Sunshine superman in a solar car

By Toronto Star


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Marcelo da Luz? More dependable than sunshine wonÂ’t say canÂ’t has not said never came close once.

He was at Sick KidsÂ’ Hospital recently, to put on a slide show about his adventures in his solar car.

Some pretty big adventures.

Over the course of the past year or so, he has driven from here to the west coast, up to the Arctic, over to Alaska, down into California, then across the United States to the east coast, up north again, and home.

Using nothing but the power of the sun.

Unfortunately, he canÂ’t drive the solar car in Ontario we wonÂ’t let him on the road. He has to leave the province to start his trips.

Stupid us.

I remind you that his car looks like Darth VaderÂ’s helmet by way of a pumpkin seed. I also remind you that Marcelo is no engineer. He used to be a flight attendant. He had a lot of help.

His dedication to the car has cost him his job, put a second mortgage on his house, and left him churchmouse poor. The song of solar men?

The sunÂ’s gonna come up tomorrow.

I had not seen him for some time and so, before the sick kids trooped in, I asked him if he’d really smashed the record. He said, modestly, “Smashed the record? Yes and no. I doubled the record, but I haven’t stopped driving.” That record is 35,750 kilometres and counting.

More power — solar, of course — to him.

And then he said, casually, that he wanted to drive the Ice Road. I looked at him askance.

The Ice Road runs 187 kilometres from Inuvik to Tuktoyaktuk, across permafrost and many little lakes, as long as it is cold enough to freeze it is one of the most difficult roads in the world.

There are other problems in the North for anything solar: when it is coldest, it is darkest but when there is plenty of sunlight, the ice deteriorates.

I asked Marcelo if he knew what he was getting into. He said he did, but then he said, sadly, that he hadnÂ’t raised the money needed for the trip, and he didnÂ’t know if he could, and it didnÂ’t seem likely.

The kids at the hospital came trundling in then, and some of them were pulling IV poles, and some of them were in wheelchairs. If they expected to see the car in person, they hid their disappointment. The kids who were unable to make it down saw the slideshow over closedcircuit television.

Afterwards, Marcelo said heÂ’d also like to take the car south to Tierra del Fuego. But he wasnÂ’t sure. He said that, well, you know, at some point a man wants to earn a living and start a family and have a life.

I figured it was over.

A note the other day, from Marcelo in Tuktoyaktuk. Mission accomplished, he wrote. He got a couple of sponsors at the last minute, and a volunteer to handle the support vehicle. He is lucky. He is good.

Okay, look.

I have lived in the Arctic. It gets cold. And I have seen the car. It is spare. He wrote to say heÂ’d ordered a heater before he started the trip. The heater did not arrive. He wore a snowsuit, and kamiks on his feet.

He spun out once, into a snowbank. He had four flat tires. There were ruts in the ice, deep and dangerous he pounded his hightech wheels back in shape with a lowtech hammer. The trip took 10 hours.

This summer, wrote Marcelo, he wants to go to Patagonia. Bet against him?

Not while the sun shines.

Related News

Ireland and France will connect their electricity grids - here's how

Celtic Interconnector, a subsea electricity link between Ireland and France, connects EU grids via a high-voltage submarine cable, boosting security of supply, renewable integration, and cross-border trade with 700 MW capacity by 2026.

 

Key Points

A 700 MW subsea link between Ireland and France, boosting security, enabling trade, and supporting renewables.

✅ Approx. 600 km subsea cable from East Cork to Brittany

✅ 700 MW capacity; powers about 450,000 homes

✅ Financed by EIB, banks, CEF; Siemens Energy and Nexans

 

France and Ireland signed contracts on Friday to advance the Celtic Interconnector, a subsea electricity link to allow the exchange of electricity between the two EU countries. It will be the first interconnector between continental Europe and Ireland, as similar UK interconnector plans move forward in parallel. 

Representatives for Ireland’s electricity grid operator EirGrid and France’s grid operator RTE signed financial and technical agreements for the high-voltage submarine cable, mirroring developments like Maine’s approved transmission line in North America for cross-border power. The countries’ respective energy ministers witnessed the signing.

European commissioner for energy Kadri Simson said:

In the current energy market situation, marked by electricity price volatility, and the need to move away from imports of Russian fossil fuels, European energy infrastructure has become more important than ever.

The Celtic Interconnector is of paramount importance as it will end Ireland’s isolation from the Union’s power system, with parallels to Cyprus joining the electricity highway in the region, and ensure a reliable high-capacity link improving the security of electricity supply and supporting the development of renewables in both Ireland and France.

EirGrid and RTE signed €800 million ($827 million) worth of financing agreements with Barclays, BNP Paribas, Danske Bank, and the European Investment Bank, similar to the Lake Erie Connector investment that blends public and private capital.

In 2019, the project was awarded a Connecting Europe Facility (CEF) grant worth €530.7 million to support construction works and align with a broader push for electrification in Europe under climate strategies. The CEF program also provided €8.3 million for the Celtic Interconnector’s feasibility study and initial design and pre-consultation.

Siemens Energy will build converter stations in both countries, and Paris-based global cable company Nexans will design and install a 575-km-long cable for the project.

The cable will run between East Cork, on Ireland’s southern coast, and northwestern France’s Brittany coast and will connect into substations at Knockraha in Ireland and La Martyre in France.

The Celtic Interconnector, which is expected to be operational by 2026, will be approximately 600 km (373 miles) long and have a capacity of 700 MW, similar to cross-border initiatives such as Quebec-to-New York power exports expected in 2025, which is enough to power 450,000 households.

 

Related News

View more

New Program Set to Fight for 'Electricity Future That Works for People and the Planet'

Energy Justice Program drives a renewables-based transition, challenging utility monopolies with legal action, promoting rooftop solar, distributed energy, public power, and climate justice to decarbonize the grid and protect communities and wildlife nationwide.

 

Key Points

A climate justice initiative advancing renewables, legal action, and public power to challenge utility monopolies.

✅ Challenges utility barriers to rooftop solar and distributed energy

✅ Advances state and federal policies for equitable, public power

✅ Uses litigation to curb fossil fuel dependence and protect communities

 

The Center for Biological Diversity on Monday rolled out a new program to push back against the nation's community- and wildlife-harming energy system that the climate advocacy group says is based on fossil fuels and a "centralized monopoly on power."

The goal of the new effort, the Energy Justice Program, is to help forge a path towards a just and renewables-based energy future informed by equitable regulation principles.

"Our broken energy system threatens our climate and our future," said Jean Su, the Energy Justice Program's new director, in a statement. "Utilities were given monopolies to ensure public access to electricity, but these dinosaur corporations are now hurting the public interest by blocking the clean energy transition, including via coal and nuclear subsidy schemes that profit off the fossil fuel era."

"In this era of climate catastrophe," she continued, "we have to stop these outdated monopolies and usher in a new electricity future that works for people and the planet."

To meet those goals, the new program will pursue a number of avenues, including using legal action to fight utilities' obstruction of clean energy efforts, helping communities advance local solar programs through energy freedom strategies in the South, and crafting energy policies on the state, federal, and international levels in step with commitments from major energy buyers to achieve a 90% carbon-free goal by 2030.

Some of that work is already underway. In June the Center filed a brief with a federal court in a bid to block Arizona power utility Salt River Project from slapping a 60-percent electricity rate hike on rooftop solar customers—amid federal efforts to reshape electricity pricing that critics say are being rushed—a move the group described (pdf) as an obstacle to achieving "the energy transition demanded by climate science."

The Center is among the groups in Energy Justice NC. The diverse coalition seeks to end the energy stranglehold in North Carolina held by Duke Energy, which continues to invest in fossil fuel projects even as it touts clean energy and grid investments in the region.

The time for a new energy system, says the Energy Justice Program, is now, as climate change impacts increasingly strain the grid.

"Amid this climate and extinction emergency," said Su, "the U.S. can't afford to stick with the same centralized, profit-driven electricity system that drove us here in the first place. We have to seize this once-in-a-generation opportunity to design a new system of accountable, equitable, truly public power."

 

Related News

View more

Consumers Coalition wants Manitoba Hydro?s proposed rate increase rejected

Manitoba Hydro Interim Rate Increase faces PUB scrutiny as consumers coalition challenges a 5% electricity rate hike, citing drought planning, retained earnings, affordability, transparency, and impacts on fixed incomes and northern communities.

 

Key Points

A proposed 5% electricity rate hike under PUB review, opposed by consumers citing drought planning and affordability.

✅ Coalition backs 2% hike; 5% seen as undue burden

✅ PUB review sought; interim process lacks transparency

✅ Retained earnings, efficiencies cited to offset drought

 

The Consumers Coalition is urging the Public Utilities Board (PUB) to reject Manitoba Hydro’s current interim rate increase application, amid ongoing debates about Hydro governance and policy.

Hydro is requesting a five per cent jump in electricity rates starting on January 1, claiming drought conditions warrant the increase but the coalition disagrees, saying a two per cent increase would be sufficient.

The coalition, which includes Harvest Manitoba, the Consumers’ Association of Canada-Manitoba, and the Aboriginal Council of Winnipeg, said a 5 per cent rate increase would put an unnecessary strain on consumer budgets, especially for those on fixed incomes or living up north.

"We feel that, in many ways, Manitobans have already paid for this drought," said Gloria Desorcy, executive director of the Consumers’ Association of Canada - Manitoba.

The coalition argues that hydroelectric companies already plan for droughts and that hydro should be using past earnings to mitigate any losses.

The group claims drought conditions would have added about 0.8 per cent to Hydro’s bottom line. They said remaining revenues from a two per cent increase could then be used to offset the increased costs of major projects like the Keeyask generating station and service its growing debt obligations.

The group also said Hydro is financially secure and is projecting a positive net income of $112 million next year without rate increases, even as utility profits can swing with market conditions, assuming the drought doesn’t continue.

They argue Hydro can use retained earnings as a tool to mitigate losses, rather than relying on deferral accounting that shifts costs, and find further efficiencies within the corporation.

"So we said two per cent, which is much more palatable for consumers especially at the time when so many consumers are struggling with so many higher bills,” said Desorcy.

According to the coalition’s calculations, that works out to a $2-4 increase per month, and debates such as ending off-peak pricing in Ontario show how design affects bills, depending on whether electricity is used for heating, but it could be higher.

The coalition said their proposed two per cent rate increase should be applied to all Manitoba Hydro customers and have a set expiration date of January 1, 2023.

Another issue, according to the coalition, is the process of an interim rate application does not provide any meaningful transparency and accountability, whereas recent OEB decisions in Ontario have outlined more robust public processes.

Desorcy said the next step is up to the PUB, though board upheaval at Hydro One in Ontario shows how governance shifts can influence outcomes.

The board is expected to decide on the proposed increase in the next couple of weeks.

 

Related News

View more

Understanding the Risks of EV Fires in Helene Flooding

EV Flood Fire Risks highlight climate change impacts, lithium-ion battery hazards, water damage, post-submersion inspection, first responder precautions, manufacturer safeguards, and insurance considerations for extreme weather, flood-prone areas, and hurricane aftermaths.

 

Key Points

Water-exposed EV lithium-ion batteries may ignite later, requiring inspection, isolation, and trained responders.

✅ Avoid driving through floodwaters; park on high ground.

✅ After submersion, isolate vehicle; seek qualified inspection.

✅ Inform first responders and insurers about EV water damage.

 

As climate change intensifies the frequency and severity of extreme weather events, concerns about electric vehicle (EV) safety in flood-prone areas have come to the forefront. Recent warnings from officials regarding the risks of electric vehicles catching fire due to flooding from Hurricane Idalia underscore the need for heightened awareness and preparedness among consumers and emergency responders, as well as attention to grid reliability during disasters.

The alarming incidents of EVs igniting after being submerged in floodwaters have raised critical questions about the safety of these vehicles during severe weather conditions. While electric vehicles are often touted for their environmental benefits and lower emissions, it is crucial to understand the potential risks associated with their battery systems when exposed to water, even as many drivers weigh whether to buy an electric car for daily use.

The Risks of Submerging Electric Vehicles

Electric vehicles primarily rely on lithium-ion batteries, which can be sensitive to water exposure. When these batteries are submerged, they risk short-circuiting, which may lead to fires. Unlike traditional gasoline vehicles, where fuel may leak out, the sealed nature of an EV’s battery can create hazardous situations when compromised. Experts warn that even after water exposure, the risk of fire can persist, sometimes occurring days or weeks later.

Officials emphasize the importance of vigilance in flood-prone areas, including planning for contingencies like mobile charging and energy storage that support recovery. If an electric vehicle has been submerged, it is crucial to have it inspected by a qualified technician before attempting to drive it again. Ignoring this can lead to catastrophic consequences not only for the vehicle owner but also for surrounding individuals and properties.

Official Warnings and Recommendations

In light of these dangers, safety officials have issued guidelines for electric vehicle owners in flood-prone areas. Key recommendations include:

  1. Avoid Driving in Flooded Areas: The most straightforward advice is to refrain from driving through flooded streets, which can not only damage the vehicle but also pose risks to personal safety.

  2. Inspection After Flooding: If an EV has been submerged, owners should seek immediate professional inspection. Technicians can evaluate the battery and electrical systems for damage and determine if the vehicle is safe to operate.

  3. Inform Emergency Responders: In flood situations, informing emergency personnel about the presence of electric vehicles can help them mitigate risks during rescue operations, including firefighter health risks that may arise. First responders are trained to handle conventional vehicles but may need additional precautions when dealing with EVs.

Industry Response and Innovations

In response to rising concerns, electric vehicle manufacturers are working to enhance the safety features of their vehicles. This includes developing waterproof battery enclosures and improving drainage systems to prevent water intrusion, as well as exploring vehicle-to-home power for resilience during outages. Some manufacturers are also investing in research to improve battery chemistry, making them more resilient in extreme conditions.

The automotive industry recognizes that consumer education is equally important, particularly around utility impacts from mass-market EVs that affect planning. Manufacturers and safety organizations are encouraged to disseminate information about proper EV maintenance, the importance of inspections after flooding, and safety protocols for both owners and first responders.

The Role of Insurance Companies

As the risks associated with electric vehicle flooding become more apparent, insurance companies are also reassessing their policies. With increasing incidences of extreme weather, insurers are likely to adapt coverage options related to water damage and fire risks specific to electric vehicles. Policyholders should consult with their insurance providers to ensure they understand their coverage in the event of flooding.

Preparing for the Future

With the increasing adoption of electric vehicles, it is vital to prepare for the challenges posed by climate change and evolving state power grids capacity. Community awareness campaigns can play a significant role in educating residents about the risks and safety measures associated with electric vehicles during flooding events. By fostering a well-informed public, the likelihood of accidents and emergencies can be reduced.

 

Related News

View more

Russia to triple electricity supplies to China

Amur-Heihe ETL Power Supply Tripling will expand Russia-China electricity exports, extending 750 MW DC full-load hours to stabilize northeast China grids amid coal shortages, peak demand spikes, and cross-border energy security concerns.

 

Key Points

Russia will triple electricity via Amur-Heihe ETL, boosting 750 MW DC operations to relieve shortages in northeast China.

✅ 500 kV converter station increases full-load hours from 5 to 16

✅ Supports Heilongjiang, Liaoning, and Jilin grids amid coal shortfall

✅ Cross-border 750 MW DC link enhances reliability, peak demand coverage

 

Russia will triple electricity supplies via the Amur-Heihe electric transmission line (ETL) starting October 1, China Central Television has reported, a move seen within broader shifts in China's electricity sector by observers.

"Starting October 1, the overhead convertor substation of 500 kW (750 MW DC) will increase its daily time of operation with full loading from 5 to 16 hours per day," the TV channel said.

"This measure will make it possible to dramatically ease the situation with the electricity supply," the report said. Electricity from this converting station is used in three northeastern provinces of China - Heilongjiang, Liaoning and Jilin, while regional markets are strained as India rations coal supplies amid surging demand today. In 29 years, Russia supplied over 30 bln kilowatt hours of electricity, according to the channel.

The Amur-Heihe overhead transnational power line was constructed for increasing electricity exports to China, where projections see electricity to meet 60% of energy use by 2060 according to Shell. It was commissioned in 2012. Its maximum capacity is 750 MW.

China’s Jiemian News reported on September 27 that, amid nationwide power cuts affecting grids, 20 regions were limited in electricity supplies to a various extent due to the ongoing coal deficit. In particular, in China’s northeastern provinces, restrictions on power consumption were imposed not only on industrial enterprises, but also on households, as well as on office premises, raising concerns for U.S. solar supply chains among downstream manufacturers.

Later, China’s financial media Zhongxin Jingwei noted that the coal deficit had been triggered by price hikes brought on by tightened national environmental standards and efforts to reduce coal power production across the country. Reduced coal imports amid disruptions in the work of foreign suppliers due to the coronavirus pandemic was an additional reason, and earlier power demand drops as factories shuttered compounded imbalances.
 

 

Related News

View more

Pacific Northwest's Renewable Energy Goals Hindered

Pacific Northwest Transmission Bottleneck slows clean energy progress as BPA's aging grid constrains renewable interconnections, delaying wind, solar, and data center growth; decarbonization targets depend on transmission upgrades, new substations, and policy reform.

 

Key Points

An interconnection and capacity shortfall on BPA's aging grid that delays renewables and impedes clean energy goals.

✅ BPA approvals lag: 1 of 469 projects since 2015.

✅ Yakama solar waits for substation upgrades until 2027.

✅ Data centers and decarbonization targets face grid constraints.

 

Oregon and Washington have set ambitious targets to decarbonize their power sectors, aiming for 100% clean electricity in the coming decades. However, a significant obstacle stands in the way: the region's aging and overburdened transmission grid, underscoring why 100% renewables remain elusive even as momentum builds.

The Grid Bottleneck

The BPA operates a transmission system that is nearly a century old in some areas, and its capacity has not expanded sufficiently to accommodate the influx of renewable energy projects, reflecting stalled grid spending in many parts of the U.S., according to recent analyses. Since 2015, 469 large renewable projects have applied to connect to the BPA's grid; however, only one has been approved—a stark contrast to other regions in the country. This bottleneck has left numerous wind and solar projects in limbo, unable to deliver power to the grid.

One notable example is the Yakama Nation's solar project. Despite receiving a $32 million federal grant under the bipartisan infrastructure law as part of a broader grid overhaul for renewables, the tribe faces significant delays. The BPA estimates that it will take until 2027 to complete the necessary upgrades to the transmission system, including a new substation, before the solar array can be connected. This timeline poses a risk of losing federal funding if the project isn't operational by 2031.

Economic and Environmental Implications

The slow pace of grid expansion has broader implications for the region's economy and environmental goals. Data centers and other energy-intensive industries are increasingly drawn to the Pacific Northwest due to its clean energy potential, while interregional projects like the Wyoming-to-California wind link illustrate how transmission access can unlock supply. However, without adequate infrastructure, these industries may seek alternatives elsewhere. Additionally, the inability to integrate renewable energy efficiently hampers efforts to reduce greenhouse gas emissions and combat climate change.

Policy Challenges and Legislative Efforts

Efforts to address the grid limitations through state-level initiatives have faced challenges, even as a federal rule to boost transmission advances nationally. In 2025, both Oregon and Washington considered legislation to establish state bonding authorities aimed at financing transmission upgrades. However, these bills failed to pass, leaving the BPA as the primary entity responsible for grid expansion. The BPA's unique structure—operating as a self-funded federal agency without direct state oversight—has made it difficult for regional leaders to influence its decision-making processes.

Looking Ahead

The Pacific Northwest's renewable energy aspirations hinge on modernizing its transmission infrastructure, aligning with decarbonization strategies that emphasize grid buildout. While the BPA has proposed several projects to enhance grid capacity, the timeline for completion remains uncertain. Without significant investment and policy reforms, the region risks falling behind in the transition to a clean energy future. Stakeholders across Oregon and Washington must collaborate to advocate for necessary changes and ensure that the grid can support the growing demand for renewable energy.

The Pacific Northwest's commitment to clean energy is commendable, but achieving these goals requires overcoming substantial infrastructure challenges, and neighboring jurisdictions such as British Columbia have pursued B.C. regulatory streamlining to accelerate projects. Addressing the limitations of the BPA's transmission system is critical to unlocking the full potential of renewable energy in the region. Only through concerted efforts at the federal, state, and local levels can Oregon and Washington hope to realize their green energy ambitions.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified