Third turbine for farm brings smiles

By McClatchy Tribune News


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
It was a good day to be in the wind-power business.

With wind gusts as high as 40 mph, Glenn Cook, who recently erected his third wind turbine at Cider Hill Farm, said his three turbines generated as much energy in 24 hours as he would typically produce in one week. As communities like Newburyport and Newbury mull the potential of wind power for their communities and work to set up rules to govern them, Cook is ahead of the game.

Almost one year after Cider Hill Farm first erected two wind turbines to help supply the farm with electricity, Cook is praising his now three turbines - the third was added in January - as well as the recent addition of solar panels.

"I love them; I absolutely love them," Cook said. "I would love to be producing 100 percent of our electricity someday through renewable resources."

Right now, between the turbines and the solar panels, that total is closer to about 30 percent. Calling his turbines a "pioneering" project, Cook said they are producing slightly less than what he had expected. A computer-generated model showing the wind speeds at the farm over-estimated what the wind resources would be, Cook said. Cook had hoped to see production at about 700 to 800 kilowatts hours of electricity a month. The turbines have been giving him closer to 600 in the winter.

In the summer, that will drop to about 400 kilowatt hours or less. "I knew they would produce much more in the winter than they do in the summer," he said. "That being said, I love having them. They are still contributing a lot to our bills."

Cook said the turbine model he has, a Bergey, does particularly well in Vermont or in really high locations, such as mountaintops. "Today is a particularly good day for the turbines," Cook said, with the strong wind gusts. Cook checks the meters and sends the turbine readings to the Massachusetts Technology Collaborative once a month. Cider Hill Farm first erected a 120-foot-tall tower last January.

In May, it placed a second, identical tower about 80 feet away from the first. This past January, it placed a third turbine at the base of the hill. A portion of the cost to install the turbines was funded by a Massachusetts Technology Collaborative alternative-energy grant. The solar panels were funded with a grant from the Massachusetts Department of Agricultural Resource's Agricultural Environmental Enhancement Program.

The Cooks installed the solar panels in November. Those are producing even more than he expected, Cook said. The panels produce about 900 kilowatt hours during the winter. Last month, with the days growing longer, Cook said he saw about 1,200 kilowatt hours.

The 56 panels were put up on the main barn by the well-known farm store.

"Everybody will see them," Cook said.

Homeowners would probably get half the number of panels, about 25 to 30, to tend to their electrical needs, Cook said. Last month, the farm had a savings of $180 just from the solar panels, Cook said, an investment they will keep getting results from over the next 20 to 30 years. Cook said he plans to spend the next few months installing a wood-fired boiler for his greenhouses - something that will save him money in fuel costs.

Although the turbines have been set up for a while, the Cooks still get phone calls and visits from people wanting to see them or hear more about the farm's plans.

Eventually, Cook said customers might even be able to visit the space where the meters for the turbines are held to see how the readings are done. "There's still a lot of interest," he said.

Related News

California Legislators Prepare Vote to Crack Down on Utility Spending

California Utility Spending Bill scrutinizes how ratepayer funds are used by utilities, targeting lobbying, advertising, wildfire prevention cost pass-throughs, and CPUC oversight to curb high electricity bills and increase accountability and transparency statewide.

 

Key Points

Legislation restricting utilities from using ratepayer money for lobbying and ads, with stronger CPUC oversight.

✅ Bans ratepayer-funded lobbying and political advertising

✅ Expands prohibited utility communications and influence spending

✅ Aims to curb bills, boost transparency, and CPUC accountability

 

California's legislators are about to vote on a bill that would impose stricter regulations on how utility companies spend the money they collect from ratepayers. This legislation directly responds to the growing discontent among Californians who are already grappling with high electricity bills, as Californians ask why electricity prices are soaring amid wildfire prevention efforts.

Consumer rights groups have been vehemently critical of how utilities have been allocating customer funds, amid growing calls for regulatory action from state officials. They allege that a substantial portion of this money is being funnelled into lobbying efforts and advertising campaigns that yield no direct benefits for the customers themselves.

The proposed bill would significantly broaden the definition of what constitutes prohibited advertising and political influence activities on the part of utility companies, separate from income-based fixed electricity charges proposals that affect rate design. This would effectively restrict the ways in which utilities can utilize customer funds for such purposes.

While consumer advocacy groups have favored the legislation, it has drawn opposition from utility companies and some labor unions, as lawmakers weigh overturning income-based utility charges in parallel debates. Opponents contend that it would hinder utilities' ability to communicate effectively with their customers and advocate for their interests. Additionally, they express concerns that the bill could result in job losses within the utility sector.

The vote on the bill is expected to take place on Monday. The outcome of the vote is uncertain, but it is sure to be a closely watched development for Californians struggling with the burden of high electricity bills, with many wondering about major changes to their electric bills in the near term.

 

California's Electricity Rates: A Burden for Residents

A recent report by the California Public Utilities Commission (CPUC) revealed that the average Californian household spends a significantly higher amount on electricity compared to the national average. This disparity in electricity rates can be attributed to a number of factors, including the financial costs associated with wildfire prevention measures, investments in renewable energy infrastructure, and maintenance of aging electrical grids, even as the state considers revamping electricity rates to clean the grid.

 

Examples of Utility Company Spending that Raise Concerns

Consumer rights groups have specifically highlighted instances where utility companies have used customer money to fund lavish executive compensation packages, sponsor professional sports teams, and finance political campaigns. They argue that these expenditures do not provide any tangible benefits to ratepayers and should not be funded through customer bills.

 

The Need for Accountability and Prioritization

Proponents of the bill believe that the legislation is necessary to ensure that utility companies are held accountable for how they spend customer funds. They believe that the stricter regulations would compel utilities to prioritize investments that directly improve the quality and reliability of electricity services for Californians, alongside discussions of income-based flat-fee utility bills that could reshape rate structures.

The impending vote on the bill underscores the ongoing tension between the need for reliable electricity services and the desire to keep utility rates affordable for Californians. The outcome of the vote is likely to have a significant impact on how utility companies operate in the state and how much Californians pay for their electricity.

 

Related News

View more

Finland Investigates Russian Ship After Electricity Cable Damage

Finland Shadow Fleet Cable Investigation details suspected Russia-linked sabotage of Baltic Sea undersea cables, AIS dark activity, and false-flag tactics threatening critical infrastructure, prompting NATO and EU vigilance against hybrid warfare across Northern Europe.

 

Key Points

Finland probes suspected sabotage of undersea cables by a Russia-linked vessel using flag of convenience and AIS off.

✅ Undersea cable damage in Baltic Sea sparks security alerts

✅ Suspected shadow fleet ship ran AIS dark under false flag

✅ NATO and EU boost maritime surveillance, critical infrastructure

 

In December 2024, Finland launched an investigation into a ship allegedly linked to Russia’s “shadow fleet” following a series of incidents involving damage to undersea cables. The investigation has raised significant concerns in Finland and across Europe, as it suggests possible sabotage or other intentional acts related to the disruption of vital communication and energy infrastructure in the Baltic Sea region. This article explores the key details of the investigation, the role of Russia’s shadow fleet, and the broader geopolitical implications of this event.

The "Shadow Fleet" and Its Role

The term “shadow fleet” refers to a collection of ships, often disguised or operating under false flags, that are believed to be part of Russia's covert maritime operations. These vessels are typically used for activities such as smuggling, surveillance, and potentially military operations, mirroring the covert hacker infrastructure documented by researchers in related domains. In recent years, the "shadow fleet" has been under increasing scrutiny due to its involvement in various clandestine actions, especially in regions close to NATO member countries and areas with sensitive infrastructure.

Russia’s "shadow fleet" operates in the shadows of regular international shipping, often difficult to track due to the use of deceptive practices like turning off automatic identification systems (AIS). This makes it difficult for authorities to monitor their movements and assess their true purpose, raising alarm bells when one of these ships is suspected of being involved in damaging vital infrastructure like undersea cables.

The Cable Damage Incident

The investigation was sparked after damage was discovered to an undersea cable in the Baltic Sea, a vital link for communication, data transmission, and energy supply between Finland and other parts of Europe. These undersea cables are crucial for everything from internet connections to energy grid stability, with recent Nordic grid constraints underscoring their importance, and any disruption to them can have serious consequences.

Finnish authorities reported that the damage appeared to be deliberate, raising suspicions of potential sabotage. The timing of the damage coincides with a period of heightened tensions between Russia and the West, particularly following the escalation of the war in Ukraine, with recent strikes on Ukraine's power grid highlighting the stakes, and ongoing geopolitical instability. This has led many to speculate that the damage to the cables could be part of a broader strategy to undermine European security and disrupt critical infrastructure.

Upon further investigation, a vessel that had been in the vicinity at the time of the damage was identified as potentially being part of Russia’s "shadow fleet." The ship had been operating under a false flag and had disabled its AIS system, making it challenging for authorities to track its movements. The vessel’s activities raised red flags, and Finnish authorities are now working closely with international partners to ascertain its involvement in the incident.

Geopolitical Implications

The damage to undersea cables and the suspected involvement of Russia’s "shadow fleet" have broader geopolitical implications, particularly in the context of Europe’s security landscape. Undersea cables are considered critical infrastructure, akin to electric utilities where intrusions into US control rooms have been documented, and any deliberate attack on them could be seen as an act of war or an attempt to destabilize regional security.

In the wake of the investigation, there has been increased concern about the vulnerability of Europe’s energy and communication networks, which are increasingly reliant on these undersea connections, and as the Baltics pursue grid synchronization with the EU to reduce dependencies, policymakers are reassessing resilience measures. The European Union, alongside NATO, has expressed growing alarm over potential threats to this infrastructure, especially as tensions with Russia continue to escalate.

The incident also highlights the growing risks associated with hybrid warfare tactics, which combine conventional military actions with cyberattacks, including the U.S. condemnation of power grid hacking as a cautionary example, sabotage, and disinformation campaigns. The targeting of undersea cables could be part of a broader strategy by Russia to disrupt Europe’s ability to coordinate and respond effectively, particularly in the context of ongoing sanctions and diplomatic pressure.

Furthermore, the suspected involvement of a "shadow fleet" ship raises questions about the transparency and accountability of maritime activities in the region. The use of vessels operating under false flags or without identification systems complicates efforts to monitor and regulate shipping in international waters. This has led to calls for stronger maritime security measures and greater cooperation between European countries to ensure the safety and integrity of critical infrastructure.

Finland’s Response and Ongoing Investigation

In response to the cable damage incident, Finnish authorities have mobilized a comprehensive investigation, seeking to determine the extent of the damage and whether the actions were deliberate or accidental. The Finnish government has called for increased vigilance and cooperation with international partners to identify and address potential threats to undersea infrastructure, drawing on Symantec's Dragonfly research for insights into hostile capabilities.

Finland, which shares a border with Russia and has been increasingly concerned about its security in the wake of Russia's invasion of Ukraine, has ramped up its defense posture. The damage to undersea cables serves as a stark reminder of the vulnerabilities that come with an interconnected global infrastructure, and Finland’s security services are likely to scrutinize the incident as part of their broader defense strategy.

Additionally, the incident is being closely monitored by NATO and the European Union, both of which have emphasized the importance of safeguarding critical infrastructure. As an EU member and NATO partner, Finland’s response to this situation could influence how Europe addresses similar challenges in the future.

The investigation into the damage to undersea cables in the Baltic Sea, allegedly linked to Russia’s "shadow fleet," has significant implications for European security. The use of covert operations, including the deployment of ships under false flags, underscores the growing threats to vital infrastructure in the region. With tensions between Russia and the West continuing to rise, the potential for future incidents targeting critical communication and energy networks is a pressing concern.

As Finland continues its investigation, the incident highlights the need for greater international cooperation and vigilance in safeguarding undersea cables and other critical infrastructure. In a world where hybrid warfare tactics are becoming increasingly common, ensuring the security of these vital connections will be crucial for maintaining stability in Europe. The outcome of this investigation may serve as a crucial case study in the ongoing efforts to protect infrastructure from emerging and unconventional threats.

 

Related News

View more

Pennsylvania Home to the First 100% Solar, Marriott-Branded U.S. Hotel

Courtyard by Marriott Lancaster Solar Array delivers 100% renewable electricity via photovoltaic panels at Greenfield Corporate Center, Pennsylvania, a High Hotels and Marriott sustainability initiative reducing grid demand and selling excess power for efficient operations.

 

Key Points

A $1.5M PV installation powering the 133-room hotel with 100% renewable electricity in Greenfield Center, Lancaster.

✅ 2,700 PV panels generate 1,239,000 kWh annually

✅ First Marriott in the US with 100% solar electricity

✅ $504,900 CFA grant; excess power sold to the utility

 

High Hotels Ltd., a hotel developer and operator, recently announced it is installing a $1.5 million solar array that will generate 100% of the electrical power required to operate one of its existing hotels in Greenfield Corporate Center. The completed installation will make the 133-room Courtyard by Marriott-Lancaster the first Marriott-branded hotel in the United States with 100% of its electricity needs generated from solar power. It is also believed to be the first solar array in the country installed for the sole purpose of generating 100% of the electricity needs of a hotel, mirroring how other firms are commissioning their first solar power plant to meet sustainability goals.

“This is an exciting approach to addressing our energy needs that aligns very well with High’s commitment to environmental stewardship,”

“We’ve been advancing many environmentally responsible practices across our hotel portfolio, including converting the interior and exterior lighting at the Lancaster Courtyard to LED, which will lower electricity demand by 15%,” said Russ Urban, president of High Hotels. “Installing solar is another important step in this progression, and we will look to apply lessons from this as we expand our portfolio of premium select-service hotels.”

The Lancaster-based hotel developer, owner and operator is working in partnership with Marriott International Inc. to realize this vision, in step with major brands announcing new clean energy projects across their portfolios.

The installation of more than 2,700 ballasted photovoltaic panels will fill an area more than two football fields in size. After evaluating several on-site and near-site alternatives, High Hotels decided to install the solar array on the roof of a nearby building in Greenfield Corporate Center. Using the existing roof saves more than three acres of open land and has additional aesthetic benefits, aligning with recommendations for solar farms under consideration by local planners. The solar array will produce 1,239,000 kWh of power for the hotel, which consumes 1,177,000 kWh. Any excess power will be sold to the utility, though affordable solar batteries are making on-site storage increasingly feasible.

High Hotels received a grant of $504,900 from the Commonwealth Financing Authority (CFA) through the Solar Energy Program to complete the project. An independent agency of the Department of Community and Economic Development (DCED), the CFA is responsible for evaluating projects and awarding funds for a variety of economic development programs, including the Solar Energy Program and statewide initiatives like solar-power subscriptions that broaden access. The project will receive a solar renewable energy credit which will be conveyed to the CFA to provide the agency with more funds to offer grants in the future.

“This is a cutting-edge project that is exactly the kind we are looking for to promote the generation and use of solar energy,” said DCED Secretary Dennis Davin. “I am very pleased that the first Marriott in the US to receive 100% of its electric needs through renewable solar energy is located right here in Central Pennsylvania.” Secretary Davin also serves as chairman of the CFA’s board.

Panels for the solar array will be Q Cells manufactured by Hanwha Cells Co., Ltd., headquartered in Seoul, South Korea. Ephrata, Pa.-based Meadow Valley Electric Inc. will install the array in the second and third quarters of 2018 with commissioning targeted for September 2018.

 

Related News

View more

Blackout-Prone California Is Exporting Its Energy Policies To Western States, Electricity Will Become More Costly And Unreliable

California Blackouts expose grid reliability risks as PG&E deenergizes lines during high winds. Mandated solar and wind displace dispatchable natural gas, straining ISO load balancing, transmission maintenance, and battery storage planning amid escalating wildfire liability.

 

Key Points

California grid shutoffs stem from wildfire risk, renewables, and deferred transmission maintenance under mandates.

✅ PG&E deenergizes lines to reduce wildfire ignition during high winds.

✅ Mandated solar and wind displace dispatchable gas, raising balancing costs.

✅ Storage, reliability pricing, and grid upgrades are needed to stabilize supply.

 

California is again facing widespread blackouts this season. Politicians are scrambling to assign blame to Pacific Gas & Electric (PG&E) a heavily regulated utility that can only do what the politically appointed regulators say it can do. In recent years this has meant building a bunch of solar and wind projects, while decommissioning reliable sources of power and scrimping on power line maintenance and upgrades.

The blackouts are connected with the legal liability from old and improperly maintained power lines being blamed for sparking fires—in hopes that deenergizing the grid during high winds reduces the likelihood of fires. 

How did the land of Silicon Valley and Hollywood come to have developing world electricity?

California’s Democratic majority, from Gov. Gavin Newsom to the solidly progressive legislature, to the regulators they appoint, have demanded huge increases in renewable energy. Renewable electricity targets have been pushed up, and policymakers are weighing a revamp of electricity rates to clean the grid, with the state expected to reach a goal of 33% of its power from renewable sources, mostly solar and wind, by next year, and 60% of its electricity from renewables by 2030.

In 2018, 31% of the electricity Californians purchased at the retail level came from approved renewables. But when rooftop solar is added to the mix, about 34% of California’s electricity came from renewables in 2018. Solar photovoltaic (PV) systems installed “behind-the-meter” (BTM) displace utility-supplied generation, but still affect the grid at large, as electricity must be generated at the moment it is consumed. PV installations in California grew 20% from 2017 to 2018, benefiting from the state’s Self-Generation Incentive Program that offers hefty rebates through 2025, as well as a 30% federal tax credit.

Increasingly large amounts of periodic, renewable power comes at a price—the more there is, the more difficult it is to keep the power grid stable and energized. Since electricity must be consumed the instant it is generated, and because wind and solar produce what they will whenever they do, the rest of the grid’s power producers—mostly natural gas plants—have to make up any differences between supply and immediate demand. This load balancing is vital, because without it, the grid will crash and widespread blackouts will ensue.

California often produces a surplus of mandated solar and wind power, generated for 5 to 8 cents per kilowatt hour. This power displaces dispatchable power from natural gas, coal and nuclear plants, resulting in reliable power plants spending less time online and driving up electricity prices as the plants operate for fewer hours of the day. Subsidized and mandated solar power, along with a law passed in California in 2006 (SB 1638) that bans the renewal of coal-fired power contracts, has placed enormous economic pressure on the Western region’s coal power plants—among them, the nation’s largest, Navajo Generating Station. As these plants go off line, the Western power grid will become increasingly unstable. Eventually, the states that share their electric power in the Western Interconnect may have to act to either subsidize dispatchable power or place a value on reliability—something that was taken for granted in the growth of the America’s electrical system and its regulatory scheme.

California law regarding electricity explicitly states that “a violation of the Public Utilities Act is a crime” and that it is “…the intent of the Legislature to provide for the evolution of the ISO (California’s Independent System Operator—the entity that manages California’s grid) into a regional organization to promote the development of regional electricity transmission markets in the western states.” In other words, California expects to dictate how the Western grid operates.

One last note as to what drives much of California’s energy policy: politics. California State Senator Kevin de León (the author served with him in the State Assembly) drafted SB 350, the Clean Energy and Pollution Reduction Act. It became law in 2015. Sen. de León followed up with SB 100 in 2018, signed into law weeks before the 2018 election. SB 100 increased California’s renewable portfolio standard to 60% by 2030 and further requires all the state’s electricity to come from carbon-free sources by 2045, a capstone of the state’s climate policies that factor into the blackout debate.  

Sen. de León used his environmental credentials to burnish his run for the U.S. Senate against Sen. Dianne Feinstein, eventually capturing the endorsements of the California Democratic Party and billionaire environmentalist Tom Steyer, now running for president. Feinstein and de León advanced to the general in California’s jungle primary, where Feinstein won reelection 54.2% to 45.8%.

De León may have lost his race for the U.S. Senate, but his legacy will live on in increasingly unaffordable electricity and blackouts, not only in California, but in the rest of the Western United States—unless federal or state regulators begin to place a value on reliability. This could be done by requiring utility scale renewable power providers to guarantee dispatchable power, as policymakers try to avert a looming shortage of firm capacity, either through purchase agreements with thermal power plants or through the installation of giant and costly battery farms or other energy storage means.

 

Related News

View more

Electrifying: New cement makes concrete generate electricity

Cement-Based Conductive Composite transforms concrete into power by energy harvesting via triboelectric nanogenerator action, carbon fibers, and built-in capacitors, enabling net-zero buildings and self-sensing structural health monitoring from footsteps, wind, rain, and waves.

 

Key Points

A carbon fiber cement that harvests and stores energy as electricity, enabling net-zero, self-sensing concrete.

✅ Uses carbon fibers to create a conductive concrete matrix

✅ Acts as a triboelectric nanogenerator and capacitor

✅ Enables net-zero, self-sensing structural health monitoring

 

Engineers from South Korea have invented a cement-based composite that can be used in concrete to make structures that generate and store electricity through exposure to external mechanical energy sources like footsteps, wind, rain and waves, and even self-powering roads concepts.

By turning structures into power sources, the cement will crack the problem of the built environment consuming 40% of the world’s energy, complementing vehicle-to-building energy strategies across the sector, they believe.

Building users need not worry about getting electrocuted. Tests showed that a 1% volume of conductive carbon fibres in a cement mixture was enough to give the cement the desired electrical properties without compromising structural performance, complementing grid-scale vanadium flow batteries in the broader storage landscape, and the current generated was far lower than the maximum allowable level for the human body.

Researchers in mechanical and civil engineering from from Incheon National University, Kyung Hee University and Korea University developed a cement-based conductive composite (CBC) with carbon fibres that can also act as a triboelectric nanogenerator (TENG), a type of mechanical energy harvester.

They designed a lab-scale structure and a CBC-based capacitor using the developed material to test its energy harvesting and storage capabilities, similar in ambition to gravity storage approaches being scaled.

“We wanted to develop a structural energy material that could be used to build net-zero energy structures that use and produce their own electricity,” said Seung-Jung Lee, a professor in Incheon National University’s Department of Civil and Environmental Engineering, noting parallels with low-income housing microgrids in urban settings.

“Since cement is an indispensable construction material, we decided to use it with conductive fillers as the core conductive element for our CBC-TENG system,” he added.

The results of their research were published this month in the journal Nano Energy.

Apart from energy storage and harvesting, the material could also be used to design self-sensing systems that monitor the structural health and predict the remaining service life of concrete structures without any external power, which is valuable in industrial settings where hydrogen-powered port equipment is being deployed.

“Our ultimate goal was to develop materials that made the lives of people better and did not need any extra energy to save the planet. And we expect that the findings from this study can be used to expand the applicability of CBC as an all-in-one energy material for net-zero energy structures,” said Prof. Lee, pointing to emerging circular battery recycling pathways for net-zero supply chains.

Publicising the research, Incheon National University quipped: “Seems like a jolting start to a brighter and greener tomorrow!”

 

Related News

View more

Cabinet Of Ministers Of Ukraine - Prime Minister: Our Goal In The Energy Sector Is To Synchronize Ukraine's Integrated Power System With Entso-e

Ukraine's EU Energy Integration aims for ENTSO-E synchronization, electricity market liberalization, EU Green Deal alignment, energy efficiency upgrades, hydrogen development, and streamlined grid connections to accelerate reform, market pricing, and sustainable growth.

 

Key Points

Ukraine's EU Energy Integration syncs with ENTSO-E, liberalizes power markets, and aligns with the EU Green Deal.

✅ ENTSO-E grid synchronization and cross-border trade readiness

✅ Electricity market liberalization and market-based pricing

✅ EU Green Deal alignment: efficiency, hydrogen, coal regions

 

Ukraine's goal in the energy sector is to ensure the maximum integration of energy markets with EU markets, and in line with the EU plan to dump Russian energy that is reshaping the region, synchronization of Ukraine's integrated energy system with ENTSO-E while leaning on electricity imports as needed to maintain stability. Prime Minister Denys Shmyhal emphasized in his statement at the Fourth Ukraine Reform Conference underway through July 7-8 in Vilnius, the Republic of Lithuania.

The Head of Government presented a plan of reforms in Ukraine until 2030. In particular, energy sector reform and environmental protection, according to the PM, include the liberalization of the electricity market, with recent amendments to the market law guiding implementation, the simplification of connection to the electrical grid system and the gradual transition to market electricity prices, alongside potential EU emergency price measures under discussion, and the monetization of subsidies for vulnerable groups.

"Ukraine shares and fully supports the EU's climate ambitions and aims to synchronize its policies in line with the EU Green Deal, including awareness of Hungary's energy alignment with Russia to ensure coherent regional planning. The interdepartmental working group has determined priority areas for cooperation with the European Union: energy efficiency, hydrogen, transformation of coal regions, waste management," said the Prime Minister.

According to Denys Shmyhal, Ukraine has supported the EU's climate ambitions to move towards climate-neutral development by 2050 within the framework of the European Green Deal and should become an integral part of it in order not only to combat the effects of climate change in synergy with the EU but, as the country prepares for winter energy challenges and strengthens resilience, within the economic strategy development aimed to enhance security and create new opportunities for Ukrainian business, with continued energy security support from partners bolstering implementation.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified