-carbon grid. The province is collaborating with Saskatchewan on the development of small modular reactors (SMRs) to provide reliable baseload power and support the long-term shift toward net-zero electricity by 2050. Projects integrating carbon capture and storage are also moving forward, such as the proposed Moraine Power Generating Project — a 465-megawatt natural gas plant that is expected to create more than 700 jobs during construction.

The economic potential of Alberta’s clean energy transformation is substantial. Clean Energy Canada estimates that between 2025 and 2050, the province could gain more than 400,000 new jobs in the clean energy sector — triple the number currently employed in the upstream oil and gas industry. These positions will span renewable generation, hydrogen production, grid modernization, and energy storage.

With strong federal backing, aggressive private investment, and rapid deployment of renewable energy, Alberta is redefining its energy identity. Once known for its fossil fuel resources, the province is now positioning itself as a leader in clean electricity — demonstrating that economic growth and environmental responsibility can go hand in hand.

 

Related Articles

 

View more

West Wind Clean Energy Project Launched

Nova Scotia’s West Wind Clean Energy Project aims to harness offshore wind power to deliver renewable electricity, expand transmission infrastructure, and position Canada as a global leader in sustainable energy generation.

 

What is West Wind Clean Energy?

The West Wind Clean Energy Project is Nova Scotia’s $60-billion offshore wind initiative to generate up to 66 GW of clean electricity for Canada’s growing energy needs.

✅ Harnesses offshore wind resources for renewable power generation

✅ Expands grid and transmission infrastructure for clean energy exports

✅ Supports Canada’s transition to a sustainable, low-carbon economy

Nova Scotia has launched one of the most ambitious clean energy projects in Canadian history — a $60-billion plan to build 66 gigawatts (GW) of offshore wind capacity capable of meeting up to 27 per cent of the nation’s total electricity demand.

Premier Tim Houston unveiled the project, called West Wind, in June, positioning it as a cornerstone of Canada’s broader energy transition and aligning it with Prime Minister Mark Carney’s goal of making the country both a clean energy and conventional energy superpower. Three months later, Carney announced a slate of “nation-building” infrastructure projects the federal government would fast-track. While West Wind was not on the initial list, it was included in a second tier of high-potential proposals still under development.

The plan’s scale is unprecedented for Canada’s offshore energy industry. However, enormous logistical, financial, and market challenges remain. Turbines will not be in the water for years, and the global offshore wind industry itself is facing one of its most difficult periods in over a decade.

“Right now is probably the worst time in 15 years to launch a project like this,” said an executive at a Canadian energy company who requested anonymity. “It’s not Nova Scotia’s fault. It’s just really bad timing.” He pointed to failed offshore wind auctions in Europe, rising costs, and policy reversals in the United States as troubling signals for investors. “You can’t build the wind and hope the lines come later. You have to build both — together.”

Indeed, transmission infrastructure is emerging as the project’s biggest obstacle. Nova Scotia’s local electricity demand is limited, meaning most of the power would need to be sold to markets in Ontario, Quebec, and New England. Of the $60 billion budgeted for West Wind, $40 billion is allocated to generation, and $20 billion to new transmission — massive sums that require close federal-provincial coordination and long-term investment planning.

Despite the economic headwinds, advocates argue that West Wind could transform Atlantic Canada’s energy landscape and strengthen national energy security. Peter Nicholson, chair of the Canadian Climate Institute and author of Catching the Wind: How Atlantic Canada Can Become an Energy Superpower, believes the project could redefine Nova Scotia’s role in Canada’s energy transition.

“It’s very well understood where the world is headed,” Nicholson said. “We’re moving toward an electrical future that’s cleanly generated for economic, environmental, and security reasons. But for that to happen, the economics have to work.” He added that the official “nation-building” designation could give Nova Scotia “a seat at the table” with major utilities in other provinces.

The governments of Canada and Nova Scotia recently issued a notice of strategic direction to the Canada–Nova Scotia Offshore Energy Regulator, instructing it to begin a prequalification process and design a call for bids later this year. The initial round will cover just 3 GW of capacity — smaller than the originally envisioned 5 GW — but officials describe it as a first step in a multi-decade plan.

While timing and economics remain uncertain, supporters insist the long-term potential of offshore wind in Nova Scotia is too significant to ignore. As global demand for clean electricity grows, they argue, West Wind could help secure Canada’s place as a renewable energy leader — if government and industry can find a way to make the numbers work.

 

Related Articles

 

View more

Canada’s Clean Energy Sector Growth

Canada’s clean energy sector is expanding as Indigenous communities lead electricity transmission projects, drive sustainable growth, and strengthen energy independence through renewable power, community ownership, and grid connections across remote and regional areas of Canada.

 

What is Canada’s Clean Energy Sector?

Canada’s clean energy sector encompasses industries and initiatives that generate, transmit, and manage low-carbon electricity to meet the country's national climate goals. It emphasizes Indigenous participation, renewable innovation, and equitable economic growth.

✅ Expands renewable electricity generation and transmission

✅ Builds Indigenous-led ownership and partnerships

✅ Reduces emissions through sustainable energy transition

 

Canada’s clean energy sector is entering a pivotal era of transformation, with Indigenous communities emerging as leading partners in expanding electricity transmission and renewable infrastructure. These communities are not only driving projects that connect remote regions to the grid but also redefining what energy leadership and equity look like in Canada.

At a recent webinar co-hosted by the Canadian Climate Institute and the Indigenous Power Coalition, panellists discussed the growing wave of Indigenous-led electricity transmission projects and the policies needed to strengthen Indigenous participation. The event, moderated by Frank Busch, featured Margaret Kenequanash, CEO of Wataynikaneyap Power; Kahsennenhawe Sky-Deer, Grand Chief of the Mohawk Council of Kahnawà:ke; and Blaise Fontaine, Co-Founder of ProACTIVE Planning Inc. and Indigenous Power Coalition.

The discussion comes at a crucial moment for Canada’s clean energy transition. As the country races to meet its climate commitments and electrify new industries, demand for clean power is rising rapidly. Historically, energy development in Canada occurred on Indigenous lands without consent or fair participation, but today, Indigenous communities collectively represent the largest clean energy asset owners outside Crown and private utilities.

“There is a genuine appetite for Indigenous communities to not just own transmission projects but to also lead,” said Fontaine. He noted that Indigenous communities are increasingly setting the terms of engagement, selecting partners, and shaping projects in line with their cultural and environmental values.

One of the strongest examples of this transformation is the Wataynikaneyap (Watay) Power Project in northern Ontario, a 1,800-kilometre transmission line connecting 17 remote First Nations communities to the provincial grid. “Communities must fully understand what they are getting into, since it is their homelands that will be impacted,” said Kenequanash. She emphasized that the project’s success came from five years of inter-community meetings to agree on shared principles before any external engagement.

The panel also highlighted the Hertel–New York Interconnection Line, co-owned by Hydro-Québec and the Mohawk Council of Kahnawà:ke, as another milestone in Indigenous energy leadership. Sky-Deer noted that the project’s co-ownership model required Quebec’s National Assembly to pass Bill 13, a first-of-its-kind legal framework. “That was a breakthrough,” she said, “but it also shows that true partnership still depends on one-off exceptions rather than standard policy.”

Panellists agreed that Canada’s regulatory systems have not kept pace with Indigenous leadership. Fontaine called on governments to “think outside the box to avoid staying stuck in the status quo,” emphasizing the need for enabling policies that make Indigenous-led ownership the norm rather than the exception.

Financial readiness is another key factor driving Indigenous participation. Communities are now accessing capital through partnerships with financial institutions and government loan programs. The collaboration between the Mohawk Council of Kahnawà:ke and the Caisse de dépôt et placement du Québec exemplifies tailored financing and long-term investment that supports community ownership and sustainable growth.

True equity, however, goes beyond financial participation. “It’s not just about having a percentage stake,” Fontaine explained. “True equity means meaningful decision-making power and control.” Indigenous leaders are insisting on co-governance structures that align with their worldviews, prioritizing environmental protection, cultural respect, and intergenerational stewardship.

The benefits of this approach extend far beyond project economics. Communities involved in ownership experience tangible local benefits, including employment and training opportunities, as well as new investments in education and culture. Hydro-Québec’s $10 million contribution to the Kahnawà:ke Cultural Arts Center is one example of how partnerships can support cultural renewal and community development.

As Canada looks to build east–west electricity interties and expand renewable energy generation, Indigenous leadership is becoming increasingly central to national energy policy. Fontaine noted that this shift offers “even greater opportunities for Indigenous-led transmission as Canada connects its provinces rather than just exporting power south.”

On the National Truth and Reconciliation Day, panellists urged reflection on both the barriers that remain and the opportunities ahead. Indigenous leadership in Canada’s clean energy sector is proving that reconciliation can take tangible form, through ownership, partnership, and shared prosperity.

This transformation represents more than an energy transition; it’s a rebalancing of power, respect, and responsibility, carried out “in a good way,” as the panellists emphasized, and essential to building a clean, inclusive energy future for all Canadians.

 

Related Articles

 

View more

ACCIONA Energía Launches 280 MW Wind Farm in Alberta

ACCIONA Energía, a global leader in renewable energy, has successfully launched its Forty Mile Wind Farm in southern Alberta, Canada. This 280-megawatt (MW) project, powered by 49 Nordex turbines, is now supplying clean electricity to the provincial grid and stands as one of Canada's ten largest wind farms. It also marks the company's largest wind installation in North America to date. 

Strategic Location and Technological Specifications

Situated approximately 50 kilometers southwest of Medicine Hat, the Forty Mile Wind Farm is strategically located in the County of Forty Mile No. 8. Each of the 49 Nordex N155 turbines boasts a 5.7 MW capacity and stands 108 meters tall. The project's design allows for future expansion, with a potential Phase II that could add an additional 120 MW, bringing the total capacity to 400 MW. 

Economic and Community Impact

The Forty Mile Wind Farm has significantly contributed to the local economy. During its peak construction phase, the project created approximately 250 jobs, with 25 permanent positions anticipated upon full operation. Additionally, the project has injected new tax revenues into the local economy and provided direct financial support to local non-profit organizations, including the Forty Mile Family & Community Support Services, the Medicine Hat Women’s Shelter Society, and the Root Cellar Food & Wellness Hub. 

Environmental Benefits

Once fully operational, the Forty Mile Wind Farm is expected to generate enough clean energy to power more than 85,000 homes. This substantial contribution to Alberta's energy mix aligns with ACCIONA Energía's commitment to sustainability and its goal of reducing carbon emissions. The project is part of the company's broader strategy to expand its renewable energy footprint in North America and support the transition to a low-carbon economy. 

Future Prospects

Looking ahead, ACCIONA Energía plans to continue its expansion in the renewable energy sector. The success of the Forty Mile Wind Farm serves as a model for future projects and underscores the company's dedication to delivering sustainable energy solutions. With ongoing developments and a focus on innovation, ACCIONA Energía is poised to play a pivotal role in shaping the future of renewable energy in North America.

The Forty Mile Wind Farm exemplifies ACCIONA Energía's commitment to advancing renewable energy, supporting local communities, and contributing to environmental sustainability. As the project continues to operate and expand, it stands as a testament to the potential of wind energy in Canada's clean energy landscape.

View more



Related Articles From ET Magazine

Understanding the IEC 61850 Protocol in Substation Automation

Understanding the IEC 61850 Protocol in Substation Automation

The IEC 61850 protocol has become the global standard for substation automation, enabling high-speed communication, interoperability, and streamlined integration of intelligent electronic devices (IEDs). It plays a foundational role in transforming traditional substations into digital substations that support real-time control, monitoring, and automation across the electrical grid.
 
What Is the IEC 61850 Protocol?
IEC 61850 is a communications protocol developed by the International Electrotechnical Commission (IEC) for automated substation systems. Unlike older legacy protocols that rely on fixed, vendor-specific formats, IEC 61850 uses an object-oriented data model and abstract communication services to create a standardized method for data exchange among IEDs, SCADA systems, and Human-Machine Interfaces (HMIs).
Its architecture is based on Ethernet and supports both client-server and peer-to-peer communications, making it ideal for smart grid applications that require high-speed, deterministic messaging.
 
Key Features of the IEC 61850 Protocol
The success of IEC 61850 in modern substation automation is driven by several key features that distinguish it from older communication standards. These capabilities support high-speed event handling, structured data modeling, and network flexibility.
 
Interoperability Across Devices
IEC 61850 enables seamless integration of equipment from multiple manufacturers by defining common data structures and naming conventions. This interoperability reduces engineering time and ensures long-term system flexibility.
High-Speed Messaging with GOOSE
The protocol includes GOOSE messaging (Generic Object-Oriented Substation Events), which allows IEDs to communicate critical event data in under 4 milliseconds. These peer-to-peer messages operate at the Ethernet layer, making them ideal for protection and control schemes.
 
Process Bus and Station Bus Architecture
IEC 61850 divides communication into two logical layers:
Station Bus: Handles data exchange between IEDs, SCADA, and HMIs using MMS (Manufacturing Message Specification).
Process Bus: Replaces traditional copper wiring by transmitting sampled values (SV) and control signals between field equipment and IEDs over Ethernet via Merging Units (MUs).
 
Scalable Data Modeling
The standard uses Logical Nodes and Logical Devices to define all data points in a substation. This object-oriented modeling enables efficient configuration, simplified diagnostics, and faster system deployment.
 
Time Synchronization
IEC 61850 supports Precision Time Protocol (PTP) to align time-sensitive operations across devices, which is essential for fault analysis, event recording, and system coordination.
 
 
Benefits of the IEC 61850 Protocol
Beyond its technical specifications, IEC 61850 delivers significant operational and economic advantages to utilities and grid operators. These benefits make it a strategic choice for modernizing substation infrastructure.
Reduced wiring complexity and installation costs
Improved protection system response through fast GOOSE messaging
Vendor-agnostic system design
Future-proofing with support for emerging smart grid technologies
Easier integration of renewable energy, energy storage, and microgrids
Enhanced cybersecurity through standards such as IEC 62351
 
GOOSE Messaging: Real-Time Communication
A standout innovation in the IEC 61850 protocol is GOOSE messaging, which enables ultra-fast, deterministic communication between IEDs. This feature is crucial for protective relaying and real-time system response.
GOOSE is used for event-driven messaging with millisecond latency.
IEDs can send and receive multicast messages, allowing instant coordination of devices during fault conditions.
GOOSE supports breaker interlocking, trip signals, and status broadcasts across the substation Ethernet network.
 
Process Bus vs. Station Bus: Streamlining Substation Design
Modern substation design increasingly depends on separating logical functions into dedicated communication layers. The IEC 61850 protocol facilitates this through its dual-bus architecture, improving flexibility and reducing costs.
The station bus handles monitoring, metering, and supervisory control via MMS messages.
The process bus connects high-voltage equipment to IEDs using digitized sampled values, eliminating the need for complex analog cabling.
This architecture reduces physical wiring, enhances signal accuracy, and supports remote diagnostics and maintenance.
 
Future-Proofing Substations with IEC 61850
As electric utilities face growing complexity from distributed energy resources, aging infrastructure, and cybersecurity threats, IEC 61850 provides a path forward. Its modular design and upgrade-friendly structure make it well-suited for evolving grid demands.
Easily supports DER integration, such as solar, wind, and battery systems
Enables wide-area monitoring systems (WAMS) and real-time situational awareness
Facilitates edge computing and virtualized protection systems
Compatible with ongoing enhancements in digital security and network segmentation
 
The IEC 61850 protocol is the cornerstone of modern substation automation, providing a robust, interoperable, and future-ready platform for intelligent grid operations. With features like GOOSE messaging, process bus architecture, and standardized data models, it enables faster fault response, reduced engineering effort, and seamless integration of diverse systems.
As the power grid evolves to accommodate renewable energy, electrification, and decentralization, IEC 61850 remains essential to building safe, smart, and scalable digital substations.
View more
Climate Change Fuels Spread of Deadly Fungal Infections in the UK

Climate Change Fuels Spread of Deadly Fungal Infections in the UK

As global temperatures rise, scientists warn that the UK faces an increasing threat from deadly fungal infections, particularly those caused by the Aspergillus species. These fungi, which can lead to severe respiratory illnesses and brain infections, are projected to expand their range into northern Europe, including the UK, due to climate change.

The Aspergillus Threat

Aspergillus fumigatus and Aspergillus flavus are the primary culprits behind invasive aspergillosis, a life-threatening disease that affects the lungs and can spread to other organs, including the brain. These fungi produce airborne spores that can be inhaled, posing significant risks to individuals with weakened immune systems, such as those undergoing chemotherapy or organ transplants. In the UK, the incidence of aspergillosis is expected to rise as the climate warms, potentially leading to increased hospital admissions and mortality rates.

Climate Change and Fungal Expansion

Research indicates that rising global temperatures are creating more favorable conditions for the proliferation of Aspergillus species. A study led by Norman van Rhijn at the University of Manchester suggests that by 2100, A. fumigatus could expand its range by 77%, potentially exposing an additional 9 million Europeans to infection. Similarly, A. flavus is expected to spread into new regions, including parts of the UK. These projections underscore the urgent need for enhanced surveillance and preparedness to mitigate the impact of these fungal pathogens. 

Challenges in Detection and Treatment

Diagnosing fungal infections can be challenging, as symptoms often overlap with other respiratory illnesses. Moreover, antifungal treatments are limited, and resistance is becoming more prevalent. The World Health Organization lists A. fumigatus as one of the most critical fungal pathogens, highlighting the need for improved diagnostic tools and treatment options. 

Impact on Agriculture and Food Security

Beyond human health, Aspergillus species pose a significant threat to agriculture. A. flavus produces aflatoxins, potent carcinogens that can contaminate crops such as maize, peanuts, and cotton. Climate change is expected to exacerbate the spread of these toxins, affecting food safety and security. Increased temperatures and humidity levels can enhance the growth of A. flavus, leading to higher aflatoxin contamination in crops. 

Urgent Need for Action

Experts emphasize the importance of addressing the dual threats of climate change and fungal infections. Investing in fungal research, improving diagnostic capabilities, and developing effective treatments are critical steps in mitigating the impact of these pathogens. Public health systems must be equipped to recognize and respond to emerging fungal threats, particularly as climate change continues to alter the distribution of infectious diseases.

In conclusion, the spread of deadly fungal infections in the UK, driven by climate change, presents a multifaceted challenge to public health and agriculture. Proactive measures are essential to prevent widespread outbreaks and safeguard the well-being of populations at risk.

View more
Climate Change Impacts and Adaptation Efforts in British Columbia

Climate Change Impacts and Adaptation Efforts in British Columbia

As of early May 2025, British Columbia is experiencing significant climate-related challenges, including rising temperatures, increased wildfire risks, and ecological disruptions. These developments underscore the urgency for comprehensive adaptation strategies to safeguard communities and ecosystems.

Escalating Wildfire Risks

The province is witnessing an early onset of wildfire season, with 107 active fires reported. Experts attribute the heightened risk to a combination of warmer temperatures and prolonged drought conditions. The BC Wildfire Service has indicated a "high potential for an active spring wildfire season," emphasizing the need for preparedness and swift response measures.

Ecological Disruptions in Urban Forests

In Vancouver's Stanley Park, climate change is manifesting through the proliferation of the western hemlock looper moth, which has led to the death of approximately 160,000 trees. These moths thrive in warmer winters, facilitated by climate change, and have caused significant ecological damage to the park's century-old trees. 

Urban Heat and Infrastructure Challenges

Projections indicate that by 2050, Vancouver's climate could resemble that of San Diego, with average summer temperatures rising and increased occurrences of "tropical nights." This shift necessitates urgent adaptations in urban planning and infrastructure to mitigate heat-related health risks and manage water resources effectively. 

Strategic Adaptation Initiatives

In response to these challenges, Vancouver has updated its Climate Change Adaptation Strategy, focusing on enhancing resilience against extreme heat, poor air quality, drought, extreme rainfall, and sea level rise. Key initiatives include:

  • Urban Greening: Expanding tree canopy coverage to 30% by 2050 to provide natural cooling and improve air quality.

  • Building Retrofits: Upgrading 30 buildings to enhance cooling and reduce emissions.

  • Green Infrastructure: Implementing green rainwater infrastructure across three hectares of city streets to manage stormwater and mitigate urban heat island effects.

  • Coastal Adaptation: Developing a city-wide coastal adaptation policy to address sea level rise and coastal flooding.

Community Engagement and Equity

The strategy emphasizes equity, recognizing that climate change disproportionately affects vulnerable populations. Each action plan incorporates equity outcomes, ensuring that adaptation measures benefit all residents, particularly those most at risk.

British Columbia's proactive approach to climate adaptation, exemplified by Vancouver's updated strategy, sets a precedent for other regions facing similar challenges. By integrating climate resilience into urban planning and community development, the province aims to safeguard its residents and ecosystems against the escalating impacts of climate change.

View more
Canada Files 200 Fisheries Act Charges Against ArcelorMittal for Alleged Environmental Violations

Canada Files 200 Fisheries Act Charges Against ArcelorMittal for Alleged Environmental Violations

In a significant enforcement action, Environment and Climate Change Canada (ECCC) has laid 200 charges against ArcelorMittal Canada, alleging violations of the Fisheries Act. The charges pertain to the unlawful deposit of harmful substances into fish-bearing waters in Quebec between 2014 and 2022. These alleged infractions occurred at the Fire Lake Mine and the Mont-Wright mining complex, the latter being the largest open-pit iron mine in Canada. The affected waterways flow into the Moisie River, a provincially administered aquatic reserve and one of North America's major salmon rivers.

Background of the Allegations

The Fisheries Act prohibits the deposit of deleterious substances into waters frequented by fish or in places where such substances may enter these waters. ECCC's enforcement officers initiated investigations into ArcelorMittal Canada's operations at the Fire Lake and Mont-Wright sites after receiving reports of potential environmental violations. The subsequent investigations led to the filing of 200 charges against the company for allegedly permitting or causing the deposit of harmful substances into the aforementioned waterways.

Environmental Significance of the Moisie River

The Moisie River holds ecological importance due to its role as a habitat for Atlantic salmon, a species of significant conservation concern. The river's designation as a provincial aquatic reserve underscores its environmental value and the necessity for stringent protection measures. Alleged contamination of its tributaries could have detrimental effects on local biodiversity and water quality, highlighting the gravity of the charges against ArcelorMittal Canada.

Previous Environmental Infractions

This is not the first instance of ArcelorMittal Canada facing legal action for environmental violations. In 2022, the company and its partner, 7623704 Canada Inc., were fined a total of $15 million for offenses related to the Mont-Wright mining complex. These offenses included unauthorized deposits of toxic substances into fish-bearing waters and the failure to comply with effluent monitoring regulations. The court's decision to impose substantial fines reflects the seriousness with which environmental breaches are treated under Canadian law.

Potential Implications for ArcelorMittal Canada

If convicted, ArcelorMittal Canada could face significant legal and financial repercussions. The Fisheries Act provides for substantial penalties, including fines and orders for remediation. Additionally, a conviction could lead to reputational damage, affecting the company's standing with stakeholders and the public. The ongoing legal proceedings will determine the extent of the company's liability and the appropriateness of any penalties.

Broader Environmental Enforcement Context

The charges against ArcelorMittal Canada underscore the Canadian government's commitment to enforcing environmental protection laws. ECCC's proactive approach in investigating and prosecuting alleged violations serves as a deterrent to other corporations and reinforces the importance of corporate responsibility in environmental stewardship. The outcome of this case may influence future enforcement actions and the development of environmental policies in Canada.

The 200 charges laid against ArcelorMittal Canada highlight the critical need for adherence to environmental regulations in industrial operations. As the legal process unfolds, it serves as a reminder of the importance of safeguarding Canada's natural resources and holding corporations accountable for their environmental impact. The case will likely have lasting implications for environmental governance and corporate accountability in the country.

View more

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

EF T&D Live Online Forums

Register for our FREE T&D Live Online Forums and join our live expert-led webinars on the latest electrical industry topics.
  • Industry expert insights on trending technologies
  • Free access to recorded webinar presentations
  • Downloadable PDF presentations
  • Convenient viewing on your schedule—no attendance required

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified