Putting the sun on the payroll

By New York Times


NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The Town of Hempstead deploys park officials in a fleet of electric cars to patrol its beaches and parks. A windmill atop a landfill-turned-recreation area circulates water in a nearby pond. The town is even testing hybrid garbage trucks to reduce their exhaust.

“We want to go entirely green here,” said Kate Murray, the town supervisor.

But the most ambitious of Ms. Murray’s environmental plans sits right above her head: 256 shiny blue panels on the town hall’s roof. They make up a 40-kilowatt photovoltaic — solar energy — system to power her office and a conference room next door.

In January 2006, the town began using solar systems to deliver electricity to some of its buildings, using state subsidies to cover most of the equipment and installation costs. But while town government views itself as a leader in reducing pollution, some experts say solar technology is still largely inefficient and not worth the cost to taxpayers.

A recent audit by the state comptrollerÂ’s office commended Hempstead for putting the system in place. It said the town should save $419,000 in energy costs over the estimated 50-year life of the panels. Hempstead paid a quarter of the $336,000 price tag, with the New York State Energy Research and Development Authority covering the difference.

But Howard C. Hayden, a retired physics professor at the University of Connecticut who has specialized in alternative energy methods, is skeptical about the broader use of solar energy because he says its cost inefficiency does not justify the use of taxpayer dollars to pay for it. “It’s a scam,” said Dr. Hayden, the author of “The Solar Fraud: Why Solar Energy Won’t Run the World,” “and the public will be victimized financially and intellectually.”

It will take more than 40 years to pay for the equipment and its installation, the audit report notes. And Hempstead will have to raise its own money to wire further government buildings.

Town officials said, however, that while protecting taxpayers’ pocketbooks is important, they did not undertake the project for cost savings alone. “Our first and foremost goal is to reduce our carbon footprint and keep our planet clean,” said Michael Deery, a town spokesman.

The audit says the system at town hall will reduce carbon dioxide emissions by 1,250 tons over a half-century — the equivalent of what 220 cars would produce over the same period.

Ms. Murray, who said her commitment to the environment is her highest priority, is buoyed by the auditÂ’s findings. The town has held several seminars on solar energy to explain to residents how it can benefit their homes and businesses and how rebates can help defray the costs.

Peter Ray, 64, who lives in Levittown, attended one of the seminars and was persuaded to buy the technology for his home. He said he installed a $54,000 system, 60 percent of which the Long Island Power Authority and the state subsidized. “I would recommend it to anybody,” said Mr. Ray, who said he expected a return on the investment from saved energy costs in three and a half years. According to the United States Department of Energy, renewable sources — like water, wind and sun — accounted for only 7 percent of total national energy consumption in 2006. The reason is the cost of making the technology efficient, Dr. Hayden said. (The national average retail price of electricity is about 10.5 cents a kilowatt-hour, while energy from solar cells costs 18 to 40 cents a kilowatt-hour.) “They are trying to be leaders,” he said of Hempstead officials, “but they are going to lead us down a very expensive path.” Nevertheless, William Reynolds, a spokesman for the state comptroller’s office, said, “We cannot downgrade the importance of being able to reduce emissions produced by burning fossil fuels.”

Whether private citizens choose to switch to solar or not, Ms. Murray is determined for her government to set an example. “As focused as we have been on efforts to go green, we have been just as aggressive in pursuing the grants to pay for them,” she said. “We’re pretty successful in everything we ask for.”

Related News

Is this the start of an aviation revolution?

Harbour Air Electric Seaplanes pioneer sustainable aviation with battery-electric propulsion, zero-emission operations, and retrofitted de Havilland Beavers using magniX motors for regional commuter routes, cutting fuel burn, maintenance, and carbon footprints across British Columbia.

 

Key Points

Retrofitted floatplanes using magniX battery-electric motors to provide zero-emission, short-haul regional flights.

✅ Battery-electric magniX motors retrofit de Havilland DHC-2 Beavers

✅ Zero-emission, low-noise operations on short regional routes

✅ Lower maintenance and operating costs vs combustion engines

 

Aviation is one of the fastest rising sources of carbon emissions from transport, but can a small Canadian airline show the industry a way of flying that is better for the planet?

As air journeys go, it was just a short hop into the early morning sky before the de Havilland seaplane splashed back down on the Fraser River in Richmond, British Columbia. Four minutes earlier it had taken off from the same patch of water. But despite its brief duration, the flight may have marked the start of an aviation revolution.

Those keen of hearing at the riverside on that cold December morning might have been able to pick up something different amid the rumble of the propellers and whoosh of water as the six-passenger de Havilland DHC-2 Beaver took off and landed. What was missing was the throaty growl of the aircraft’s nine-cylinder radial engine.

In its place was an all-electric propulsion engine built by the technology firm magniX that had been installed in the aircraft over the course of several months. The four-minute test flight (the plane was restricted to flying in clear skies, so with fog and rain closing in the team opted for a short trip) was the first time an all-electric commercial passenger aircraft had taken to the skies.

The retrofitted de Havilland DHC-2 Beaver took off from the Fraser River in the early morning light for a four minute test flight (Credit: Diane Selkirk)

“It was the first shot of the electric aviation revolution,” says Roei Ganzarski, chief executive of magniX, which worked with Canadian airline Harbour Air Seaplanes to convert one of the aircraft in their fleet of seaplanes so it could run on battery power rather than fossil fuels.

For Greg McDougall, founder of Harbour Air and pilot during the test flight, it marked the culmination of years of trying to put the environment at the forefront of its operations, backed by research investment across the program.

Harbour Air, which has a fleet of some 40 commuter floatplanes serving the coastal regions around Vancouver, Victoria and Seattle, was the first airline in North America to become carbon-neutral through offsets in 2007. A one-acre green roof on their new Victoria airline terminal followed. Then in 2017, 50 solar panels and four beehives housing 10,000 honeybees were added, but for McDougall, a Tesla owner with an interest in disruptive technology, the big goal was to electrify the fleet, with 2023 electric passenger flights as an early target for service.

McDougall searched for alternative motor options for a couple of years and had put the plan on the backburner when Ganzarski first approached him in February 2019. “He said, ‘We’ve got a motor we want to get certified and we want to fly it before the end of the year,’” McDougall recalls.

The two companies found their environmental values and teams were a good match and quickly formed a partnership. Eleven months later, the modest Canadian airline got what McDougall refers to as their “e-plane” off the ground, pulling ahead of other electric flight projects, including those by big-name companies Airbus, Boeing and Rolls-Royce, and startups such as Eviation that later stumbled.

The test flight was followed years of work by Greg McDougall to make his airline more environmentally friendly (Credit: Diane Selkirk)

The project came together in record time considering how risk-adverse the aviation industry is, says McDougall. “Someone had to take the lead,” he says. “The reason I live in British Columbia is because of the outdoors: protecting it is in our DNA. When it came to getting the benefits from electric flight it made sense for us to step in and pioneer the next step.”

As the threat posed by the climate crisis deepens, there has been renewed interest in developing electric passenger aircraft as a way of reducing emissions
Electric flight has been around since the 1970s, but it’s remained limited to light-weight experimental planes flying short distances and solar-powered aircraft with enormous wingspans yet incapable of carrying passengers. But as the threat posed by the climate crisis deepens, there has been renewed interest in developing electric passenger aircraft as a way of reducing emissions and airline operating costs, aligning with broader Canada-U.S. collaboration on electrification across transport.

Currently there are about 170 electric aircraft projects underway internationally –up by 50% since April 2018, according to the consulting firm Roland Berger. Many of the projects are futuristic designs aimed at developing urban air taxis, private planes or aircraft for package delivery. But major firms such as Airbus have also announced plans to electrify their own aircraft. It plans to send its E-Fan X hybrid prototype of a commercial passenger jet on its maiden flight by 2021. But only one of the aircraft’s four jet engines will be replaced with a 2MW electric motor powered by an onboard battery.

This makes Harbour Air something of an outlier. As a coastal commuter airline, it operates smaller floatplanes that tend to make short trips up and down the coastline of British Columbia and Washington State, which means its aircraft can regularly recharge their batteries after a point-to-point electric flight along these routes. The company sees itself in a position to retrofit its entire fleet of floatplanes and make air travel in the region as green as possible.

This could bring some advantages. The efficiency of a typical combustion engine for a plane like this is fairly low – a large proportion of the energy from the fuel is lost as waste heat as it turns the propeller that drives the aircraft forward. Electrical motors have fewer moving parts, meaning there’s less maintenance and less maintenance cost, and comparable benefits are emerging for electric ships operating on the B.C. coast as well.

Electrical motors have fewer moving parts, meaning there’s less maintenance and less maintenance cost
Erika Holtz, Harbour Air’s engineering and quality manager, sees the move to electric as the next major aviation advancement, but warns that one stumbling block has been the perception of safety. “Mechanical systems are much better known and trusted,” she says. In contrast people see electrical systems as a bit unknown – think of your home computer. “Turning it off and on again isn’t an option in aviation,” she adds.

But it’s the possibility of spurring lasting change in aviation that’s made working on the Harbour Air/magniX project so exciting for Holtz. Aviation technology has stagnated over the past decades, she says. “Although there have been incremental improvements in certain technologies, there hasn't been a major development change in aviation in 50 years.”

 

Related News

View more

West Coast consumers won't benefit if Trump privatizes the electrical grid

BPA Privatization would sell the Bonneville Power Administration's transmission lines, raising FERC-regulated grid rates for ratepayers, impacting hydropower and the California-Oregon Intertie under the Trump 2018 budget proposal in the Pacific Northwest region.

 

Key Points

Selling Bonneville's transmission grid to private owners, raising rates and returns, shifting costs to ratepayers.

✅ Trump 2018 budget targets BPA transmission assets for sale.

✅ Higher capital costs, taxes, and profit would raise transmission rates.

✅ California-Oregon Intertie and hydropower flows face price impacts.

 

President Trump's 2018 budget proposal is so chock-full of noxious elements — replacing food stamps with "food boxes," drastically cutting Medicaid and Medicare, for a start — that it's unsurprising that one of its most misguided pieces has slipped under the radar.

That's the proposal to privatize the government-owned Bonneville Power Administration, which owns about three-quarters of the high-voltage electric transmission lines in a region that includes California, Washington state and Oregon, serving more than 13.5 million customers. By one authoritative estimate, any such sale would drive up the cost of transmission by 26%-44%.

The $5.2-billon price cited by the Trump administration, moreover, is nearly 20% below the actual value of the Bonneville grid — meaning that a private buyer would pocket an immediate windfall of $1.2 billion, at the expense of federal taxpayers and Bonneville customers.

Trump's plan for Portland, Ore.-based Bonneville is part of a larger proposal to sell off other government-owned electricity bodies, including the Colorado-based Western Area Power Administration and the Oklahoma-based Southwestern Power Administration. But Bonneville is by far the largest of the three, accounting for nearly 90% of the total $5.8 billion the budget anticipates collecting from the sales. The proposal is also part of the administration's

Both plans are said to be politically dead-on-arrival in Washington. But they offer a window into the thinking in the Trump White House.

"The word 'muddle' comes to mind," says Robert McCullough, a respected Portland energy consultant, referring to the justification for the privatization sale included in the Trump budget.

The White House suggests that selling the Bonneville grid would result in lower costs. But that narrative, McCullough wrote in a blistering assessment of the proposal, "displays a severe lack of understanding about the process of setting transmission rates."

McCullough's assessment is an update of a similar analysis he performed when the privatization scheme was first raised by the Trump administration last year. In that analysis issued in June, McCullough said the proposal "raises the question of why these valuable assets would be sold at a discount — and who would get the benefit of the discounted price."

The implications of a sale could be dire for Californians. Bonneville is the majority owner of the California-Oregon Intertie, an electrical transmission system that carries power, including Columbia River-generated hydropower and other clean-energy generation in British Columbia that supports the regional exchange, south to California in the summer and excess California generation to the Pacific Northwest in the winter.

But the idea has drawn fire throughout the region. When it was first broached last year, the Public Power Council, an association of utilities in the Northwest, assailed it as an apparent "transfer of value from the people of the Northwest to the U.S. Treasury," drawing parallels to Manitoba Hydro governance issues elsewhere.

The region's political leaders had especially harsh words for the idea this time around. "Oregonians raised hell last year when Trump tried to raise power bills for Pacific Northwesterners by selling off Bonneville Power, and yet his administration is back at it again," Sen. Ron Wyden (D-Ore.) said after the idea reappeared. "Our investment shouldn't be put up for sale to free up money for runaway military spending or tax cuts for billionaires." Sen. Maria Cantwell (D-Wash.) promised in a statement to work to "stop this bad idea in its tracks."

The notion of privatizing Bonneville predates the Trump administration; it was raised by Bill Clinton and again by George W. Bush, who thought the public would gain if the administration could sell its power at market rates. Both initiatives failed.

The same free-enterprise ideology underlies the Trump proposal. Privatizing the transmission lines "encourages a more efficient allocation of economic resources and mitigates unnecessary risk to taxpayers," the budget asserts. "Ownership of transmission assets is best carried out by the private sector where there are appropriate market and regulatory incentives."

But that's based on a misunderstanding of how transmission rates are set, McCullough says. Transmission is essentially a monopoly enterprise, with rates overseen by the Federal Energy Regulatory Commission based on the grid's costs, and with federal scrutiny of public utilities such as the TVA underscoring that oversight. There's very little in the way of market "incentives" involved in transmission, since no one has come forward to build a competing grid.

Those include the owners' cost of capital — which would be much higher for a private owner than a government agency, McCullough observes, as Hydro One investor uncertainty demonstrates in practice. A private owner, unlike the government-owned Bonneville, also would owe federal income taxes, which would be passed on to consumers.

Then there's the profit motive. Bonneville "currently sells and delivers its power at cost," McCullough wrote last year. "Under a private regime, an investor-owned utility would likely charge a higher rate of return, a pattern seen when UK network profits drew regulatory rebukes."

None of these considerations appears to have been factored into the White House budget proposal. "Either there's an unsophisticated person at the Office of Management and Budget thinking up these numbers himself," McCullough told me, "or there would seem to be ongoing negotiations with an unidentified third party." No such buyer has emerged in the past, however.

What's left is a blind faith in the magic of the market, compounded by ignorance about how the transmission market operates. Put it together, and there's reason to wonder if Trump is even serious about this plan.

 

Related News

View more

On the road to 100 per cent renewables

US Climate Alliance 100% Renewables 2035 accelerates clean energy, electrification, and decarbonization, replacing coal and gas with wind, solar, and storage to cut air pollution, lower energy bills, create jobs, and advance environmental justice.

 

Key Points

A state-level target for alliance members to meet all electricity demand with renewable energy by 2035.

✅ 100% RES can meet rising demand from electrification

✅ Major health gains from reduced SO2, NOx, and particulates

✅ Jobs grow, energy burdens fall, climate resilience improves

 

The Union of Concerned Scientists joined with COPAL (Minnesota), GreenRoots (Massachusetts), and the Michigan Environmental Justice Coalition, to better understand the feasibility and implications of leadership states meeting 100 percent of their electricity needs with renewable energy by 2035, a target reflected in federal clean electricity goals under discussion today.

We focused on 24 member states of the United States Climate Alliance, a bipartisan coalition of governors committed to the goals of the 2015 Paris Climate Agreement. We analyzed two main scenarios: business as usual versus 100 percent renewable electricity standards, in line with many state clean energy targets now in place.

Our analysis shows that:

Climate Alliance states can meet 100 percent of their electricity consumption with renewable energy by 2035, as independent assessments of zero-emissions feasibility suggest. This holds true even with strong increases in demand due to the electrification of transportation and heating.

A transition to renewables yields strong benefits in terms of health, climate, economies, and energy affordability.

To ensure an equitable transition, states should broaden access to clean energy technologies and decision making to include environmental justice and fossil fuel-dependent communitieswhile directly phasing out coal and gas plants.

Demands for climate action surround us. Every day brings news of devastating "this is not normal" extreme weather: record-breaking heat waves, precipitation, flooding, wildfires. To build resilience and mitigate the worst impacts of the climate crisis requires immediate action to reduce heat-trapping emissions and transition to renewable energy, including practical decarbonization strategies adopted by states.

On the Road to 100 Percent Renewables explores actions at one critical level: how leadership states can address climate change by reducing heat-trapping emissions in key sectors of the economy as well as by considering the impacts of our energy choices. A collaboration of the Union of Concerned Scientists and local environmental justice groups COPAL (Minnesota), GreenRoots (Massachusetts), and the Michigan Environmental Justice Coalition, with contributions from the national Initiative for Energy Justice, assessed the potential to accelerate the use of renewable energy dramatically through state-level renewable electricity standards (RESs), major drivers of clean energy in recent decades. In addition, the partners worked with Greenlink Analytics, an energy research organization, to assess how RESs most directly affect people's lives, such as changes in public health, jobs, and energy bills for households.

Focusing on 24 members of the United States Climate Alliance (USCA), the study assesses the implications of meeting 100 percent of electricity consumption in these states, including examples like Rhode Island's 100% by 2030 plan that inform policy design, with renewable energy in the near term. The alliance is a bipartisan coalition of governors committed to reducing heat-trapping emissions consistent with the goals of the 2015 Paris climate agreement.[1]

On the Road to 100 Percent Renewables looks at three types of results from a transition to 100 percent RES policies: improvements in public health from decreasing the use of coal and gas2 power plants; net job creation from switching to more labor-oriented clean energy; and reduced household energy bills from using cleaner sources of energy. The study assumes a strong push to electrify transportation and heating to address harmful emissions from the current use of fossil fuels in these sectors. Our core policy scenario does not focus on electricity generation itself, nor does it mandate retiring coal, gas, and nuclear power plants or assess new policies to drive renewable energy in non-USCA states.

Our analysis shows that:

USCA states can meet 100 percent of their electricity consumption with renewable energy by 2035 even with strong increases in demand due to electrifying transportation and heating.

A transition to renewables yields strong benefits in terms of health, climate, economies, and energy affordability.

Renewable electricity standards must be paired with policies that address not only electricity consumption but also electricity generation, including modern grid infrastructure upgrades that enable higher renewable shares, both to transition away from fossil fuels more quickly and to ensure an equitable transition in which all communities experience the benefits of a clean energy economy.

Currently, the states in this analysis meet their electricity needs with differing mixes of electricity sourcesfossil fuels, nuclear, and renewables. Yet across the states, the study shows significant declines in fossil fuel use from transitioning to clean electricity; the use of solar and wind powerthe dominant renewablesgrows substantially:

In the study's "No New Policy" scenario"business as usual"coal and gas generation stay largely at current levels over the next two decades. Electricity generation from wind and solar grows due to both current policies and lowest costs.

In a "100% RES" scenario, each USCA state puts in place a 100 percent renewable electricity standard. Gas generation falls, although some continues for export to non-USCA states. Coal generation essentially disappears by 2040. Wind and solar generation combined grow to seven times current levels, and three times as much as in the No New Policy scenario.

A focus on meeting in-state electricity consumption in the 100% RES scenario yields important outcomes. Reductions in electricity from coal and gas plants in the USCA states reduce power plant pollution, including emissions of sulfur dioxide and nitrogen oxides. By 2040, this leads to 6,000 to 13,000 fewer premature deaths than in the No New Policy scenario, as well as 140,000 fewer cases of asthma exacerbation and 700,000 fewer lost workdays. The value of the additional public health benefits in the USCA states totals almost $280 billion over the two decades. In a more detailed analysis of three USCA statesMassachusetts, Michigan, and Minnesotathe 100% RES scenario leads to almost 200,000 more added jobs in building and installing new electric generation capacity than the No New Policy scenario.

The 100% RES scenario also reduces average energy burdens, the portion of household income spent on energy. Even considering household costs solely for electricity and gas, energy burdens in the 100% RES scenario are at or below those in the No New Policy scenario in each USCA state in most or all years. The average energy burden across those states declines from 3.7 percent of income in 2020 to 3.0 percent in 2040 in the 100% RES scenario, compared with 3.3 percent in 2040 in the No New Policy scenario.

Decreasing the use of fossil fuels through increasing the use of renewables and accelerating electrification reduces emissions of carbon dioxide (CO2), with implications for climate, public health, and economies. Annual CO2 emissions from power plants in USCA states decrease 58 percent from 2020 to 2040 in the 100% RES scenario compared with 12 percent in the No New Policy scenario.

The study also reveals gaps to be filled beyond eliminating fossil fuel pollution from communities, such as the persistence of gas generation to sell power to neighboring states, reflecting barriers to a fully renewable grid that policy must address. Further, it stresses the importance of policies targeting just and equitable outcomes in the move to renewable energy.

Moving away from fossil fuels in communities most affected by harmful air pollution should be a top priority in comprehensive energy policies. Many communities continue to bear far too large a share of the negative impacts from decades of siting the infrastructure for the nation's fossil fuel power sector in or near marginalized neighborhoods. This pattern will likely persist if the issue is not acknowledged and addressed. State policies should mandate a priority on reducing emissions in communities overburdened by pollution and avoiding investments inconsistent with the need to remove heat-trapping emissions and air pollution at an accelerated rate. And communities must be centrally involved in decisionmaking around any policies and rules that affect them directly, including proposals to change electricity generation, both to retire fossil fuel plants and to build the renewable energy infrastructure.

Key recommendations in On the Road to 100 Percent Renewables address moving away from fossil fuels, increasing investment in renewable energy, and reducing CO2 emissions. They aim to ensure that communities most affected by a history of environmental racism and pollution share in the benefits of the transition: cleaner air, equitable access to good-paying jobs and entrepreneurship alternatives, affordable energy, and the resilience that renewable energy, electrification, energy efficiency, and energy storage can provide. While many communities can benefit from the transition, strong justice and equity policies will avoid perpetuating inequities in the electricity system. State support to historically underserved communities for investing in solar, energy efficiency, energy storage, and electrification will encourage local investment, community wealth-building, and the resilience benefits the transition to renewable energy can provide.

A national clean electricity standard and strong pollution standards should complement state action to drive swift decarbonization and pollution reduction across the United States. Even so, states are well positioned to simultaneously address climate change and decades of inequities in the power system. While it does not substitute for much-needed national and international leadership, strong state action is crucial to achieving an equitable clean energy future.

 

Related News

View more

Experiment Shows We Can Actually Generate Electricity From The Night Sky

Nighttime thermoradiative power converts outgoing infrared radiation into electricity using semiconductor photodiodes, leveraging negative illumination and sky cooling to harvest renewable energy from Earth-to-space heat flow when solar panels rest, regardless of weather.

 

Key Points

Nighttime thermoradiative power converts Earth's outgoing infrared heat into electricity using semiconductor diodes.

✅ Uses negative illumination to tap Earth-to-space heat flow

✅ Infrared semiconductor photodiodes generate small nighttime current

✅ Theoretical output ~4 W/m^2; lab demo reached 64 nW/m^2

 

There's a stark contrast between the freezing temperatures of space and the relatively balmy atmosphere of Earth, and that contrast could help generate electricity, scientists say – and alongside concepts such as space-based solar power, utilizing the same optoelectronic physics used in solar panels. The obvious difference this would have compared with solar energy is that it would work during the night time, a potential source of renewable power that could keep on going round the clock and regardless of weather conditions.

Solar panels are basically large-scale photodiodes - devices made out of a semiconducting material that converts the photons (light particles) coming from the Sun into electricity by exciting electrons in a material such as silicon, while concepts like space solar beaming could complement them during adverse weather.

In this experiment, the photodiodes work 'backwards': as photons in the form of infrared radiation - also known as heat radiation - leave the system, a small amount of energy is produced, similar to how raindrop electricity harvesting taps ambient fluxes in other experiments.

This way, the experimental system takes advantage of what researchers call the "negative illumination effect" – that is, the flow of outgoing radiation as heat escapes from Earth back into space. The setup explained in the new study uses an infrared semiconductor facing into the sky to convert this flow into electrical current.

"The vastness of the Universe is a thermodynamic resource," says one of the researchers, Shanhui Fan from Stanford University in California.

"In terms of optoelectronic physics, there is really this very beautiful symmetry between harvesting incoming radiation and harvesting outgoing radiation."

It's an interesting follow-up to a research project Fan participated in last year: a solar panel that can capture sunlight while also allowing excess heat in the form of infrared radiation to escape into space.

In the new study, this "energy harvesting from the sky" process can produce a measurable amount of electricity, the researchers have shown – though for the time being it's a long way from being efficient enough to contribute to our power grids, but advances in peer-to-peer energy sharing could still make niche deployments valuable.

In the team's experiments they were able to produce 64 nanowatts per square metre (10.8 square feet) of power – only a trickle, but an amazing proof of concept nevertheless. In theory, the right materials and conditions could produce a million times more than that, and analyses of cheap abundant electricity show how rapidly such advances compound, reaching about 4 watts per square metre.

"The amount of power that we can generate with this experiment, at the moment, is far below what the theoretical limit is," says one of the team, Masashi Ono from Stanford.

When you consider today's solar panels are able to generate up to 100-200 watts per square metre, and in China solar is cheaper than grid power across every city, this is obviously a long way behind. Even in its earliest form, though, it could be helpful for keeping low-power devices and machines running at night: not every renewable energy device needs to power up a city.

Now that the researchers have proved this can work, the challenge is to improve the performance of the experimental device. If it continues to show promise, the same idea could be applied to capture energy from waste heat given off by machinery, and results in humidity-powered generation suggest ambient sources are plentiful.

"Such a demonstration of direct power generation of a diode facing the sky has not been previously reported," explain the researchers in their published paper.

"Our results point to a pathway for energy harvesting during the night time directly using the coldness of outer space."

The research has been published in Applied Physics Letters.

 

Related News

View more

What to know about the big climate change meeting in Katowice, Poland

COP24 Climate Talks in Poland gather nearly 200 nations to finalize the Paris Agreement rulebook, advance the Talanoa Dialogue, strengthen emissions reporting and transparency, and align finance, technology transfer, and IPCC science for urgent mitigation.

 

Key Points

UNFCCC summit in Katowice to finalize Paris rules, enhance transparency, and drive stronger emissions cuts.

✅ Paris rulebook on reporting, transparency, markets, and timelines

✅ Talanoa Dialogue to assess gaps and raise ambition by 2020

✅ Finance and tech transfer for developing countries under UNFCCC

 

Delegates from nearly 200 countries have assembled this month in Katowice, Poland — the heart of coal country — to try to move the ball forward on battling climate change.

It’s now the 24th annual meeting, or “COP” — conference of the parties — under the landmark U.N. Framework Convention on Climate Change, which the United States signed under then-President George H.W. Bush in 1992. More significantly, it’s the third such meeting since nations adopted the Paris climate agreement in 2015, widely seen at the time as a landmark moment in which, at last, developed and developing countries would share a path toward cutting greenhouse gas emissions, as Obama's clean energy push sought to lock in momentum.

But the surge of optimism that came with Paris has faded lately. The United States, the second largest greenhouse gas emitter, said it would withdraw from the agreement, though it has not formally done so yet. Many other countries are off target when it comes to meeting their initial round of Paris promises — promises that are widely acknowledged to be too weak to begin with. And emissions have begun to rise after a brief hiatus that had lent some hope of progress.

The latest science, meanwhile, is pointing toward increasingly dire outcomes. The amount of global warming that the world already has seen — 1 degree Celsius, 1.8 degrees Fahrenheit — has upended the Arctic, is killing coral reefs and may have begun to destabilize a massive part of Antarctica. A new report from the U.N.'s Intergovernmental Panel on Climate Change (IPCC), requested by the countries that assembled in Paris to be timed for this year’s meeting, finds a variety of increasingly severe effects as soon as a rise of 1.5 degrees Celsius arrives — an outcome that can’t be avoided without emissions cuts so steep that they would require societal transformations without any known historical parallel, the panel found.

It’s in this context that countries are meeting in Poland, with expectations and stakes high.

So what’s on the agenda in Poland?

The answer starts with the Paris agreement, which was negotiated three years ago, has been signed by 197 countries and is a mere 27 pages long. It covers a lot, laying out a huge new regime not only for the world as a whole to cut its greenhouse gas emissions, but for each individual country to regularly make new emissions-cutting pledges, strengthen them over time, report emissions to the rest of the world and much more. It also addresses financial obligations that developed countries have to developing countries, including how to achieve clean and universal electricity at scale, and how technologies will be transferred to help that.

But those 27 pages leave open to interpretation many fine points for how it will all work. So in Poland, countries are performing a detailed annotation of the Paris agreement, drafting a “rule book” that will span hundreds of pages.

That may sound bureaucratic, but it’s key to addressing many of the flash points. For instance, it will be hard for countries to trust that their fellow nations are cutting emissions without clear standards for reporting and vetting. Not everybody is ready to accept a process like the one followed in the United States, which not only publishes its emissions totals but also has an independent review of the findings.

“A number of the developing countries are resisting that kind of model for themselves. They see it as an intrusion on their sovereignty,” said Alden Meyer, director of strategy and policy at the Union of Concerned Scientists and one of the many participants in Poland this week. “That’s going to be a pretty tough issue at the end of the day.”

It’s hardly the only one. Also unclear is what countries will do after the time frames on their current emissions-cutting promises are up, which for many is 2025 or 2030. Will all countries then start reporting newer and more ambitious promises every five years? Every 10 years?

That really matters when five years of greenhouse gas emissions — currently about 40 billion tons of carbon dioxide annually — are capable of directly affecting the planet’s temperature.

What can we expect each day?

The conference is in its second week, when higher-level players — basically, the equivalent of cabinet-level leaders in the United States — are in Katowice to advance the negotiations.

As this happens, several big events are on the agenda. On Tuesday and Wednesday is the “Talanoa Dialogue,” which will bring together world leaders in a series of group meetings to discuss these key questions: “Where are we? Where do we want to go? How do we get there?”

Friday is the last day of the conference, but pros know these events tend to run long. On Friday — or after — we will be waiting for an overall statement or decision from the meeting which may signal how much has been achieved.

What is the “Talanoa Dialogue”?

“Talanoa” is a word used in Fiji and in many other Pacific islands to refer to “the sharing of ideas, skills and experience through storytelling.” This is the process that organizers settled on to fulfill a plan formed in Paris in 2015.

That year, along with signing the Paris agreement, nations released a decision that in 2018 there should be a “facilitative dialogue" among the countries “to take stock” of where their efforts stood to reduce greenhouse gas emissions. This was important because going into that Paris meeting, it was already clear that countries' promises were not strong enough to hold global warming below a rise of 2 degrees Celsius (3.6 degrees Fahrenheit) above preindustrial temperatures.

This dialogue, in the Talanoa process, was meant to prompt reflection and maybe even soul searching about what more would have to be done. Throughout the year, “inputs” to the Talanoa dialogue — most prominently, the recent report by the United Nations' Intergovernmental Panel on Climate Change on the meaning and consequences of 1.5 degrees Celsius of warming —have been compiled and synthesized. Now, over two days in Poland, countries' ministers will assemble to share stories in small groups about what is working and what is not and to assess where the world as a whole is on achieving the required greenhouse gas emissions reductions.

What remains to be seen is whether this process will culminate in any kind of product or statement that calls clearly for immediate, strong ramping up of climate change promises across the world.

With the clock ticking, will countries do anything to increase their ambition at this meeting?

If negotiating the Paris rule book sounds disappointingly technical, well, you’re not the only one feeling that way. Pressure is mounting for countries to accomplish something more than that in Poland — to at minimum give a strong signal that they understand that the science is looking worse and worse, and the world’s progress on the global energy transition isn’t matching that outlook.

“The bigger issue is how we’re going to get to an outcome on greater ambition,” said Lou Leonard, senior vice president for climate and energy at the World Wildlife Fund, who is in Poland observing the talks. “And I think the first week was not kind on moving that part of the agenda forward.”

Most countries are not likely to make new emissions-cutting promises this week. But there are two ways that the meeting could give a strong statement that countries should — or will — come up with new promises at least by 2020. That’s when extremely dramatic emissions cuts would have to start, including progress toward net-zero electricity by mid-century, according to the recent report on 1.5 degrees Celsius of warming.

The first is the aforementioned “Talanoa dialogue” (see above). It’s possible that the outcome of the dialogue could be a statement acknowledging that the world isn’t nearly far enough along and calling for much stronger steps.

There will also be a decision text released for the meeting as a whole, which could potentially send a signal. Leonard said he hopes that would include details for the next steps that will put the world on a better course.

“We have to create milestones, and the politics around it that will pressure countries to do something that quite frankly they don’t want to do,” he said. “It’s not going to be easy. That’s why we need a process that will help make it happen. And make the most of the IPCC report that was designed to come out right now so it could do this for us. That’s why we have it, and it needs to serve that role.”

The United States says it will withdraw from the agreement, so what role is it playing in Poland?

Despite President Trump’s pledge to withdraw, the United States remains in the Paris agreement (for now) and has sent a delegation of 44 people to Poland, largely from the State Department but also from the Environmental Protection Agency, Energy Department and even the White House, while domestically a historic U.S. climate law has recently passed to accelerate clean energy. Many of these career government officials remain deeply engaged in hashing out details of the agreement.

Still, the country as a whole is being cast in an antagonistic role in the talks.

 

Related News

View more

WEC Energy Group to buy 80% stake in Illinois wind farm for $345 million

WEC Energy Blooming Grove Investment underscores Midwest renewable energy growth, with Invenergy, GE turbines, and 250 MW wind power capacity, tax credits, PPAs, and utility-scale generation supplying corporate offtakers via long-term contracts.

 

Key Points

It is WEC Energy's $345M purchase of an 80% stake in Invenergy's 250 MW Blooming Grove wind farm in Illinois.

✅ 94 GE turbines; 250 MW utility-scale wind capacity

✅ Output contracted to two multinational offtakers

✅ Eligible for 100% bonus depreciation and wind tax credits

 

WEC Energy Group, the parent company of We Energies, is buying an 80% stake in a wind farm, as seen with projects like Enel's 450 MW wind farm coming online, in McLean County, Illinois, for $345 million.

The wind farm, known as the Blooming Grove Wind Farm, is being developed by Invenergy, which recently completed the largest North American wind build with GE partners, a company based in Chicago that develops wind, solar and other power projects. WEC Energy has invested in several wind farms developed by Invenergy.

With the agreement announced Monday, WEC Energy will have invested more than $1.2 billion in wind farms in the Midwest, echoing heartland investment growth across the region. The power from the wind farms is sold to other utilities or companies, as federal initiatives like DOE wind awards continue to support innovation, and the projects are separate from the investments made by WEC Energy's regulated utilities, such as We Energies, in wind power.

The project, which will consist of 94 wind turbines from General Electric, is expected to be completed this year, similar to recent project operations in the sector, and will have a capacity of 250 megawatts, WEC said in a news release.

Affiliates of two undisclosed multinational companies akin to EDF's offshore investment activity have contracted to take all of the wind farm's output.

The investment is expected to be eligible for 100% bonus depreciation and, as wind economics help illustrate key trends, the tax credits available for wind projects, WEC Energy said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.