PSE reminds everyone to call before you dig

By Business Wire


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
With April declared by Governor Gregoire as Safe Digging Month, Puget Sound Energy urges everyone to contact the 811 “Call Before You Dig” hotline to schedule a free utility locator service before beginning any work that involves digging.

In Gov. GregoireÂ’s proclamation, residents and excavators are encouraged to call the 811 service two business days before digging to help avoid potential hazards with striking or damaging underground utility lines.

“Greater public awareness about the need to ‘call before you dig’ has effectively reduced the number of incidents damaging our underground electric and natural gas lines and avoided the possibility of serious injury and costly repairs,” said Sue McLain, PSE senior vice president of operations. “We encourage residents and excavators to call 811 prior to starting any digging project. Any scratch, dent or gouge to a natural gas pipe or nick to an underground electric line could become a safety hazard and eventually ends up costing time and money to repair.”

PSEÂ’s statistics reveal that more than onetenth of the overall damages to its underground natural gas lines and electric cable in the utilityÂ’s 11county service area in 2009 were caused by residents, contractors and other excavators who failed to ensure that underground utility lines were properly marked. Last year, PSE experienced more than 1,000 incidents related to accidental digups of PSEÂ’s 25,000 miles of underground natural gas lines and about 400 incidents to the utilityÂ’s 9,960 miles of buried power lines.

Washington state law requires all digging projects on private, public and commercial property to have utilities marked before the start of digging to prevent serious injuries or costly property damage.

PSE advises anyone who may have damaged natural gas pipes or electric systems, or who smells the odor of natural gas, to take these steps:

• Quickly move a safe distance from the damaged line.

• Call 911 after reaching a safe distance.

• Report the damage to PSE at 18882255773.

For more information about “Call Before You Dig,” visit www.call811.com.

Related News

US nuclear innovation act becomes law

NEIMA advances NRC regulatory modernization, creating a licensing framework for advanced reactors, improving uranium permitting, capping reactor fees, and mandating DOE planning for excess uranium, boosting transparency, accountability, and innovation across the US nuclear sector.

 

Key Points

NEIMA is a US law modernizing NRC rules and enabling advanced reactor licensing while reforming fees.

✅ Modernizes NRC licensing for advanced reactors

✅ Caps annual reactor fees and boosts transparency

✅ Streamlines uranium permitting; directs DOE plans

 

Bipartisan legislation modernising US nuclear regulation and supporting the establishment of a licensing framework for next-generation advanced reactors has been signed by US President Donald Trump, whose order boosting U.S. uranium and nuclear energy underscored the administration's focus on the sector.

The Nuclear Energy Innovation and Modernisation Act (NEIMA) became law on 14 January.

As well as directing the Nuclear Regulatory Commission (NRC) to modify the licensing process for commercial advanced nuclear reactor facilities, the bill establishes new transparency and accountability measures to the regulator's budget and fee programmes, and caps fees for existing reactors. It also directs the NRC to look at ways of improving the efficiency of uranium licensing, including investigating the safety and feasibility of extending uranium recovery licences from ten to 20 years' duration, and directs the Department of Energy, which oversees nuclear cleanup and related projects, to issue at least every ten years a long-term plan detailing the management of its excess uranium inventories.

Maria Korsnick, president and CEO of the US Nuclear Energy Institute, described NEIMA as a "significant, positive step" toward the reform of the NRC's fee collection process. "This legislation establishes a more equitable and transparent funding structure which will benefit all operating reactors and future licensees," she said. "The bill also reaffirms Congress’s support for nuclear innovation by working to establish an efficient and stable regulatory structure that is prepared to license the advanced reactors of the future."

Marilyn Kray, president-elect of the American Nuclear Society, said the passage of the legislation was a "big win" for the nation and its nuclear community. "By reforming outdated laws, NRC will now be able to invest more freely in advanced nuclear R&D and licensing activities. This in turn will accelerate deployment of cutting-edge American nuclear systems and better prepare the next generation of nuclear engineers and technologists," she said.

The bill was introduced in 2017 by Senator John Barrasso of Wyoming. It was approved by Congress on 21 December by 361 votes to 10, having been passed by the Senate the previous day, even as later Biden's climate law developments produced mixed results.

NEIMA is one of several bipartisan bills that support advanced nuclear innovation considered by the 115th US Congress, which ended on 2 January. These are: the Nuclear Energy Innovation Capabilities Act (NEICA); the Nuclear Energy Leadership Act; the Nuclear Utilisation of Keynote Energy Act; the Advanced Nuclear Fuel Availability Act, a focus sharpened by the U.S. ban on Russian uranium in the fuel market; and legislation to expedite so-called part 810 approvals, which are needed for the export of technology, equipment and components. NEICA, which supports the deployment of advanced reactors and also directs the DOE to develop a reactor-based fast neutron source for the testing of advanced reactor fuels and materials, was signed into law in October.

 

Related News

View more

Germany's Call for Hydrogen-Ready Power Plants

Germany Hydrogen-Ready Power Plants Tender accelerates the energy transition by enabling clean energy generation, decarbonization, and green hydrogen integration through retrofit and new-build capacity, resilient infrastructure, flexible storage, and grid reliability provisions.

 

Key Points

Germany tender to build or convert plants for hydrogen, advancing decarbonization, energy security, and clean power.

✅ Hydrogen-ready retrofits and new-build generation capacity

✅ Supports decarbonization, grid reliability, and flexible storage

✅ Future-proof design for green hydrogen supply integration

 

Germany, a global leader in energy transition and environmental sustainability, has recently launched an ambitious call for tenders aimed at developing hydrogen-ready power plants. This initiative is a significant step in the country's strategy to transform its energy infrastructure and support the broader goal of a greener economy. The move underscores Germany’s commitment to reducing greenhouse gas emissions and advancing clean energy technologies.

The Need for Hydrogen-Ready Power Plants

Hydrogen, often hailed as a key player in the future of clean energy, offers a promising solution for decarbonizing various sectors, including power generation. Unlike fossil fuels, hydrogen produces zero carbon emissions when used in fuel cells or burned. This makes it an ideal candidate for replacing conventional energy sources that contribute to climate change.

Germany’s push for hydrogen-ready power plants reflects the country’s recognition of hydrogen’s potential in achieving its climate goals. Traditional power plants, which typically rely on coal, natural gas, or oil, emit substantial amounts of CO2. Transitioning these plants to utilize hydrogen can significantly reduce their carbon footprint and align with Germany's climate targets.

The Details of the Tender

The recent tender call is part of Germany's broader strategy to incorporate hydrogen into its energy mix, amid a nuclear option debate in climate policy. The tender seeks proposals for power plants that can either be converted to use hydrogen or be built with hydrogen capability from the outset. This approach allows for flexibility and innovation in how hydrogen technology is integrated into existing and new energy infrastructures.

One of the critical aspects of this initiative is the focus on “hydrogen readiness.” This means that power plants must be designed or retrofitted to operate with hydrogen either exclusively or in combination with other fuels. The goal is to ensure that these facilities can adapt to the growing availability of hydrogen and seamlessly transition from conventional fuels without significant additional modifications.

By setting such requirements, Germany aims to stimulate the development of technologies that can handle hydrogen’s unique properties and ensure that the infrastructure is future-proofed. This includes addressing challenges related to hydrogen storage, transportation, and combustion, and exploring concepts like storing electricity in natural gas pipes for system flexibility.

Strategic Implications for Germany

Germany’s call for hydrogen-ready power plants has several strategic implications. First and foremost, it aligns with the country’s broader energy strategy, which emphasizes the need for a transition from fossil fuels to cleaner alternatives, building on its decision to phase out coal and nuclear domestically. As part of its commitment to the Paris Agreement and its own climate action plans, Germany has set ambitious targets for reducing greenhouse gas emissions and increasing the share of renewable energy in its energy mix.

Hydrogen plays a crucial role in this strategy, particularly for sectors where direct electrification is challenging. For instance, heavy industry and certain industrial processes, such as green steel production, require high-temperature heat that is difficult to achieve with electricity alone. Hydrogen can fill this gap, providing a cleaner alternative to natural gas and coal.

Moreover, this initiative helps Germany bolster its leadership in green technology and innovation. By investing in hydrogen infrastructure, Germany positions itself as a pioneer in the global energy transition, potentially influencing international standards and practices. The development of hydrogen-ready power plants also opens up new economic opportunities, including job creation in engineering, construction, and technology sectors.

Challenges and Opportunities

While the push for hydrogen-ready power plants presents significant opportunities, it also comes with challenges. Hydrogen production, especially green hydrogen produced from renewable sources, remains relatively expensive compared to conventional fuels. Scaling up production and reducing costs are critical for making hydrogen a viable alternative for widespread use.

Furthermore, integrating hydrogen into existing power infrastructure, alongside electricity grid expansion, requires careful planning and investment. Issues such as retrofitting existing plants, ensuring safe handling of hydrogen, and developing efficient storage and transportation systems must be addressed.

Despite these challenges, the long-term benefits of hydrogen integration are substantial, and a net-zero roadmap indicates electricity costs could fall by a third. Hydrogen can enhance energy security, reduce reliance on imported fossil fuels, and support global climate goals. For Germany, this initiative is a step towards realizing its vision of a sustainable, low-carbon energy system.

Conclusion

Germany’s call for hydrogen-ready power plants is a forward-thinking move that reflects its commitment to sustainability and innovation. By encouraging the development of infrastructure capable of using hydrogen, Germany is taking a significant step towards a cleaner energy future. While challenges remain, the strategic focus on hydrogen underscores Germany’s leadership in the global transition to a low-carbon economy. As the world grapples with the urgent need to address climate change, Germany’s approach serves as a model for integrating emerging technologies into national energy strategies.

 

Related News

View more

How utilities are using AI to adapt to electricity demands

AI Load Forecasting for Utilities leverages machine learning, smart meters, and predictive analytics to balance energy demand during COVID-19 disruptions, optimize grid reliability, support demand response, and stabilize rates for residential and commercial customers.

 

Key Points

AI predicts utility demand with ML and smart meters to improve reliability and reduce costs.

✅ Adapts to rapid demand shifts with accurate short term forecasts

✅ Optimizes demand response and distributed energy resources

✅ Reduces outages risk while lowering procurement and operating costs

 

The spread of the novel coronavirus that causes COVID-19 has prompted state and local governments around the U.S. to institute shelter-in-place orders and business closures. As millions suddenly find themselves confined to their homes, the shift has strained not only internet service providers, streaming platforms, and online retailers, but the utilities supplying power to the nation’s electrical grid, which face longer, more frequent outages as well.

U.S. electricity use on March 27, 2020 was 3% lower than it was on March 27, 2019, a loss of about three years of sales growth. Peter Fox-Penner, director of the Boston University Institute for Sustainable Energy, asserted in a recent op-ed that utility revenues will suffer because providers are halting shutoffs and deferring rate increases. Moreover, according to research firm Wood Mackenzie, the rise in household electricity demand won’t offset reduced business electricity demand, mainly because residential demand makes up just 40% of the total demand across North America.

Some utilities are employing AI and machine learning for the energy transition to address the windfalls and fluctuations in energy usage resulting from COVID-19. Precise load forecasting could ensure that operations aren’t interrupted in the coming months, thereby preventing blackouts and brownouts. And they might also bolster the efficiency of utilities’ internal processes, leading to reduced prices and improved service long after the pandemic ends.

Innowatts
Innowatts, a startup developing an automated toolkit for energy monitoring and management, counts several major U.S. utility companies among its customers, including Portland General Electric, Gexa Energy, Avangrid, Arizona Public Service Electric, WGL, and Mega Energy. Its eUtility platform ingests data from over 34 million smart energy meters across 21 million customers in more than 13 regional energy markets, while its machine learning algorithms analyze the data to forecast short- and long-term loads, variances, weather sensitivity, and more.

Beyond these table-stakes predictions, Innowatts helps evaluate the effects of different rate configurations by mapping utilities’ rate structures against disaggregated cost models. It also produces cost curves for each customer that reveal the margin impacts on the wider business, and it validates the yield of products and cost of customer acquisition with models that learn the relationships between marketing efforts and customer behaviors (like real-time load).

Innowwatts told VentureBeat that it observed “dramatic” shifts in energy usage between the first and fourth weeks of March. In the Northeast, “non-essential” retailers like salons, clothing shops, and dry cleaners were using only 35% as much energy toward the end of the month (after shelter-in-place orders were enacted) versus the beginning of the month, while restaurants (excepting pizza chains) were using only 28%. In Texas, conversely, storage facilities were using 142% as much energy in the fourth week compared with the first.

Innowatts says that throughout these usage surges and declines, its clients took advantage of AI-based load forecasting to learn from short-term shocks and make timely adjustments. Within three days of shelter-in-place orders, the company said, its forecasting models were able to learn new consumption patterns and produce accurate forecasts, accounting for real-time changes.

Innowatts CEO Sid Sachdeva believes that if utility companies had not leveraged machine learning models, demand forecasts in mid-March would have seen variances of 10-20%, significantly impacting operations.

“During these turbulent times, AI-based load forecasting gives energy providers the ability to … develop informed, data-driven strategies for future success,” Sachdeva told VentureBeat. “With utilities and energy retailers seeing a once-in-a-lifetime 30%-plus drop in commercial energy consumption, accurate forecasting has never been more important. Without AI tools, utilities would see their forecasts swing wildly, leading to inaccuracies of 20% or more, placing an enormous strain on their operations and ultimately driving up costs for businesses and consumers.”

Autogrid
Autogrid works with over 50 customers in 10 countries — including Energy Australia, Florida Power & Light, and Southern California Edison — to deliver AI-informed power usage insights. Its platform makes 10 million predictions every 10 minutes and optimizes over 50 megawatts of power, which is enough to supply the average suburb.

Flex, the company’s flagship product, predicts and controls tens of thousands of energy resources from millions of customers by ingesting, storing, and managing petabytes of data from trillions of endpoints. Using a combination of data science, machine learning, and network optimization algorithms, Flex models both physics and customer behavior, automatically anticipating and adjusting for supply and demand patterns through virtual power plants that coordinate distributed assets.

Autogrid also offers a fully managed solution for integrating and utilizing end-customer installations of grid batteries and microgrids. Like Flex, it automatically aggregates, forecasts, and optimizes capacity from assets at sub-stations and transformers, reacting to distribution management needs while providing capacity to avoid capital investments in system upgrades.

Autogrid CEO Dr. Amit Narayan told VentureBeat that the COVID-19 crisis has heavily shifted daily power distribution in California, where it’s having a “significant” downward impact on hourly prices in the energy market. He says that Autogrid has also heard from customers about transformer failures in some regions due to overloaded circuits, which he expects will become a problem in heavily residential and saturated load areas during the summer months (as utilities prepare for blackouts across the U.S. when air conditioning usage goes up).

“In California, [as you’ll recall], more than a million residents faced wildfire prevention-related outages in PG&E territory in 2019,” Narayan said, referring to the controversial planned outages orchestrated by Pacific Gas & Electric last summer. “The demand continues to be high in 2020 in spite of the COVID-19 crisis, as residents prepare to keep the lights on and brace for a similar situation this summer. If a 2019 repeat happens again, it will be even more devastating, given the health crisis and difficulty in buying groceries.”

AI making a difference
AI and machine learning isn’t a silver bullet for the power grid — even with predictive tools at their disposal, utilities are beholden to a tumultuous demand curve and to mounting climate risks across the grid. But providers say they see evidence the tools are already helping to prevent the worst of the pandemic’s effects — chiefly by enabling them to better adjust to shifted daily and weekly power load profiles.

“The societal impact [of the pandemic] will continue to be felt — people may continue working remotely instead of going into the office, they may alter their commute times to avoid rush hour crowds, or may look to alternative modes of transportation,” Schneider Electric chief innovation officer Emmanuel Lagarrigue told VentureBeat. “All of this will impact the daily load curve, and that is where AI and automation can help us with maintenance, performance, and diagnostics within our homes, buildings, and in the grid.”

 

Related News

View more

Britain got its cleanest electricity ever during lockdown

UK Clean Electricity Record as wind, solar, and biomass boost renewable energy output, slashing carbon emissions and wholesale power prices during lockdown, while lower demand challenges grid balancing and drives a drop to 153 g/kWh.

 

Key Points

A milestone where wind, solar and biomass lifted renewables, cutting carbon intensity to 153 g/kWh during lockdown.

✅ Carbon intensity averaged 153 g/kWh in Q2 2020.

✅ Renewables output rose 32% via wind, solar, biomass.

✅ Wholesale power prices slumped 42% amid lower demand.

 

U.K electricity has never been cleaner. As wind, solar and biomass plants produced more power than ever in the second quarter, with a new wind generation record set, carbon emissions fell by a third from a year earlier, according to Drax Electric Insight’s quarterly report. Power prices slumped 42 per cent as demand plunged during lockdown. Total renewable energy output jumped 32 per cent in the period, as wind became the main source of electricity at times.

“The past few months have given the country a glimpse into the future for our power system, with higher levels of renewable energy, as wind led the power mix, and lower demand making for a difficult balancing act,”said  Iain Staffell, from Imperial College London and lead author of the report.

The findings of the report point to the impact energy efficiency can have on reducing emissions, as coal's share fell to record lows across the electricity system. Millions of people furloughed or working from home and shuttered shops up and down the country resulted in daily electricity demand dropping about 10% and being about four gigawatts lower than expected in the three months through June.

Average carbon emissions fell to a new low of 153 grams per kWh of electricity consumed over the quarter, as coal-free generation records were extended, even though low-carbon generation stalled in 2019, according to the report.

 

Related News

View more

N.L. premier says Muskrat Falls costs are too great for optimism about benefits

Muskrat Falls financial impact highlights a hydro megaproject's cost overruns, rate mitigation challenges, and inquiry findings in Newfoundland and Labrador, with power exports, Churchill River generation, and subsea cables shaping long-term viability.

 

Key Points

It refers to the project's burden on provincial finances, driven by cost overruns, rate hikes, and debt risks.

✅ Costs rose to $12.7B from $6.2B; inquiry cites suppressed risks.

✅ Rate mitigation needed to offset power bill shocks.

✅ Exports via subsea cables may improve long-term viability.

 

Newfoundland and Labrador's premier says the Muskrat Falls hydro megaproject is currently too much of a massive financial burden for him to be optimistic about its long-term potential.

"I am probably one of the most optimistic people in this room," Liberal Premier Dwight Ball told the inquiry into the project's runaway cost and scheduling issues, echoing challenges at Manitoba Hydro that have raised similar concerns.

"I believe the future is optimistic for Newfoundland Labrador, of course I do. But I'm not going to sit here today and say we have an optimistic future because of the Muskrat Falls project."

Ball, who was re-elected on May 16, has been critical of the project since he was opposition leader around the time it was sanctioned by the former Tory government.

He said Friday that despite his criticism of the Labrador dam, which has seen costs essentially double to more than $12.7 billion, he didn't set out to celebrate a failed project.

He said he still wants to see Muskrat Falls succeed someday through power sales outside the province, but there are immediate challenges -- including mitigating power-rate hikes once the dam starts providing full power and addressing winter reliability risks for households.

"We were told the project would be $6.2 billion, we're at $12.7 (billion). We were never told this project would be nearly 30 per cent of the net debt of this province just six, seven years later," the premier said.

"I wanted this to be successful, and in the long term I still want it to be successful. But we have to deal with the next 10 years."

The nearly complete dam will harness Labrador's lower Churchill River to provide electricity to the province as well as Nova Scotia and potentially beyond through subsea cables, while the legacy of Churchill Falls continues to shape regional power arrangements.

Ball's testimony wraps up a crucial phase of hearings in the extensive public inquiry.

The inquiry has heard from dozens of witnesses, with current and former politicians, bureaucrats, executives and consultants, amid debates over Quebec's electricity ambitions in the region, shedding long-demanded light on what went on behind closed doors that made the project go sideways.

Some witnesses have suggested that estimates were intentionally suppressed, and many high-ranking officials, including former premiers, have denied seeing key information about risk.

On Thursday, Ball testified to his shock when he began to understand the true financial state of the project after he was elected premier in 2015.

On Friday, Ball said he has more faith in future of the offshore oil and gas industry, and emerging options like small nuclear reactors, for example, than a mismanaged project that has put immense pressure on residents already struggling to make ends meet.

After his testimony, Ball said he takes some responsibility for a missed opportunity to mitigate methylmercury risks downstream from the dam through capping the reservoir, in parallel with debates over biomass power in electricity generation, something he had committed to doing before it is fully flooded this summer.

Still to come is a third phase of hearings on future best practices for issues like managing large-scale projects and independent electricity planning, two public feedback sessions and closing submissions from lawyers.

The final report from the inquiry is due before Dec. 31.

 

Related News

View more

Russian Missiles and Drones Target Kyiv's Power Grid in Five-Hour Assault

Assault on Kyiv's Power Grid intensifies as missiles and drones strike critical energy infrastructure. Ukraine's air defenses intercept threats, yet blackouts, heating risks, and civilian systems damage mount amid escalating winter conditions.

 

Key Points

Missile and drone strikes on Kyiv's power grid to cripple infrastructure, cause blackouts, and pressure civilians.

✅ Targets power plants, substations, and transmission lines

✅ Air defenses intercept many missiles and drones

✅ Blackouts jeopardize heating, safety, and communications

 

In a troubling escalation of hostilities, Russian forces launched a relentless five-hour assault on Kyiv, employing missiles and drones to target critical infrastructure, particularly Ukraine's power grid. This attack not only highlights the ongoing conflict between Russia and Ukraine but also underscores the vulnerability of essential services, as seen in power outages in western Ukraine in recent weeks, in the face of military aggression.

The Nature of the Attack

The assault began early in the morning and continued for several hours, with air raid sirens ringing out across the capital as residents were urged to seek shelter. Eyewitnesses reported a barrage of missile strikes, along with the ominous whir of drones overhead. The Ukrainian military responded with its air defense systems, successfully intercepting a number of the incoming threats, but several strikes still managed to penetrate the defenses.

One of the most alarming aspects of this attack was its focus on Ukraine's energy infrastructure. Critical power facilities were hit, resulting in significant disruptions to electricity supply across Kyiv and surrounding regions. The attacks not only caused immediate outages but also threatened to complicate efforts to keep the lights on in the aftermath.

Impacts on Civilians and Infrastructure

The consequences of the missile and drone strikes were felt immediately by residents. Many found themselves without power, leading to disruptions in heating, lighting, and communications. With winter approaching, the implications of such outages become even more serious, as keeping the lights on this winter becomes harder while temperatures drop and the demand for heating increases.

Emergency services were quickly mobilized to assess the damage and begin repairs, but the scale of the attack posed significant challenges. In addition to the direct damage to power facilities, the strikes created a climate of fear and uncertainty among civilians, even as many explore new energy solutions to endure blackouts.

Strategic Objectives Behind the Assault

Military analysts suggest that targeting Ukraine's energy infrastructure is a calculated strategy by Russian forces. By crippling the power grid, the intention may be to sow chaos and undermine public morale, forcing the government to divert resources to emergency responses rather than frontline defenses. This tactic has been employed previously, with significant ramifications for civilian life and national stability.

Moreover, as winter approaches, the vulnerability of Ukraine’s energy systems becomes even more pronounced, with analysts warning that winter looms over the battlefront for civilians and troops alike. With many civilians relying on electric heating and other essential services, an attack on the power grid can have devastating effects on public health and safety. The psychological impact of such assaults can also contribute to a sense of hopelessness among the population, potentially influencing public sentiment regarding the war.

International Response and Solidarity

The international community has responded with concern to the recent escalation in attacks. Ukrainian officials have called for increased military support and defensive measures to protect critical infrastructure from future assaults, amid policy shifts such as the U.S. ending support for grid restoration that complicate planning. Many countries have expressed solidarity with Ukraine, reiterating their commitment to support the nation as it navigates the complexities of this ongoing conflict.

In addition to military assistance, humanitarian aid is also critical, and instances of solidarity such as Ukraine helping Spain amid blackouts demonstrate shared resilience. As the situation continues to evolve, many organizations are working to provide relief to those affected by the attacks, offering resources such as food, shelter, and medical assistance. The focus remains not only on immediate recovery efforts but also on long-term strategies to bolster Ukraine’s resilience against future attacks.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified