Waste-to-energy plant goes ahead in Hawaii

By Honolulu Advertiser


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
One of the most expensive public works projects in Big Island history was awarded to a Houston firm that has been vying to build a garbage-to-energy incinerator for the county similar to Oahu's H-Power plant.

The $125 million facility would be designed, built and operated by Wheelabrator Technologies Inc. and would burn about 230 tons of trash or about 40 percent of the solid waste generated on the island each day. That rubbish now goes into the Hilo landfill, which is nearly full and is expected to close in about four years.

The proposed plant would be a fraction of the size of the H-Power plant in Campbell Industrial Park, which burns about 2,000 tons of trash a day.

Under the contract awarded to Wheelabrator by Big Island Finance Director William Takaba, the incinerator would be built near the existing Hilo landfill and would be completed in about four years. It would generate about 3.5 megawatts of electricity, which is enough to power about 3,500 homes.

The contract must be approved by the Hawai'i County Council, which is expected to hold public hearings before voting.

Bobby Jean Leithead Todd, director of the county Office of Environmental Management, said she expects the council will weigh the cost of the incinerator against other options such as hauling the trash across the island to the Pu'uanahulu landfill in North Kona, sending the trash off the island on barges, or building a new landfill in the Hilo area.

"I think the issues are going to be price, and also addressing anyone's concerns over the technology," Leithead Todd said. "I think people here, because they have not lived with H-Power, probably have some concerns."

Leithead Todd said the large up-front cost of the plant needs to be balanced against its potential income in a community with some of the highest electricity rates in the nation. The power produced by the plant would also reduce imports of diesel fuel by about 19,000 barrels a year, she said.

"Once we've paid for the facility, the fact that it produces revenue in terms of electricity sales is going to profoundly impact the bottom line," Leithead Todd said. "It will be like H-Power has proved for Honolulu in the sense that at some point in time it starts to generate revenue because of the electricity sales."

The plant would cost the county almost $18.4 million a year once it begins operations, including debt payments and operating fees of more than $7.1 million a year charged by Wheelabrator, Takaba said.

That would be partly offset by nearly $6.9 million a year the county expects to earn in electricity sales, and that income would increase if the cost of electricity goes up.

After figuring in the power production earnings, the plant would cost the county almost $11.5 million a year including debt payments, which works out to about $135 per ton of trash burned, Takaba said. By comparison, he estimated a new landfill would cost about $100 per ton.

"I think there's probably a lot of support for the concept of taking solid waste and using it to produce electricity. I think the devil is going to be in the details," Leithead Todd said. "People want to know what are the controls, what kinds of safeguards have you got on emissions," she said.

She said the project is unlike old-fashioned incinerators because of today's strict federal emission controls and said the new plant will be a cleaner source of power than diesel-fired facilities Hawai'i Electric Light Co. now uses to generate power on the Big Island.

"I think people should go to City and County (of Honolulu) and take a look at H-Power," she said. "I think there was tremendous concern over it before it was built, and now you don't hear much about it. There isn't much squawking, and in fact they're talking about expanding it. Once you build it, once you get over the initial concerns, it's not a big deal."

Waste Management Inc. is the parent company of Wheelabrator, which had $13.4 billion in revenue in 2006 and owns or operates 16 plants across the nation that use similar technology, according to materials provided by the company.

The plan for a garbage-to-energy plant grew out of the Big Island's integrated solid waste plan approved by the administration and the council, which ruled out a proposal to truck rubbish across the island to the Pu'uanahulu landfill each day, and rejected the idea of building a new landfill in Hilo.

The council in 2005 instructed Mayor Harry Kim's administration to solicit proposals for a waste reduction facility, and the county invited companies to submit proposals for various technologies.

Leithead Todd said a limited number of companies responded because some firms don't want to do business in an isolated place such as Hawai'i, while others concluded the county doesn't generate enough trash to make their technologies viable.

The county also required that companies making proposals have a plant that had been operating for at least two years so county officials could study the facility.

In the end the county narrowed the choices to three waste-to-energy mass burn companies that had the required financial backing and expertise, she said. That field was narrowed to Wheelabrator last year.

If the council rejects the waste-to-energy contract, the county would reconsider options such as exporting trash off the island, trucking it to the Pu'uanahulu landfill, extending the life of the current landfill or constructing a new landfill, she said.

Related News

Britain's energy security bill set to become law

UK Energy Security Bill drives private investment, diversifies from fossil fuels with hydrogen and offshore wind, strengthens an independent system operator, and extends the retail price cap to shield consumers from volatile gas markets.

 

Key Points

A UK plan to reform energy, cut fossil fuel reliance, boost hydrogen and wind, and extend the retail price cap.

✅ Targets £100bn private investment and 480,000 jobs by 2030.

✅ Creates an independent system operator for grid planning.

✅ Extends retail energy price cap; mitigates volatile gas costs.

 

The British government said that plans to bolster the country's energy security, diversify away from fossil fuels amid the Europe energy crisis and protect consumers from spiralling prices are set to become law.

Britain's energy security bill will be introduced to Parliament on Wednesday and includes 26 measures to reform the energy system, including ending the gas-electricity price link, and reduce its dependency on fossil fuels and exposure to volatile gas prices.

Global energy prices have skyrocketed this year, and UK natural gas and electricity have risen sharply, particularly after Russia's invasion of Ukraine which has led to many European countries trying to reduce reliance on Russian pipeline gas and seek cheaper alternatives.

The bill will help drive 100 billion pounds ($119 billion) of private sector investment by 2030 into industries to diversify Britain's energy supply, including hydrogen and offshore wind, which could help lower costs as a 16% decrease in bills in April is anticipated, and create around 480,000 jobs by the end of the decade, the government said.

"We’re going to slash red tape, get investment into the UK, and grab as much global market share as possible in new technologies to make this plan a reality," Business and Energy Secretary Kwasi Kwarteng, amid high winter energy costs, said in a statement.

The bill will establish a new independent system operator to coordinate and plan Britain's energy system, while MPs move to restrict prices for gas and electricity through oversight.

It will also enable the extension of a cap on retail energy prices beyond 2023, with the price cap cost under scrutiny, which limits the amount suppliers can charge for each unit of gas and electricity.

The bill will also enable the secretary of state to prevent potential disruptions to the downstream oil sector due to industrial action or malicious protests, the government added.

 

Related News

View more

Power Outage Disrupts Morning Routine for Thousands in London

London, Ontario Power Outage disrupts the electricity grid, causing a citywide blackout, stalled commuters, dark traffic signals, and closed businesses, as London Hydro crews race restoration after a transformer malfunction and infrastructure failures.

 

Key Points

A blackout caused by a transformer malfunction, disrupting commuters, businesses, and traffic across London, Ontario.

✅ Traffic signals dark; delays and congestion citywide

✅ London Hydro crews repairing malfunctioning transformer

✅ Businesses closed; transit routes delayed and rerouted

 

A widespread power outage early Monday morning left thousands of residents in London, Ontario, without electricity, causing significant disruption for commuters and businesses at the start of the workday. The outage, which affected several neighborhoods across the city, lasted for hours, creating a chaotic morning as residents scrambled to adjust to the unexpected interruption.

The Outage Strikes

The power failure was first reported at approximately 6:30 a.m., catching many off guard as they began their day. The affected areas included several busy neighborhoods, with power lines down and substations impacted, issues that windstorms often exacerbate for utilities. Early reports indicated that the outage was caused by a combination of issues, including technical failures and possible equipment malfunctions. London Hydro, the city's primary electricity provider, responded quickly to the situation, assuring residents that crews were dispatched to restore power as soon as possible.

"Crews are on site and working hard to restore power to those affected," a spokesperson for London Hydro said. "We understand the frustration this causes and are doing everything we can to get the power back on as soon as possible."

Impact on Commuters and Businesses

The power outage had an immediate impact on the morning commute. Traffic lights across the affected areas were down, leading to delays and rush-hour disruptions at major intersections. Drivers were forced to navigate through intersections without traffic control, creating an additional layer of complexity for those trying to get to work or school.

Public transit was also affected, with some bus routes delayed due to the power loss at key transit stations. The situation added further stress to commuters already dealing with the challenges of a typical Monday morning rush.

Businesses in the affected neighborhoods faced a variety of challenges. Some were forced to close early or delay their opening hours due to a lack of electricity. Many shops and offices struggled with limited access to the internet and phone lines, which hindered their ability to process orders and serve customers. Local coffee shops, often a go-to for busy workers, were also unable to operate their coffee machines or provide basic services, forcing customers to go without their usual morning caffeine fix.

"For a lot of people, it's their first stop in the morning," said one local business owner. "It’s frustrating because we rely on power to function, and with no warning, we had to turn away customers."

The Response

As the hours ticked by, residents were left wondering when the power would return. London Hydro’s social media accounts were filled with updates, keeping residents informed about the restoration efforts, a practice echoed when BC Hydro crews responded during an atypical storm. The utility company urged those who were experiencing issues to report them online to help prioritize repair efforts.

"We are aware that many people are affected, and our teams are working tirelessly to restore power," the utility posted on Twitter. "Please stay safe, and we thank you for your patience."

Throughout the morning, the power was gradually restored to different areas of the city. However, some parts remained without electricity well into the afternoon, a situation reminiscent of extended outages that test city resilience. London Hydro confirmed that the outage was caused by a malfunctioning transformer, and the necessary repairs would take time to complete.

Long-Term Effects and Community Concerns

While the immediate effects of the outage were felt most acutely during the morning hours, some residents expressed concern about the potential long-term effects. The city’s reliance on a stable electricity grid became a focal point of discussion, with many wondering if similar outages could occur in the future, as seen in the North Seattle outage earlier this year.

"I understand that things break, but it’s frustrating that it took so long for power to come back," said a London resident. "This isn’t the first time something like this has happened, and it makes me wonder about the reliability of our infrastructure."

City officials responded by reassuring residents that efforts are underway to upgrade the city's infrastructure to prevent such outages from happening in the future. A report released by London Hydro highlighted ongoing investments in upgrading transformers and other key components of the city's power grid. Province-wide, Hydro One restored power to more than 277,000 customers after damaging storms, underscoring the scale of upgrades needed. Despite these efforts, however, experts warn that older infrastructure in some areas may still be vulnerable to failure, especially during extreme weather events or other unforeseen circumstances.

The morning outage serves as a reminder of how reliant modern cities are on stable electricity networks. While the response from London Hydro was swift and effective in restoring power, it’s clear that these types of events can cause significant disruptions to daily life. As the city moves forward, many are calling for increased investment in infrastructure and proactive measures to prevent future outages, especially after Toronto outages persisted following a spring storm in the region.

In the meantime, Londoners have adapted, finding ways to go about their day as best they can. For some, it’s a reminder of the importance of preparedness in an increasingly unpredictable world. Whether it’s an extra flashlight or a backup power source, residents are learning to expect the unexpected and be ready for whatever the next workday might bring.

 

Related News

View more

Covid-19 is reshaping the electric rhythms of New York City

COVID-19 Electricity Demand Shift flattens New York's load curve, lowers peak demand, and reduces wholesale prices as NYISO operators balance the grid amid stay-at-home orders, rising residential usage, cheap natural gas, and constrained renewables.

 

Key Points

An industry-wide change in load patterns: flatter peaks, lower prices, and altered grid operations during lockdowns.

✅ NYISO operators sequestered to maintain reliable grid control

✅ Morning and evening peaks flatten; residential use rises mid-day

✅ Wholesale prices drop amid cheap natural gas and reduced demand

 

At his post 150 miles up the Hudson, Jon Sawyer watches as a stay-at-home New York City stirs itself with each new dawn in this era of covid-19.

He’s a manager in the system that dispatches electricity throughout New York state, keeping homes lit and hospitals functioning, work that is so essential that he, along with 36 colleagues, has been sequestered away from home and family for going on four weeks now, to avoid the disease, a step also considered for Ontario power staff during COVID-19 measures.

The hour between 7 a.m. and 8 a.m. once saw the city bounding to life. A sharp spike would erupt on the system’s computer screens. Not now. The disease is changing the rhythms of the city, and, as this U.S. grid explainer notes, you can see it in the flows of electricity.

Kids are not going to school, restaurants are not making breakfast for commuters, offices are not turning on the lights, and thousands if not millions of people are staying in bed later, putting off the morning cup of coffee and a warm shower.

Electricity demand in a city that has been shut down is running 18 percent lower at this weekday morning hour than on a typical spring morning, according to the New York Independent System Operator, Sawyer’s employer. As the sun rises in the sky, usage picks up, but it’s a slower, flatter curve.

Though the picture is starkest in New York, it’s happening across the country. Daytime electricity demand is falling, even accounting for the mild spring weather, and early-morning spikes are deflating, with similar patterns in Ontario electricity demand as people stay home. The wholesale price of electricity is falling, too, driven by both reduced demand and the historically low cost of natural gas.

Sign up for our Coronavirus Updates newsletter to track the outbreak. All stories linked in the newsletter are free to access.

As covid-19 hits, coal companies aim to cut the tax they pay to support black-lung miners

Falling demand will hit the companies that run the “merchant generators” hardest. These are the privately owned power plants that sell electricity to the utilities and account for about 57 percent of electricity generation nationwide.

Closed businesses have resulted in falling demand. Residential usage is up — about 15 percent among customers of Con Edison, which serves New York City and Westchester County — as workers and schoolchildren stay home, while in Canada Hydro One peak rates remain unchanged for self-isolating customers, but it’s spread out through the day. Home use does not compensate for locked-up restaurants, offices and factories. Or for the subway system, which on a pre-covid-19 day used as much electricity as Buffalo.

Hospitals are a different story: They consume twice as much energy per square foot as hotels, and lead schools and office buildings by an even greater margin. And their work couldn’t be more vital as they confront the novel coronavirus.

Knowing that, Sawyer said, puts the ordinary routines of his job, which rely on utility disaster planning, the things about it he usually takes for granted, into perspective.

“Keeping the lights on: It comes to the forefront a little more when you understand, ‘I’m going to be sequestered on site to do this job, it’s so critical,’” he said, speaking by phone from his office in East Greenbush, N.Y., where he has been living in a trailer, away from his family, since March 23.

As coronavirus hospitalizations in New York began to peak in April, emergency medicine physician Howard Greller recorded his reflections. (Whitney Leaming/The Washington Post)
Sawyer, 53, is a former submariner in the U.S. Navy, so he has experience when it comes to being isolated from friends and family for long periods. Many of his colleagues in isolation, who all volunteered for the duty, also are military veterans, and they’re familiar with the drill. Life in East Greenbush has advantages over a submarine — you can go outside and throw a football or Frisbee or walk or run the trail on the company campus reserved for the operators, and every day you can use FaceTime or Skype to talk with your family.

His wife understood, he said, though “of course it’s a sacrifice.” But she grasped the obligation he felt to be there with his colleagues and keep the power on.

“It’s a new world, it’s definitely an adjustment,” said Rich Dewey, the system’s CEO, noting that America’s electricity is safe for now. “But we’re not letting a little virus slow us down.”

There are 31 operators, two managers and four cooks and cleaners all divided between East Greenbush, which handles daytime traffic, and another installation just west of Albany in Guilderland, which works at night. The operators work 12-hour shifts every other day.

Computers recalibrate generation, statewide, to equal demand, digesting tens of thousands of data points, every six seconds. Other computers forecast the needs looking ahead 2½ hours. The operators monitor the computers and handle the “contingencies” that inevitably arise.

They dispatch the electricity along transmission lines ranging from 115,000 volts to 765,000 volts, much of it going from plants and dams in western and northern New York downstate toward the city and Long Island.

They always focus on: “What is the next worse thing that can happen, and how can we respond to that?” Sawyer said.

It’s the same shift and the same work they’ve always done, and that gives this moment an oddly normal feeling, he said. “There’s a routine to it that some of the people working at home now don’t have.”

Medical workers check in with them daily to monitor their physical health and mental condition. So far, there have been no dropouts.

Cheap oil doesn’t mean much when no one’s going anywhere

Statewide, the daily demand for electricity has fallen nearly 9 percent.

The distribution system in New England is looking at a 3 to 5 percent decline; the Mid-Atlantic states at 5 to 7 percent; Washington state at 10 percent; and California by nearly as much. In Texas, demand is down 2 percent, “but even there you’re still seeing drops in the early-morning hours,” said Travis Whalen, a utility analyst with S&P Global Platts.

In the huge operating system that embraces much of the middle of the country, usage has fallen more than 8 percent — and the slow morning surge doesn’t peak until noon.

In New York, there used to be a smaller evening spike, too (though starting from a higher load level than the one in the morning). But that’s almost impossible to see anymore because everyone isn’t coming home and turning on the lights and TV and maybe throwing a load in the laundry all at once. No one goes out, either, and the lights aren’t so bright on Broadway.

California, in contrast, had a bigger spike in the evening than in the morning before covid-19 hit; maybe some of that had to do with the large number of early risers spreading out the morning demand and highlighting electricity inequality that shapes access. Both spikes have flattened but are still detectable, and the evening rise is still the larger.

Only at midnight, in New York and elsewhere, does the load resemble what it used to look like.

The wholesale price of electricity has fallen about 40 percent in the past month, according to a study by S&P Global Platts. In California it’s down about 30 percent. In a section covered by the Southwest Power Pool, the price is down 40 percent from a year ago, and in Indiana, electricity sold to utilities is cheaper than it has been in six years.

Some of the merchant generators “are going to be facing some rather large losses,” said Manan Ahuja, also an analyst with S&P Global Platts. With gas so cheap, coal has built up until stockpiles average a 90-day supply, which is unusually large. Ahuja said he believes renewable generators of electricity will be especially vulnerable because as demand slackens it’s easier for operators to fine-tune the output from traditional power plants.

Bravado, dread and denial as oil-price collapse hits the American fracking heartland

As Dewey put it, speaking of solar and wind generators, “You can dispatch them down but you can’t dispatch them up. You can’t make the wind blow or the sun shine.”

Jason Tundermann, a vice president at Level 10 Energy, which promotes renewables, argued that before the morning and evening spikes flattened they were particularly profitable for fossil fuel plants. He suggested electricity demand will certainly pick up again. But an issue for renewable projects under development is that supply chain disruptions could cause them to miss tax credit deadlines.

With demand “on pause,” as Sawyer put it, and consumption more evenly spread through the day, the control room operators in East Greenbush have a somewhat different set of challenges. The main one, he said, is to be sure not to let those high-voltage transmission lines overload. Nuclear power shows up as a steady constant on the real-time dashboard; hydropower is much more up and down, depending on the capacity of transmission lines from the far northern and western parts of the state.

Some human habits are more reliably fixed. The wastewater that moves through New York City’s sewers — at a considerably slower pace than the electricity in the nearby wires — hasn’t shown any change in rhythm since the coronavirus struck, according to Edward Timbers, a spokesman for the city’s Department of Environmental Protection. People may be sleeping a little later, but the “big flush” still arrives at the wastewater treatment plants, about three hours or so downstream from the typical home or apartment, every day in the late morning, just as it always has.
 

 

Related News

View more

Electricity Grids Can Handle Electric Vehicles Easily - They Just Need Proper Management

EV Grid Capacity Management shows how smart charging, load balancing, and off-peak pricing align with utility demand response, DC fast charging networks, and renewable integration to keep national electricity infrastructure reliable as EV adoption scales

 

Key Points

EV Grid Capacity Management schedules charging and balances load to keep EV demand within utility capacity.

✅ Off-peak pricing and time-of-use tariffs shift charging demand.

✅ Smart chargers enable demand response and local load balancing.

✅ Gradual EV adoption allows utilities to plan upgrades efficiently.

 

One of the most frequent concerns you will see from electric vehicle haters is that the electricity grid can’t possibly cope with all cars becoming EVs, or that EVs will crash the grid entirely. However, they haven’t done the math properly. The grids in most developed nations will be just fine, so long as the demand is properly management. Here’s how.

The biggest mistake the social media keyboard warriors make is the very strange assumption that all cars could be charging at once. In the UK, there are currently 32,697,408 cars according to the UK Department of Transport. The UK national grid had a capacity of 75.8GW in 2020. If all the cars in the UK were EVs and charging at the same time at 7kW (the typical home charger rate), they would need 229GW – three times the UK grid capacity. If they were all charging at 50kW (a common public DC charger rate), they would need 1.6TW – 21.5 times the UK grid capacity. That sounds unworkable, and this is usually the kind of thinking behind those who claim the UK grid can't cope with EVs.

What they don’t seem to realize is that the chances of every single car charging all at once are infinitesimally low. Their arguments seem to assume that nobody ever drives their car, and just charges it all the time. If you look at averages, the absurdity of this position becomes particularly clear. The distance each UK car travels per year has been slowly dropping, and was 7,400 miles on average in 2019, again according to the UK Department of Transport. An EV will do somewhere between 2.5 and 4.5 miles per kWh on average, so let’s go in the middle and say 3.5 miles. In other words, each car will consume an average of 2,114kWh per year. Multiply that by the number of cars, and you get 69.1TWh. But the UK national grid produced 323TWh of power in 2019, so that is only 21.4% of the energy it produced for the year. Before you argue that’s still a problem, the UK grid produced 402TWh in 2005, which is more than the 2019 figure plus charging all the EVs in the UK put together. The capacity is there, and energy storage can help manage EV-driven peaks as well.

Let’s do the same calculation for the USA, where an EV boom is about to begin and planning matters. In 2020, there were 286.9 million cars registered in America. In 2020, while the US grid had 1,117.5TW of utility electricity capacity and 27.7GW of solar, according to the US Energy Information Administration. If all the cars were EVs charging at 7kW, they would need 2,008.3TW – nearly twice the grid capacity. If they charged at 50kW, they would need 14,345TW – 12.8 times the capacity.

However, in 2020, the US grid generated 4,007TWh of electricity. Americans drive further on average than Brits – 13,500 miles per year, according to the US Department of Transport’s Federal Highway Administration. That means an American car, if it were an EV, would need 3,857kWh per year, assuming the average efficiency figures above. If all US cars were EVs, they would need a total of 1,106.6TWh, which is 27.6% of what the American grid produced in 2020. US electricity consumption hasn’t shrunk in the same way since 2005 as it has in the UK, but it is clearly not unfeasible for all American cars to be EVs. The US grid could cope too, even as state power grids face challenges during the transition.

After all, the transition to electric isn’t going to happen overnight. The sales of EVs are growing fast, with for example more plug-ins sold in the UK in 2021 so far than the whole of the previous decade (2010-19) put together. Battery-electric vehicles are closing in on 10% of the market in the UK, and they were already 77.5% of new cars sold in Norway in September 2021. But that is new cars, leaving the vast majority of cars on the road fossil fuel powered. A gradual introduction is essential, too, because an overnight switchover would require a massive ramp up in charge point installation, particularly devices for people who don’t have the luxury of home charging. This will require considerable investment, but could be served by lots of chargers on street lamps, which allegedly only cost £1,000 ($1,300) each to install, usually with no need for extra wiring.

This would be a perfectly viable way to provide charging for most people. For example, as I write this article, my own EV is attached to a lamppost down the street from my house. It is receiving 5.5kW costing 24p (32 cents) per kWh through SimpleSocket, a service run by Ubitricity (now owned by Shell) and installed by my local London council, Barnet. I plugged in at 11am and by 7.30pm, my car (which was on about 28% when I started) will have around 275 miles of range – enough for a couple more weeks. It will have cost me around £12 ($16) – way less than a tank of fossil fuel. It was a super-easy process involving the scanning of a QR code and entering of a credit card, very similar to many parking systems nowadays. If most lampposts had one of these charging plugs, not having off-street parking would be no problem at all for owning an EV.

With most EVs having a range of at least 200 miles these days, and the average mileage per day being 20 miles in the UK (the 7,400-mile annual figure divided by 365 days) or 37 miles in the USA, EVs won’t need charging more than once a week or even every week or two. On average, therefore, the grids in most developed nations will be fine. The important consideration is to balance the load, because if too many EVs are charging at once, there could be a problem, and some regions like California are looking to EVs for grid stability as part of the solution. This will be a matter of incentivizing charging during off-peak times such as at night, or making peak charging more expensive. It might also be necessary to have the option to reduce charging power rates locally, while providing the ability to prioritize where necessary – such as emergency services workers. But the problem is one of logistics, not impossibility.

There will be grids around the world that are not in such a good place for an EV revolution, at least not yet, and some critics argue that policies like Canada's 2035 EV mandate are unrealistic. But to argue that widespread EV adoption will be an insurmountable catastrophe for electricity supply in developed nations is just plain wrong. So long as the supply is managed correctly to make use of spare capacity when it’s available as much as possible, the grids will cope just fine.

 

Related News

View more

Renewables Surpass Coal in India's Energy Capacity Shift

India Renewable Energy Surge 2024 signals coal's decline as solar and wind capacity soar, aided by policy incentives, grid upgrades, energy storage, and falling costs, accelerating decarbonization and clean power growth.

 

Key Points

Q1 2024 saw renewables outpace coal in new capacity, led by cheaper solar, wind, policy support, and storage.

✅ 71.5% of new Q1 capacity came from renewables

✅ Solar and wind expand on falling costs and faster permitting

✅ Grid integration needs storage, skills, and just transition

 

In a landmark shift for the world's second-most populous nation, coal has finally been dethroned as the king of India's energy supply. The first quarter of 2024 saw a historic surge in renewable energy capacity, particularly on-grid solar development across states, pushing its share of power generation past 71.5%. This remarkable feat marks a turning point in India's journey towards a cleaner and more sustainable energy future.

For decades, coal has been the backbone of India's power sector, fueling rapid economic growth but also leading to concerning levels of air pollution. However, a confluence of factors has driven this dramatic shift, even as coal generation surges create short-term fluctuations in the mix. Firstly, the cost of solar and wind power has plummeted in recent years, making them increasingly competitive with coal. Secondly, the Indian government has set ambitious renewable energy targets, aiming for 50% of cumulative power generation capacity from non-fossil fuel sources by 2030. Thirdly, growing public awareness about the environmental impact of coal has spurred a demand for cleaner alternatives.

This surge in renewables is not just about replacing coal. The first quarter of 2024 witnessed a record-breaking addition of 13,669 megawatts (MW) of power generation capacity, with renewables accounting for a staggering 71.5% of that figure, aligning with 30% global renewable electricity milestones seen worldwide. This rapid expansion is driven by factors like falling equipment costs, streamlined permitting processes, and attractive government incentives. Solar and wind energy are leading the charge, and in other major markets renewables are projected to reach one-fourth of U.S. generation in the near term, with large-scale solar farms and wind turbine installations dotting the Indian landscape.

The transition away from coal presents both opportunities and challenges. On the positive side, cleaner air will lead to significant health benefits for millions of Indians. Additionally, India can establish itself as a global leader in the renewable energy sector, attracting investments and creating new jobs, echoing how China's solar PV expansion reshaped markets in the previous decade. However, challenges remain. Integrating such a large amount of variable renewable energy sources like solar and wind into the grid requires robust energy storage solutions. Furthermore, millions of jobs in the coal sector need to be transitioned to new opportunities in the green economy.

Despite these challenges, India's move towards renewables is a significant development with global implications, as U.S. renewable electricity surpassed coal in 2022, underscoring broader momentum. It demonstrates the growing viability of clean energy solutions and paves the way for other developing nations to follow suit. India's success story can inspire a global shift towards a more sustainable energy future, one powered by the sun, wind, and other renewable resources.

Looking ahead, continued government support, technological advancements, and innovative financing mechanisms will be crucial for sustaining India's renewable energy momentum. The future of India's energy sector is undoubtedly bright, fueled by the clean and abundant power of the sun and the wind, as wind and solar surpassed coal in the U.S. in recent comparisons. The world will be watching closely to see if India can successfully navigate this energy transition, setting an example for other nations struggling to balance development with environmental responsibility.

 

Related News

View more

Don't be taken in by scammers threatening to shut off electricity: Manitoba Hydro

Manitoba Hydro Phone Scam targets small businesses with disconnection threats, prepaid card payments, caller ID spoofing, phishing texts, and door-to-door fraud; hang up, verify your account directly, and never share banking information.

 

Key Points

A scam where callers threaten disconnection and demand prepaid cards; verify account status directly with Manitoba Hydro.

✅ Hang up and call Manitoba Hydro at 1-888-624-9376 to verify.

✅ Never pay by prepaid cards, gift cards, or crypto.

✅ Hydro will not cut power on one-hour notice.

 

Manitoba Hydro is warning customers, particularly small business owners, to be wary of high-pressure scammers, as Ontario utilities warn of scams in other provinces, threatening to shut off their electricity.

The callers demand the customer to make immediate payment by a prepaid card. Often, the calls are made in the middle of the day at a busy time, frightening the customer with aggressive threats about disconnection, as hydro disconnections have made headlines elsewhere, says hydro spokesman Bruce Owen.

"They tell them 'we have a truck on the way to cut off your power. If you don't pay in the next hour you're out of luck,'" he said.

"And because these folks have inventory in freezers and they have customers … they're willing to fork over several hundred or even several thousand dollars on a prepaid card to somebody they don't know to keep the lights on."

Maybe the business owners can't recall, with everything happening, including discussions about Hydro One peak rates in Ontario, if they've made their payments on time. They start second-guessing and believing the person on the other line, Owen says.

And they worry about losing thousands of dollars in business if they lose power. So they're more than willing to run out to a store, buy a prepaid debit card and provide the number to the caller.

"Their goal is to manipulate you into sending money before you figure out it's a scam," said Chris McColm, hydro's security and investigations supervisor. "These people are crooks and you should hang up on them."

For any customers that are in arrears, hydro will work with them to resolve the issue, Owen said.

"We do not have to take that extreme measure of cutting off or disconnecting anybody. That's not the business we're in — we don't strong arm people that way," he said.

"Anybody who's threatening to cut off your power with an hour or half-an-hour notice, well it's it's no better than someone waiting around the corner, waiting the club you over the head in the dark of night. That's what they are."

 

Fraud reports soar

The power utility has recorded a nearly-300 per cent jump in the number of fraud-related complaints this year over 2017. There have been 862 phone, text and e-mail scams and that could still go much higher.

The current statistics from 2018 have only calculated up to Oct. 31. In 2017, there were 221.

That jump in numbers doesn't necessarily mean there are more scammers out there.

It could simply mean people are finally getting wise to fraudsters and reporting it more, Owen says.

"At the same token, we don't hear of everybody who's been taking advantage of because once they've found out that they've been hoodwinked they don't want to tell anybody because they're so embarrassed," he said.

"These scammers can be very convincing and anyone can be victimized," McColm said.

If you are able to think clearly when some high-pressure caller gets you on the line, Owen suggests asking a few simple questions to challenge their legitimacy:

  • What street am I on?
  • What does my business look like? 
  • What's the weather outside right now?

Phone scammers can falsify their caller ID information to make it appear they're calling from a local number, but what you'll find is most of them aren't in Winnipeg or Manitoba and likely not even this country or continent, Owen says.

The key to being safe is simply to never give out banking information, Owen says. It's a message that has been stressed for years and 80-90 per cent of people understand it, but it's that other 10-20 per cent that are still being victimized.And it's not just phone calls. Many other fraud-related complaints to Manitoba Hydro this year concerned unsolicited text messages to customers saying they had been overbilled, or faced retroactive charges elsewhere, and were eligible for a refund.

This scam is also aimed at getting a customer's personal banking information, under the guise of having money put back into their account.

Also, many people, especially seniors living alone, continue to be targeted by aggressive door-to-door fraudsters, and cases like the electricity theft ring in Montreal underscore the risks, McColm says. However, he adds, hydro employees always display photo ID and will never demand to come into a home. 

If you're unsure whether a phone call, text or email is real or a scam, contact Manitoba Hydro at 1-888-624-9376.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.