Wind power is not a panacea

By Vancouver Sun


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Wind turbines are sprouting up everywhere, and I must confess I like the slenderness of the soaring towers and find the slowly turning blades sensual and hypnotic.

But what I really like is that the fuel for these sleek machines is the wind itself, so there are no emissions to pollute and warm the atmosphere. And the land below can be used for farming, golf courses and parks. Those white turbines are very green.

From 2003 to 2007, world installed wind-turbine capacity grew by an eye-popping 25 per cent each year, and growth is projected to continue at a vigorous annual rate of 20 per cent for the next five years. Today, wind power has a total capacity of 155,000 megawatts (MWs). This is a lot of turbines, for each one is rated at about 0.5 to two MW.

Even Canada is soaring on the air currents with 1,856 MWs of capacity, almost all of which (93 per cent) has been installed since 2000. The provincial leaders are Alberta (524 MW), Ontario (501 MW) and Quebec (422 MW).

One place you won't see any slowly turning blades, however, is in British Columbia, for the so-called "green" province is a wind laggard. Pity, for B.C. desperately needs clean electrical power. Since 2001, B.C. has not generated enough electricity to meet demand, and has imported electricity from Alberta and Washington, much of it from dirty coal stations. The shortfall is 15 per cent and growing.

Before looking at B.C.'s situation, I need to digress and release a little air from the wind balloon. Yes, wind power is great and I fully support its vigorous growth, but we should not set our hopes too high. Environmental groups are doing a dangerous disservice by claiming wind (along with solar and conservation) will provide limitless clean energy and will power the hydrogen economy of the future. It is the answer to global warming and the world's energy problems, so they state. This is totally wrong, instills false optimism and diverts us from tackling the real problems: the ever-growing population and economy.

Wind, sadly, can deliver only a small fraction of the gargantuan amounts of energy that we humans crave. Here's why.

First, it is not generally recognized that the capacity of wind farms is, in practice, much smaller than quoted. Because winds don't blow all the time, a 200-MW wind farm, for example, only generates about one-third of the electricity as a 200-MW hydro or fossil-fuel plant, which runs virtually full-time.

Another serious complication: Electricity must still be supplied to consumers when the wind stops. Thus, wind farms require a backup energy source in the form of a hydro or fossil-fuel plant, or its energy must be stored in batteries or by making hydrogen. Either way, big bucks are needed for capital investment.

Because wind is diffuse, wind farms are large. For example, to replace a 1,000-MW coal station would require about 1,500 turbines of the latest design (two MW each). Not surprisingly, the NIMBY (Not In My Back Yard) syndrome is proving to be a major obstacle to such enormous facilities.

Clearly, wind power is good but it's not a cure-all for our energy ills.

So, what's happening in B.C.? Although the province is endowed with good wind-power potential, progress has been snail-like. The government has decided that private interests will build - and own - all of B.C.'s future wind farms, but the process is controlled by BC Hydro, which will purchase the power. BC Hydro has not promoted wind power, perhaps because wind costs more than imported electricity. Instead, Hydro insists that wind must bid competitively with other "clean" sources such as run-of-river hydro and biomass.

Recent provincial policies may change this position. B.C.'s Energy Plan of 2007 stipulates at least 90 per cent of all electricity generated in the province must come from clean or renewable sources. The recently announced carbon tax will also help wind power's financial outlook.

Now the good news. BC Hydro has approved three projects to date. The Dokie Wind Energy project is a 180-MW wind farm in the Peace region, planned and owned by Earth First Energy Inc. of Victoria. Its first electricity will enter the grid later this year and the entire project - one of the largest in Canada - will be completed by end of 2009. Also coming on line in the next few years is the Bear Mountain Partnership 120-MW farm near Dawson Creek and the Mount Hays Wind Project (27 MW) just south of Prince Rupert.

Once BC Hydro loosens its bureaucratic grip, wind power could expand quickly, for there is no shortage of wind and wind entrepreneurs in B.C. For example, more than 50 companies hold investigative wind-use permits. An ambitious project currently on the drawing table is by NaiKun Wind Development Inc., which is planning a mammoth wind farm to be situated in the ocean east of Haida Gwaii. A total of 1,750 MW would be built in five phases. The first phase of 320 MW could start in 2010, BC Hydro willing.

Hydro needs to give wind power priority, recognizing that the alternative - purchased power - bears a large hidden environmental penalty. Instead of forcing wind to go through a competitive process, it should offer to purchase unlimited quantities at prescribed prices, as is done in other jurisdictions.

Electricity is the lifeblood of this growing province. We need more, and it needs to be green.

Related News

Ontario Power Generation's Commitment to Small Modular Reactors

OPG Small Modular Reactors advance clean energy with advanced nuclear, baseload power, renewables integration, and grid reliability; factory built, scalable, and cost effective to support Ontario energy security and net zero goals.

 

Key Points

Factory built nuclear units delivering reliable, low carbon power to support Ontario's grid, renewables, climate goals.

✅ Factory built modules cut costs and shorten schedules

✅ Provides baseload power to balance wind and solar

✅ Enhances grid reliability with advanced safety and waste reduction

 

Ontario Power Generation (OPG) is at the forefront of Canada’s energy transformation, demonstrating a robust commitment to sustainable energy solutions. One of the most promising avenues under exploration is the development of Small Modular Reactors (SMRs), as OPG broke ground on the first SMR at Darlington to launch this next phase. These innovative technologies represent a significant leap forward in the quest for reliable, clean, and cost-effective energy generation, aligning with Ontario’s ambitious climate goals and energy security needs.

Understanding Small Modular Reactors

Small Modular Reactors are advanced nuclear power plants that are designed to be smaller in size and capacity compared to traditional nuclear reactors. Typically generating up to 300 megawatts of electricity, SMRs can be constructed in factories and transported to their installation sites, offering flexibility and scalability that larger reactors do not provide. This modular approach reduces construction time and costs, making them an appealing option for meeting energy demands.

One of the key advantages of SMRs is their ability to provide baseload power—energy that is consistently available—while simultaneously supporting intermittent renewable sources like wind and solar. As Ontario continues to increase its reliance on renewables, SMRs could play a crucial role in ensuring that the energy supply remains stable and secure.

OPG’s Initiative

In its commitment to advancing clean energy technologies, OPG has been a strong advocate for the adoption of SMRs. The province of Ontario has announced plans to develop three additional small modular reactors, part of its plans for four Darlington SMRs that would further enhance the region’s energy portfolio. This initiative aligns with both provincial and federal climate objectives, and reflects a collaborative provincial push on nuclear innovation to accelerate clean energy.

The deployment of SMRs in Ontario is particularly strategic, given the province’s existing nuclear infrastructure, including the continued operation of Pickering NGS that supports grid reliability. OPG operates a significant portion of Ontario’s nuclear fleet, and leveraging this existing expertise can facilitate the integration of SMRs into the energy mix. By building on established operational frameworks, OPG can ensure that new reactors are deployed safely and efficiently.

Economic and Environmental Benefits

The introduction of SMRs is expected to bring substantial economic benefits to Ontario. The construction and operation of these reactors will create jobs, including work associated with the Pickering B refurbishment across the province, stimulate local economies, and foster innovation in nuclear technology. Additionally, SMRs have the potential to attract investment from both domestic and international stakeholders, positioning Ontario as a leader in advanced nuclear technology.

From an environmental perspective, SMRs are designed with enhanced safety features and lower waste production compared to traditional reactors, complementing life-extension measures at Pickering that bolster system reliability. They can significantly contribute to Ontario’s goal of achieving net-zero emissions by 2050. By providing a reliable source of clean energy, SMRs will help mitigate the impacts of climate change while supporting the province's transition to a sustainable energy future.

Community Engagement and Collaboration

Recognizing the importance of community acceptance and stakeholder engagement, OPG is committed to an open dialogue with local communities and Indigenous groups. This collaboration is essential to addressing concerns and ensuring that the deployment of SMRs is aligned with the values and priorities of the residents of Ontario. By fostering a transparent process, OPG aims to build trust and support for this innovative energy solution.

Moreover, the development of SMRs will involve partnerships with various stakeholders, including government agencies, research institutions, and private industry, such as the OPG-TVA partnership to advance new nuclear technology. These collaborations will not only enhance the technical aspects of SMR deployment but also ensure that Ontario can capitalize on shared expertise and resources.

Looking Ahead

As Ontario Power Generation moves forward with plans for three additional Small Modular Reactors, the province stands at a critical juncture in its energy evolution. The integration of SMRs into Ontario’s energy landscape promises a sustainable, reliable, and economically viable solution to meet growing energy demands while addressing climate change challenges.

With the support of government initiatives, community collaboration, and continued innovation in nuclear technology, Ontario is poised to become a leader in the advancement of Small Modular Reactors. The successful implementation of these projects could serve as a model for other jurisdictions seeking to transition to cleaner energy sources, highlighting the role of nuclear power in a balanced and sustainable energy future.

In conclusion, OPG's commitment to developing Small Modular Reactors not only reinforces Ontario’s energy security but also demonstrates a proactive approach to addressing the pressing challenges of climate change and environmental sustainability. The future of energy in Ontario looks promising, driven by innovation and a commitment to clean energy solutions.

 

Related News

View more

PC Leader Doug Ford vows to fire Hydro One CEO, board if elected

Doug Ford's Hydro One firing vow targets CEO pay, the utility's board, and privatization, amid Ontario politics over electricity rates, governance, and control, raising questions about legal tools, contracts, and impacts on customers and taxpayers.

 

Key Points

Ford vows to oust Hydro One's CEO and board to curb pay and signal rate restraint, subject to legal and governance limits.

✅ Province lacks direct control post-privatization

✅ Possible board removals to influence executive pay

✅ Impact on rates, contracts, and shareholders unclear

 

Ontario PC Leader Doug Ford is vowing to fire the head of Hydro One, and its entire board if he's elected premier in June.

Ford made the announcement, calling President and CEO Mayo Schmidt, Premier "Kathleen Wynne's $6-Million dollar man," referring to his yearly salary and bonuses, which now add up to $6.2 million.

"This board and this CEO are laughing themselves to the bank," Ford said.

However, it's unclear how Ford would do that since the province does not control the company anymore.

"We don't have the ability to go out and say we are firing the CEO at Hydro One," PC energy critic Todd Smith said while speaking to reporters after Ford's remarks.

#google#

However, he said "we do have tools at our disposal in the tool box. The unfortunate thing is that Kathleen Wynne and the Liberals have just let those tools sit there for the last couple of years and [have] not taken action on things like this."

Smith declined to provide details about what those tools are, but suggested Ford would have the right to fire Hydro's board.

He said that would send a message "that we're not going to accept these salaries."

Smith says the Ontario gov still has the right to fire Hydro One board. What about their contracts? Pay them out? Smith says they don't know the details of people's contacts

We will not engage in politics,' Hydro One says

A Hydro One spokesperson said the amount customers pay to compensate the CEO's salary is the same as before privatization — two cents on each monthly bill.

"We will not engage in politics, however our customers deserve the facts," said the email statement to CBC Toronto.

"Nearly 80 per cent of the total executive compensation package is paid for by shareholders."

Ontario NDP MPP Peter Tabuns says Ford is pro-privatization, and that won't help those struggling with high hydro bills. (Michelle Siu/The Canadian Press)

Peter Tabuns, the NDP's energy critic, said his government would aim to retake public control of Hydro One to cap CEO pay and control the CEO's "outrageous salary."

But while he shares Ford's goal of cutting Schmidt's pay, Tabuns blasted what he believes would be the PC leader's approach.

"Doug Ford has no idea how to reign [sic] in the soaring hydro bills that Ontario families are facing — in fact, if his threats of further privatization include hydro, he'll drive bills and executive salaries ever higher," he said in an email statement.

The only plan we've heard from Doug Ford so far is firing people and laying off people.- Glenn Thibeault, Energy Minister

​Tabuns says his party would aim to cut hydro bills by 30 per cent.

Meanwhile, Liberal Energy Minister Glenn Thibeault said Ford's plan will do nothing to address the actual issue of keeping hydro rates low, comparing his statement Thursday to the rhetoric and actions of U.S. President Donald Trump.

"The only plan we've heard from Doug Ford so far is firing people and laying off people," Thibeault said.

"What I'm seeing a very strong prevalence to is the person running the White House. He's been doing a lot of firing as well and that's not been working out so well for them."

Wynne government has taken steps to cut hydro bills, including legislation to lower electricity rates in Ontario.

Hydro prices have shot up in recent years prompting criticism from across Ontario. Wynne made the controversial move of privatizing part of the utility beginning in 2015.

By Oct. 2017, the Ontario Liberal government's "Fair Hydro Plan" had brought down the average household electricity bill by a 25% rate cut from the peak it hit in the summer of 2016. The Wynne government has also committed to keep rate increases below inflation for the next four years, but admits bills will rise significantly in the decade that follows as a recovery rate could drive costs higher.

Ford blasted the government's moves during a Toronto news conference, echoing calls to scrap the Fair Hydro Plan and review other options.

"The party's over with the tax payer's money, we're going to start respecting the tax payers," Ford said, repeatedly saying the money spent on Hydro One salaries is "morally indefensible."

 

Related News

View more

All-electric home sports big windows, small footprint

Cold-Climate Heat Pumps deliver efficient heating and cooling for Northern B.C. Net Zero Ready homes, with air-source Mitsubishi H2i systems, triple-pane windows, blower door ACH 0.8, BC Hydro rebates, and CleanBC incentives.

 

Key Points

Electric air-source systems that heat and cool in subzero climates, cutting emissions and lowering energy costs.

✅ Net Zero Ready, Step Code 5, ACH 0.8 airtightness

✅ Operate efficiently to about -28 C with backup heat

✅ Eligible for BC Hydro and CleanBC rebates

 

Heat pump provides heating, cooling in northern B.C. home
It's a tradition at Vanderhoof-based Northern Homecraft that, on the day of the blower door test for a just-completed home, everyone who worked on the build gathers to watch it happen. And in the spring of 2021, on a dazzling piece of land overlooking the mouth of the Stuart River near Fort St. James, that day was a cause for celebration.

A new 3,400-square foot home subjected to the blower door test – a diagnostic tool to determine how much air is entering or escaping from a home – was rated as having just .8 air changes per hour (ACH). That helps make it a Net Zero Ready home, and BC Energy Code Step 5 compliant. That means it would take about a third of the amount of energy to heat the home compared to a typical similar-sized home in B.C. today.

From an energy-efficiency perspective, this is a home whose evident beauty is anything but skin deep.

"The home has lot of square footage of finished living space, and it also has a lot of glazing," says Northern Homecraft owner Shay Bulmer, referring to the home's large windows. "We had a lot of window space to deal with, as well as large vaulted open areas where you can only achieve so much additional insulation. There were a few things that the home had going against it as far as performance goes. There were challenges in keeping it comfortable year-round."


Well-insulated home ideal for heat pump option
Most homes in colder areas of B.C. lean on gas-fueled heating systems to deal with the often long, chilly winters. But with the arrival of cold climate heat pumps capable of providing heat efficiently when temperatures dip as low as -30°C, there's now a clean option for those homes, and using more electricity for heat is gaining support in the North as well.

Heat pumps are an increasingly popular option, both for new and existing homes, because they avoid carbon emissions associated with fossil use while also offering summer cooling, even as record-high electricity demand in Yukon underscores the need for efficient systems.

The Fort St. James home, which was built with premium insulation, airtightness and energy efficiency in mind, made the decision to opt for a heat pump even easier. Still, the heat pump option took the home's owners Dexter and Cheryl Hodder by surprise. While their focus was on designing a home that took full advantage of views down to the river, the couple was under the distinct impression that heat pumps couldn't cut it in the chilly north.

"I wasn't really considering a heat pump, which I thought was only a good solution in a moderate climate," says Dexter, who as director of research and education for the John Prince Research Forest, studies wildlife and forestry interactions in north central B.C. "The specs on the heat pump indicate it would work down to -28°C, and I was skeptical of that. But it worked exactly to spec. It almost seems ridiculous to generate heat from outside air at those low temperatures, but it does."

 

Getting it right with support and rebates
Northern Homecraft took advantage of BC Hydro's Mechanical System Design Pilot program to ensure proper heat pump system design, installation, and verification for the home were applied, and with BC Hydro's first call for power in 15 years driven by electrification, the team prioritized efficient load management.

Based on the home's specific location, size, and performance targets, they installed a ducted Mitsubishi H2I air-source heat pump system. Windows are triple pane, double coated, and a central feature of the home, while insulation specifications were R-40 deep frame insulation in the exterior walls, R-80 insulation in the attic, and R-40 insulation in the vaulted ceilings.

The combination of the year-round benefits of heat pumps, their role in reducing fossil fuel emissions, and the availability of rebates, is making the systems increasingly attractive in B.C., especially as two new BC generating stations were recently commissioned to expand clean supply.

BC Hydro offers home renovation rebates of up to $10,000 for energy-efficient upgrades to existing homes. Rebates are available for windows and doors, insulation, heat pumps, and heat pump hot water heaters. In partnership with CleanBC, rebates of up to $11,000 are also available – when combined with the federal Greener Homes program – for those switching from fossil fuel heating to an electric heat pump.


'Heat dome' pushes summer highs to 40°C
Cooling wasn't really a consideration for Dexter and Cheryl when they were living in a smaller bungalow shaded by trees. But they knew that with the big windows, vaulted ceiling in the living room, and an upstairs bedroom in the new home, there may come a time when they needed air conditioning.

That day arrived shortly after the home was built, as the infamous "heat dome" settled on B.C. and drove temperatures at Fort St. James to a dizzying 40°C.

"It was disgustingly hot, and I don't care if I never see that again here," says Hodder, with a laugh. "But the heat pump maintained the house really nicely throughout, at about 22 degrees. The whole house stayed cool. We just had to close the door to the upper bedroom so it wasn't really heating up during the day."

Hodder says he had to work with the heat pump manufacturer Mitsubishi a couple times over that first year to fix a few issues with the system's controls. But he's confident that the building's tight and well-insulated envelope, and the heat pump's backup electric heat that kicks in when temperatures dip below -28°C, will make it the system-for-all-seasons it was designed to be.

Even with the use of supplemental electric heating during the record chill of December-January, the home's energy costs weren't much higher than the mid-winter energy bills they used to pay in the couple's smaller bungalow that relied on a combination of gas-fired in-floor heating and electric baseboards, as gas-for-electricity swaps are being explored elsewhere.

Fort St. James is a former fur trading post located northwest of Prince George and a short drive north of Vanderhoof. Winters are cold and snowy, with average daily low temperatures in December and January of around -14°C.

"During the summer and into the fall, we were paying well less than $100 a month," says Hodder, looking back at electricity bills over the first year in the home. "And that's everything. We're only electric here, and we also had both of us working from home all last year."

 

Word of mouth making heat pumps popular in Fort St. James
While the size of the home presented new challenges for the builders, it's one of five Net Zero Ready or Net Zero homes – all equipped with some form of heat pump – that Northern Homecraft has built in Fort St. James, even as debates about going nuclear for electricity continue in B.C.

The smallest of the homes is a two-bedroom, one-bathroom home that's just under 900 square feet. Northern Homecraft may be based in Vanderhoof, but it's the much smaller town of Fort St. James where they're making their mark with super-efficient homes. Net Zero Ready homes are up to 80% more efficient than the standard building code, and become Net Zero once renewable energy generation – usually in the form of photovoltaic solar – is installed, and programs like switching 5,000 homes to geothermal show the broader momentum for clean heating.

"We were pretty proud that the first home we built in Fort St. James was the first single family Net Zero Ready home built in B.C.," says Northern Homecraft's Bulmer. "And I think it's kind of caught on in a smaller community where everyone talks to everyone."

 

Related News

View more

Europe to Weigh Emergency Measures to Limit Electricity Prices

EU Electricity Price Limits are proposed by the European Commission to curb contagion from gas prices, bolster energy security, stabilize the power market, and manage inflation via LNG imports, gas storage, and reduced demand.

 

Key Points

Temporary power-price caps to curb gas contagion, shield consumers, and bolster EU energy security.

✅ Limits decouple electricity from volatile gas benchmarks

✅ Short-term LNG imports and storage to enhance supply security

✅ Market design reforms and demand reduction to tame prices

 

The European Union should consider emergency measures in the coming weeks that could include price cap strategies on electricity prices, European Commission President Ursula von der Leyen told leaders at an EU summit in Versailles.

The reference to the possible measures was contained in a slide deck Ms. von der Leyen used to discuss efforts to curb the EU’s reliance on Russian energy imports, which last year accounted for about 40% of its natural-gas consumption. The slides were posted to Ms. von der Leyen’s Twitter account.

Russia’s invasion of Ukraine has highlighted the vulnerability of Europe’s energy supplies to severe supply disruptions and raised fears that imports could be cut off by Moscow or because of damage to pipelines that run across Ukraine. It has also driven energy prices up sharply, contributing to worries about inflation and economic growth.

Earlier this week, the European Commission, the EU’s executive arm, published the outline of a plan that it said could cut imports of Russian natural gas by two-thirds this year and end the need for those imports entirely before 2030, aligning with calls to ditch fossil fuels in Europe. In the short-term, the plan relies largely on storing natural gas ahead of next winter’s heating season, reducing consumption and boosting imports of liquefied natural gas from other producers.

The Commission acknowledged in its report that high energy prices are rippling through the economy, even as European gas prices have fallen back toward pre-war levels, raising manufacturing costs for energy-intensive businesses and putting pressure on low-income households. It said it would consult “as a matter of urgency” and propose options for dealing with high prices.

The slide deck used by Ms. von der Leyen on Thursday said the Commission plans by the end of March to present emergency options “to limit the contagion effect of gas prices in electricity prices, including temporary price limits, even though rolling back electricity prices can be complex under current market rules.” It also intends this month to set up a task force to prepare for next winter and a proposal for a gas storage policy.

By mid-May, the Commission will set out options to revamp the electricity market and issue a proposal for phasing out EU dependency on Russian fossil fuels by 2027, according to the slides.

French President Emmanuel Macron said Thursday that Europe needs to protect its citizens and companies from the increase in energy prices, adding that some countries, including France, have already taken some national measures.

“If this lasts, we will need to have a more long-lasting European mechanism,” he said. “We will give a mandate to the Commission so that by the end of the month we can get all the necessary legislation ready.”

The problem with price limits is that they reduce the incentive for people and businesses to consume less, said Daniel Gros, distinguished fellow at the Centre for European Policy Studies, a Brussels think tank. He said low-income families and perhaps some businesses will need help dealing with high prices, but that should come as a lump-sum payment that isn’t tied to how much energy they are consuming.

“The key will be to let the price signal work,” Mr. Gros said in a paper published this week, which argued that high energy prices could result in lower demand in Europe and Asia, reducing the need for Russian natural gas. “Energy must be expensive so that people save energy,” he said.

Ms. von der Leyen’s slides suggest the EU hopes to replace 60 billion cubic meters of Russian gas with alternative suppliers, including suppliers of liquefied natural gas, by the end of this year. Another 27 billion cubic meters could be replaced through a combination of hydrogen and EU production of biomethane, according to the slide deck.

 

Related News

View more

Why the Texas Power Grid Is Facing Another Crisis

Texas Power Grid Reliability faces record peak demand as ERCOT balances renewable energy, wind and solar variability, gas-fired generation, demand response, and transmission limits to prevent blackouts during heat waves and extreme weather.

 

Key Points

Texas Power Grid Reliability is ERCOT's capacity to meet peak demand with diverse resources while limiting outages.

✅ Record heat drives peak demand across ERCOT.

✅ Variable wind/solar need firm, flexible capacity.

✅ Demand response and reserves reduce blackout risk.

 

The electric power grid in Texas, which collapsed dramatically during the 2021 winter storm across the state, is being tested again as the state suffers unusually hot summer weather. Demand for electricity has reached new records at a time of rapid change in the mix of power sources as wind and solar ramp up. That’s feeding a debate about the dependability of the state’s power. 

1. Why is the Texas grid under threat again? 

Already the biggest power user in the nation, electricity use in the second most-populous state surged to record levels during heat waves this summer. The jump in demand comes as the state becomes more dependent on intermittent renewable power sources, raising concerns among some critics that more reliance on wind and solar will leave the grid more vulnerable to disruption. Green sources will produce almost 40% of the power in Texas this year, US Energy Information Administration data show. While that trails California’s 52%, Texas is a bigger market. It’s already No. 1 in wind, making it the largest clean energy market in the US. 

2. How is Texas unique? 

The spirit of defiance of the Lone Star State extends to its power grid as well. The Electric Reliability Council of Texas, or Ercot as the grid operator is known, serves about 90% of the state’s electricity needs and has very few high-voltage transmission lines connecting to nearby grids. It’s a deliberate move to avoid federal oversight of the power market. That means Texas has to be mainly self-reliant and cannot depend on neighbors during extreme conditions. That vulnerability is a dramatic twist for a state that’s also the energy capital of the US, thanks to vast oil and natural gas producing fields. Favorable regulations are also driving a wind and solar boom in Texas. 

3. Why the worry? 

The summer of 2023 will mark the first time all of the state’s needs cannot be met by traditional power plants, like nuclear, coal and gas. A sign of potential trouble came on June 20 when state officials urged residents to conserve power because of low supplies from wind farms and unexpected closures of fossil-fuel generators amid supply-chain constraints that limited availability. As of late July, the grid was holding up, thanks to the help of renewable sources. Solar generation has been coming in close to expected summer capacity, or exceeding it on most days. This has helped offset the hours in the middle of the day when wind speeds died down in West Texas. 

4. Why didn’t the grid’s problems get fixed? 

There is no easy fix. The Texas system allows the price of electricity to swing to match supply and demand. That means high prices — and high profits — drive the development of new power plants. At times spot power prices have been as low as $20-$50 a megawatt-hour versus more than $4,000 during periods of stress. The limitation of this pricing structure was laid bare by the 2021 winter blackouts. Since then, state lawmakers have passed market reforms that require weatherization of critical infrastructure and changed rules to put more money in the pockets of the owners of power generation.  

5. What’s the big challenge? 

There’s a real clash going on over what the grid of the future should look like in Texas and across the country, especially as severe heat raises blackout risks nationally. The challenge is to make sure nuclear and fossil fuel plants that are needed right now don’t retire too early and still allow newer, cleaner technologies to flourish. Some conservative Republicans have blamed renewable energy for destabilizing the grid and have pushed for more fossil-fuel powered generators. Lawmakers passed a controversial $10 billion program providing low-interest loans and grants to build new gas-fired plants using taxpayer money, but Texans ultimately have to vote on the subsidy. 


6. Why do improvements take so long? 

Figuring out how to keep the lights on without overburdening consumers is becoming a greater challenge amid more extreme weather fueled by climate change. As such, changing the rules is often a hotly contested process pitting utilities, generators, manufacturers, electricity retailers and other groups against one another. The process became more politicized after the storm in 2021 with Republican Gov. Greg Abbott and lawmakers ordering Ercot to make changes. Building more transmission lines and connecting to other states can help, but such projects are typically tied up for years in red tape.

7. What can be done? 

The price cap for electricity was cut from $9,000/MWh to $5,000 to help avoid the punitive costs seen in the 2021 storm, though prices are allowed to spike more easily. Ercot is also contracting for more reserves to be online to help avoid supply shortfalls and improve reliability for customers, which added $1.7 billion in consumer costs alone last year. Another rule helps some gas generators pay for their fuel costs, while a more recent reform put in price floors when reserves fall to certain levels. Many power experts say that the easiest solution is to pay people to reduce their energy consumption during times of grid stress through so-called demand response programs. Factories, Bitcoin miners and other large users are already compensated to conserve during tight grid conditions.

 

Related News

View more

Survivors of deadly tornadoes may go weeks without heat, water, electricity, Kentucky officials say

Kentucky Tornado Recovery details Mayfield damage, death toll, power outages, boil-water advisories, shelter operations, and emergency response across five states, as crews restore infrastructure, locate missing persons, and support displaced families in frigid temperatures.

 

Key Points

Overview of restoring utilities, repairing infrastructure, and sheltering survivors after Kentucky's tornado disaster.

✅ Power, water, and gas outages persist; boil-water advisories in effect.

✅ Mayfield hardest hit; factory casualties lower than first feared.

✅ Shelter provided in state park lodges; long-term recovery expected.

 

Residents of Kentucky counties where tornadoes killed several dozen people could be without heat, water or electricity in frigid temperatures for weeks or longer, state officials warned Monday, and experiences abroad like Kyiv's difficult winter underscore the risks as the toll of damage and deaths came into clearer focus in five states slammed by the swarm of twisters.

Authorities are still tallying the devastation from Friday's storms, though they believe the death toll will be lower than initially feared since it appeared many more people escaped a candle factory in Mayfield, Ky., than first thought.

At least 88 people — including 74 in Kentucky — were killed by the tornados which also destroyed a nursing home in Arkansas, heavily damaged an Amazon distribution centre in Illinois and spread their deadly effects into Tennessee and Missouri, while ongoing nuclear worker safety concerns highlighted vulnerabilities across critical facilities. Another 105 people were still unaccounted for in Kentucky as of Monday afternoon, Gov. Andy Beshear said.

As searches continued for those still missing, efforts also turned to repairing the power grid, downed line safety education, sheltering those whose homes were destroyed and delivering drinking water and other supplies.

"We're not going to let any of our families go homeless," Beshear said in announcing that lodges in state parks were being used to provide shelter.

In Bowling Green, Ky., 11 people died on the same street, including two infants found among the bodies of five relatives near a residence, Warren County coroner Kevin Kirby said. 

In Mayfield, one of the hardest hit towns, those who survived faced a high around 10 C and a low below freezing Monday without any utilities, and awareness of power strip fire risks is critical as residents turn to makeshift heating and power.

"Our infrastructure is so damaged. We have no running water. Our water tower was lost. Our waste water management was lost, and there's no natural gas to the city. So we have nothing to rely on there," Mayfield Mayor Kathy Stewart O'Nan said on CBS Mornings. "So that is purely survival at this point for so many of our people."

Across the state, about 26,000 homes and businesses were without electricity, according to poweroutage.us, including nearly all of those in Mayfield, and the U.S. grid warning during the pandemic underscored vulnerabilities in critical infrastructure.

More than 10,000 homes and businesses have no water, and another 17,000 are under boil-water advisories, Kentucky Emergency Management Director Michael Dossett told reporters.

Dossett warned that full recovery in the hardest-hit places could take not just months, but years, noting that utilities have at times contemplated on-site staffing to maintain operations during crises.

At least 74 people have been confirmed dead across Kentucky after tornadoes tore through the state, leaving some communities nearly totally destroyed and many residents wondering if they can afford to rebuild. 2:22
"This will go on for years to come," he said. 

Amid broader economic strain, recent debates over Kentucky miners' pay highlight ongoing financial vulnerabilities for workers affected by disasters as well.

Authorities are still trying to determine the total number of dead, and the storms made door-to-door searches impossible in some places. "There are no doors," said Beshear.

"We're going to have over 1,000 homes that are gone, just gone," he said.

Beshear had said Sunday morning that the state's toll could exceed 100. But he later said it might be as low as 50.

'Then he was gone'
Initially as many as 70 people were feared dead in the candle factory in Mayfield, but the company said Sunday that eight were confirmed dead and eight remained missing, while more than 90 others had been located.

"Many of the employees were gathered in the tornado shelter and after the storm was over they left the plant and went to their homes," said Bob Ferguson, a spokesman for the company. "With the power out and no landline they were hard to reach initially. We're hoping to find more of those eight unaccounted as we try their home residences."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.