No-go zone declared near nuclear plant

By Toronto Star


NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Residents rushed back into the 20-kilometre evacuation zone around Japan's radiation-spewing nuclear power plant, grabbing whatever belongings they could before an order went into effect legally banning entry to the area.

A stream of evacuees ventured into deserted towns near the plant, some in white protective suits and others in face masks and rain gear they hoped would protect against radiation. Most raced through the zone with car windows closed, their vehicles crammed with clothing and valuables.

“This is our last chance, but we aren't going to stay long. We are just getting what we need and getting out,” said Kiyoshi Kitajima, an X-ray technician, who dashed to his hospital in Futaba, a town next-door to the plant, to collect equipment before the order went into effect at midnight.

Officials said the order announced was meant to limit exposure to radiation leaking from the plant and to prevent thefts. Almost all the zone's nearly 80,000 residents left when the area was evacuated on March 12, but police had not been able to legally block them from going back.

Police had no estimate of the exact number of people who have returned to the zone or who still might be living there.

Under a special nuclear emergency law, people who enter the zone will now be subject to fines of up to 100,000 yen US $1,200 or possible detention of up to 30 days. Up to now, defiance of the evacuation order was not punishable by law.

The order angered some residents who fled their homes nearly empty-handed when they were told to evacuate after last month's tsunami and earthquake wrecked the Fukushima Daiichi plant's power and cooling systems.

“I initially thought we would be able to return within a few days. So I brought nothing except a bank card,” said Kazuko Suzuki, 49, also from Futaba.

“I really want to go back. I want to check if our house is still there,” said Suzuki, who fled with her teenage son and daughter. “My patience has run out. I just want to go home.”

The no-go order was not due to any particular change in conditions inside the plant, which appear to have somewhat stabilized. Even under the best-case scenario, however, the plant's operator says it will take at least six months to bring its reactors safely into a cold shutdown.

Chief Cabinet Secretary Yukio Edano said authorities would arrange brief visits, allowing one person per household to return by bus for a maximum of two hours to collect necessary belongings. Participants would have to go through radiation screening, he said.

“We beg the understanding of residents. We really want residents not to enter the areas,” Edano told reporters. “Unfortunately, there are still some people in the areas.”

Residents chafed at the limit to just one person per household.

No visits will be allowed in a three kilometre area closest to the plant, said Hidehiko Nishiyama of Japan's Nuclear and Industrial Safety Agency, confirming reports that zone would be completely off-limits.

Details were still being worked out.

Katsunobu Sakurai, mayor of Minami Soma, where about half the 71,000 residents lived in areas that will now be off-limits, questioned the rationale for the way the evacuation zone was decided.

“It feels like some outsider who doesn't know anything about our geography sat at a desk and drew these circles,” Sakurai said. “The zones have zero scientific basis. Radiation doesn't travel in neat circles. Just putting up circles around the plant is unreasonable.”

Prime Minister Naoto Kan, who has been under fire from the opposition over the government's handling of the crisis, visited the region recently, giving a giving a pep talk to workers at a nuclear crisis management centre in Fukushima.

Fukushima's governor, who has also been critical of the government's performance, said he urged Kan to ensure the government properly handles the disaster and related compensation issues.

“I told the prime minister that I strongly hope that evacuees can return home as early as possible,” said the governor, Yuhei Sato.

Meanwhile, new data from Japan's National Police Agency showed that two-thirds of the victims identified in last month's earthquake and tsunami were elderly — and almost all of them drowned.

The agency said 65 per cent of the 11,108 confirmed fatalities of known age were 60 or older. Another 1,899 victims were of unknown age.

Adding those who are still missing, the earthquake and resulting tsunami killed an estimated 27,500 people. The police agency said nearly 93 per cent of the victims had drowned. Others perished in fires, were crushed to death or died from other causes.

The northeastern coast hardest hit by the disasters had a high concentration of elderly residents.

Related News

TransAlta brings online 119 MW of wind power in US

TransAlta Renewables US wind farms achieved commercial operation, adding 119 MW of wind energy capacity in Pennsylvania and New Hampshire, backed by PPAs with Microsoft, Partners Healthcare, and NHEC, and supported by tax equity financing.

 

Key Points

Two US wind projects totaling 119 MW, now online under PPAs and supported by tax equity financing.

✅ 119 MW online in Pennsylvania and New Hampshire

✅ PPAs with Microsoft, Partners Healthcare, and NHEC

✅ About USD 126 million raised via tax equity

 

TransAlta Renewables Inc says two US wind farms, with a total capacity of 119 MW and operated by its parent TransAlta Corp, became operational in December, amid broader build-outs such as Enel's 450-MW U.S. project coming online and, in Canada, Acciona's 280-MW Alberta wind farm advancing as well.

The 90-MW Big Level wind park in Pennsylvania started commercial operation on December 19. It sells power to technology giant Microsoft Corporation under a 15-year contract, reflecting big-tech procurement alongside Amazon's clean energy projects in multiple markets.

The 29-MW Antrim wind facility in New Hampshire is operational since December 24. It is selling power under 20-year contracts with Boston-based non-profit hospital and physicians network Partners Healthcare and New Hampshire Electric Co-op, mirroring East Coast activity at Amazon Wind Farm US East now fully operational.

The Canadian renewable power producer, which has economic interest in the two wind parks, said that upon their reaching commercial operations, it raised about USD 126 million (EUR 113m) of tax equity to partially fund the projects, as mega-deployments like Invenergy and GE's record North American project and capital plans such as a $200 million Alberta build by a Buffett-linked company underscore financing momentum.

"We continue to pursue additional growth opportunities, including potential drop-down transactions with TransAlta Corp," TransAlta Renewables president John Kousinioris commented.

The comment comes as TransAlta scrapped an Alberta wind project amid Alberta policy shifts.

 

Related News

View more

NL Consumer Advocate says 18% electricity rate hike 'unacceptable'

Newfoundland and Labrador electricity rate hike examines a proposed 18.6% increase under the PUB's Rate Stabilization Plan, driven by oil prices at Holyrood, with Consumer Advocate concerns over rate shock and use of RSP balances.

 

Key Points

A proposed 18.6% July 2017 increase under the RSP, driven by oil prices, now under PUB review for potential mitigation.

✅ PUB flags potential rate shock from proposed adjustment

✅ RSP balances cited to offset increases without depleting fund

✅ Oil-fired Holyrood volatility drives fuel cost uncertainty

 

How much of a rate hike is reasonable for users of electricity in Newfoundland and Labrador?

That's a question before the Public Utilities Board (PUB) as it examines an application by Newfoundland and Labrador Hydro, which could see consumers pay up to 18.6 per cent more as of July 1, reflecting regional pressures seen in Nova Scotia, where regulators approved a 14% rate hike earlier this year.

"The estimated rate increase for July 2017 is such a significant increase that it may be argued that it would cause rate shock," said the PUB, asking the company to revise its application.

NL Hydro said the price adjustment is part of what happens every year through the Rate Stabilization Plan (RSP), which is used to offset the ups and downs of oil prices.

"The cost of fuel is volatile and as long as we rely on oil-fired generation at Holyrood, customers will continue to be impacted by this electricity price uncertainty," said the company in a statement to CBC News.

It noted that customers received a break from RSP adjustments in 2015 and 2016, even as costs from the Muskrat Falls project begin to be reflected.

The PUB noted that under the rate stabilization plan, prices have gone up or down by about 10 per cent in the past.

The regulatory board said the impact of the latest request would be a 27.6 per cent hike to Newfoundland Power, with "an estimated average end customer impact of 18.6 per cent."

Hydro's estimates are based on an average price for oil of $81.40 per barrel from July 2017 to June 2018, according to the PUB.

 

'Unacceptable' burden: Consumer Advocate

"To burden ratepayers with an 18 per cent rate increase is unacceptable," said Consumer Advocate Dennis Browne, echoing pushback in Nova Scotia, where the premier urged regulators to reject a 14% hike at the time.

Browne is arguing that there is money in the RSP to reduce the proposed increase, including the possibility of a lump-sum bill credit for customers.

"These ratepayer balances — which, according to NL Power, totals $77.4 million — are not the property of Hydro," he wrote in a letter to the PUB.

"No utility has the right to squirrel away ratepayers' money to be used by that utility for some future purpose. The Board has jurisdiction over those balances," Browne said.

Browne also wants the RSP overhauled so that it can be applied to price fluctuations every quarter, as opposed to annually.

Hydro has expressed concern that depleting the rate stabilization fund would lead to other, more significant, rate increases in the future.

It said several alternatives to mitigate high rates have been provided to the PUB, which has final say, similar to how Manitoba Hydro scaled back a planned increase in the next year.

 

Related News

View more

New England Is Burning the Most Oil for Electricity Since 2018

New England oil-fired generation surges as ISO New England manages a cold snap, dual-fuel switching, and a natural gas price spike, highlighting winter reliability challenges, LNG and pipeline limits, and rising CO2 emissions.

 

Key Points

Reliance on oil-burning power plants during winter demand spikes when natural gas is costly or constrained.

✅ Driven by dual-fuel switching amid high natural gas prices

✅ ISO-NE winter reliability rules encourage oil stockpiles

✅ Raises CO2 emissions despite coal retirements and renewables growth

 

New England is relying on oil-fired generators for the most electricity since 2018 as a frigid blast boosts demand for power and natural gas prices soar across markets. 

Oil generators were producing more than 4,200 megawatts early Thursday, accounting for about a quarter of the grid’s power supply, according to ISO New England. That was the most since Jan. 6, 2018, when oil plants produced as much as 6.4 gigawatts, or 32% of the grid’s output, said Wood Mackenzie analyst Margaret Cashman.  

Oil is typically used only when demand spikes, because of higher costs and emissions concerns. Consumption has been consistently high over the past three weeks as some generators switch from gas, which has surged in price in recent months. New England generators are producing power from oil at an average rate of almost 1.8 gigawatts so far this month, the highest for January in at least five years. 

Oil’s share declined to 16% Friday morning ahead of an expected snowstorm, which was “a surprise,” Cashman said. 

“It makes me wonder if some of those generators are aiming to reserve their fuel for this weekend,” she said.

During the recent cold snap, more than a tenth of the electricity generated in New England has been produced by power plants that haven’t happened for at least 15 years.

Burning oil for electricity was standard practice throughout the region for decades. It was once our most common fuel for power and as recently as 2000, fully 19% of the six-state region’s electricity came from burning oil, according to ISO-New England, more than any other source except nuclear power at the time.

Since then, however, natural gas has gotten so cheap that most oil-fired plants have been shut or converted to burn gas, to the point that just 1% of New England’s electricity came from oil in 2018, whereas about half our power came from natural gas generation regionally during that period. This is good because natural gas produces less pollution, both particulates and greenhouse gasses, although exactly how much less is a matter of debate.

But as you probably know, there’s a problem: Natural gas is also used for heating, which gets first dibs. Prolonged cold snaps require so much gas to keep us warm, a challenge echoed in Ontario’s electricity system as supply tightens, that there might not be enough for power plants – at least, not at prices they’re willing to pay.

After we came close to rolling brownouts during the polar vortex in the 2017-18 winter because gas-fired power plants cut back so much, ISO-NE, which has oversight of the power grid, established “winter reliability” rules. The most important change was to pay power plants to become dual-fuel, meaning they can switch quickly between natural gas and oil, and to stockpile oil for winter cold snaps.

We’re seeing that practice in action right now, as many dual-fuel plants have switched away from gas to oil, just as was intended.

That switch is part of the reason EPA says the region’s carbon emissions have gone up in the pandemic, from 22 million tons of CO2 in 2019 to 24 million tons in 2021. That reverses a long trend caused partly by closing of coal plants and partly by growing solar and offshore wind capacity: New England power generation produced 36 million tons of CO2 a decade ago.

So if we admit that a return to oil burning is bad, and it is, what can we do in future winters? There are many possibilities, including tapping more clean imports such as Canadian hydropower to diversify supply.

The most obvious solution is to import more natural gas, especially from fracked fields in New York state and Pennsylvania. But efforts to build pipelines to do that have been shot down a couple of times and seem unlikely to go forward and importing more gas via ocean tanker in the form of liquefied natural gas (LNG) is also an option, but hits limits in terms of port facilities.

Aside from NIMBY concerns, the problem with building pipelines or ports to import more gas is that pipelines and ports are very expensive. Once they’re built they create a financial incentive to keep using natural gas for decades to justify the expense, similar to moves such as Ontario’s new gas plants that lock in generation. That makes it much harder for New England to decarbonize and potentially leaves ratepayers on the hook for a boatload of stranded costs.

 

Related News

View more

Pickering NGS life extensions steer Ontario towards zero carbon horizon

OPG Pickering Nuclear Refurbishment extends four CANDU reactors to bolster Ontario clean energy, grid reliability, and decarbonization goals, leveraging Darlington lessons, mature supply chains, and AtkinsRealis OEM expertise for cost effective life extension.

 

Key Points

Modernizing four Pickering CANDU units to extend life, add clean power, and enhance Ontario grid reliability.

✅ Extends four 515 MW CANDU reactors by 30 years

✅ Supports clean, reliable baseload and decarbonization

✅ Leverages Darlington playbook and AtkinsRealis OEM supply chain

 

In a pivotal shift last month, Ontario Power Generation (OPG) revised its strategy for the Pickering Nuclear Power Station, scrapping plans to decommission its six remaining reactors. Instead, OPG has opted to modernize four reactors (Pickering B Units 5-8) starting in 2027, while Units 1 and 4 are slated for closure by the end of the current year.

This revision ensures the continued operation of the four 515 MW Canada Deuterium Uranium (CANDU) reactors—originally constructed in the 1970s and 1980s—extending their service life by at least 30 more years amid an extension request deadline for Pickering.

Todd Smith, Ontario's Energy Minister, underscored the significance of nuclear power in maintaining Ontario's status as a region with one of the cleanest and most reliable electricity grids globally. He emphasized the integral role of nuclear facilities, particularly the Pickering station, in the provincial energy strategy during the announcement supporting continued operations, which was made in the presence of union workers at the plant.

The Pickering station has demonstrated remarkable efficiency and reliability, notably achieving its second-highest output in 2023 and setting a record in 2022 for continuous operation. Extending the lifespan of nuclear plants like Pickering is deemed the most cost-effective method for sustaining low-carbon electricity, according to research conducted by the International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA) across 243 plants in 24 countries.

The refurbishment project is poised to significantly boost Ontario's economy, projected to add CAN$19.4 billion to the GDP over 11 years and generate approximately 11,000 jobs annually. The Independent Electricity System Operator (IESO) has indicated that to meet the province's future electrification and decarbonization goals, as it faces a growing electricity supply gap, Ontario will need to double its nuclear capacity by 2050, requiring an addition of 17.8 GW of nuclear power.

Subo Sinnathamby, OPG's Senior Vice President of Nuclear Refurbishment, emphasized the necessity of nuclear energy in reducing reliance on natural gas. Sinnathamby, who is leading the refurbishment efforts at OPG's Darlington nuclear power station, where SMR plans are also underway, highlighted the positive impact of the Darlington and Bruce Power projects on the nuclear power supply chain and workforce.

The procurement strategy employed for Darlington, which involved placing orders early to ensure readiness among suppliers, is set to be replicated for the Pickering refurbishment. This approach aims to facilitate a seamless transition of skilled workers and resources from Darlington to Pickering refurbishment, leveraging a matured supply chain and experienced vendors.

AtkinsRealis, the original equipment manufacturer (OEM) for CANDU reactors, has a track record of successfully refurbishing CANDU plants worldwide. The CANDU reactor design, known for its refurbishment capabilities, allows for individual replacement of pressure tubes and access to fuel channels without decommissioning the reactor. Gary Rose, Executive Vice-President of Nuclear at AtkinsRealis, highlighted the economic benefits and environmental benefits of refurbishing reactors, stating it as a viable and swift solution to maximize fossil-free energy.

Looking forward, AtkinsRealis is exploring the potential for multiple refurbishments of CANDU reactors, which could extend their operational life beyond 100 years, addressing local energy needs and economic factors in the decision-making process. This innovative approach underscores the role of nuclear refurbishment in meeting global energy demands sustainably and economically.

 

Related News

View more

Electricity Payouts on Biggest U.S. Grid Fall 64 Per Cent in Auction

PJM Capacity Auction Price Drop signals PJM Interconnection capacity market shifts, with $50/MW-day clearing, higher renewables and nuclear participation, declining coal, natural gas pressure, and zone impacts in ComEd and EMAAC, amid 21% reserve margins.

 

Key Points

A decline to $50 per MW-day in PJM capacity prices, shifting resource mix, zonal rates, and reserve margins.

✅ Clearing price fell to $50/MW-day from $140 in 2018

✅ Renewables and nuclear up; coal units down across PJM

✅ Zonal prices: ComEd $68.96, EMAAC $97.86; 21% reserves

 

Power-plant owners serving the biggest U.S. grid will be paid 64% less next year for being on standby to keep the lights on from New Jersey to Illinois.

Suppliers to PJM Interconnection LLC’s grid, which serves more than 65 million people, will get $50 a megawatt-day to provide capacity for the the year starting June 2022, according to the results of an auction released Wednesday. That’s down sharply from $140 in the previous auction, held in 2018. Analysts had expected the price would fall to about $85.

“Renewables, nuclear and new natural gas generators saw the greatest increases in cleared capacity, while coal units saw the largest decrease,” PJM said in a statement.

The PJM auction is the single most important event for power generators across the eastern U.S., including Calpine Corp., NRG Energy Inc. and Exelon Corp., because it dictates a big chunk of their future revenue. It also plays a pivotal role in shaping the region’s electricity mix, determining how much the region is willing to stick with coal and natural gas plants or replace them with wind and solar even as the aging grid complicates progress nationwide.

The results showed that the capacity price for the Chicago-area zone, known as ComEd, was $68.96 compared with $195.55 in the last auction. The price for the Pennsylvania and New Jersey zone, known as EMAAC, fell to $97.86 percent, from $165.73. All told, 144,477 megawatts cleared, representing a reserve margin of 21%.

Exelon shares fell 0.4% after the results were released. Vistra fell 1.5%. NRG was unchanged.

Blackouts triggered by extreme weather in Texas and California over the last year have reignited a debate over whether other regions should institute capacity systems similar to the one used by PJM, and whether to adopt measures like emergency fuel stock programs in New England as well. The market, which pays generators to be on standby in case extra power is needed, has long been a source of controversy. While it makes the grid more reliable, the system drives up costs for consumers. In the area around Chicago, for instance, these charges total more than $1.7 billion per year, accounting for 20% of customer bills, according to the Illinois Clean Jobs Coalition.

In the 2018 auction, PJM contracted supplies that were about 22% in excess of the peak demand projection at the time. This year, the grid is projected to start summer with a reserve margin of about 26%, as COVID-19 demand shifts persist, according to the market monitor -- far higher than the 16% most engineers say is needed to prevent major outages.

“This certainly doesn’t seem fair to ratepayers,” said Ari Peskoe, director of Harvard Law School’s Electricity Law Initiative.

Fossil-Fuel Advantage
Heading into the auction, analysts expected coal and gas plants to have the advantage. Nuclear reactors and renewables, they said, were poised to struggle amid coal and nuclear disruptions nationwide.

That’s because this is the first PJM auction run under a major pricing change imposed by federal regulators during the Trump administration. The new structure creates a price floor for some bidders, effectively hobbling nuclear and renewables that receive state subsidies while making it easier for fossil fuels to compete.

Those rules triggered contentious wrangling between power providers, PJM and federal regulators, delaying the auction for two years. The new system, however, may be short lived. The Biden administration is moving to overhaul the rules in time for the next auction in December.

Also See: Biden Climate Goals to Take Backseat in Biggest U.S. Power Grid

Dominion Energy Inc., one of the biggest U.S. utility owners, pulled out of the market over the rules. The Virginia-based company, which has a goal to have net-zero carbon emissions by 2050, said the new PJM format will “make renewables more expensive” than delivering clean energy through alternative markets.

Illinois, New Jersey and Maryland have also threatened to leave the capacity market unless the new price floor is eliminated, and Connecticut is leading a market overhaul in New England as well. PJM has already launched a process to do it.

PJM is already one of the most fossil-fuel intensive grids, with 60% of its electricity coming from coal and gas. Power plants that bid into the auction rely on it for the bulk of their revenue. That means plants that win contracts have an incentive to continue operating for as long as they can, even amid a supply-chain crisis this summer.

 

Related News

View more

How vehicle-to-building charging can save costs, reduce GHGs and help balance the grid: study

Ontario EV Battery Storage ROI leverages V2B, V2G, two-way charging, demand response, and second-life batteries to monetize peak pricing, cut GHG emissions, and unlock up to $38,000 in lifetime value for commuters and buildings.

 

Key Points

The economic return from V2B/V2G two-way charging and second-life storage using EV batteries within Ontario's grid.

✅ Monetize peak pricing via workplace V2B discharging

✅ Earn up to $8,400 per EV over vehicle life

✅ Reduce gas generation and GHGs with demand response

 

The payback that usually comes to mind when people buy an electric vehicle is to drive an emissions-free, low-maintenance, better-performing mode of transportation.

On top of that, you can now add $38,000.

That, according to a new report from Ontario electric vehicle education and advocacy nonprofit, Plug‘n Drive, is the potential lifetime return for an electric car driven as a commuter vehicle while also being used as an electricity storage option amid an energy storage crunch in Ontario’s electricity system.

“EVs contain large batteries that store electric energy,” says the report. “Besides driving the car, [those] batteries have two other potentially useful applications: mobile storage via vehicle-to-grid while they are installed in the vehicle, and second-life storage after the vehicle batteries are retired.”

Pricing and demand differentials
The study, prepared by the research firm Strategic Policy Economics, modeled a two-stage scenario calculating the total benefits from both mobile and second-life storage when taking advantage of differences in daytime and nighttime electricity pricing and demand.


If done systematically and at scale, the combined benefits to EV owners, building operators and the electricity system in Ontario could reach $129 million per year by 2035, according to the report. Along with the financial gains, the province would also cut GHG emissions by up to 67.2 kilotons annually.

The math might sound complicated, but the concepts are simple. All it requires is for drivers to charge their batteries with low-cost electricity overnight at home, then plug them into two-way EV charging stations at work and discharge their stored electricity for use by the building by day when buying power from the grid is more expensive.

“Workplace buildings could avoid high daytime prices by purchasing electricity from EVs parked onsite and enjoy savings as a result,” says the report.

Based on average commuting distances, EVs in this scenario could make half their storage capacity available for discharge. Drivers would be paid out of the building’s savings, effectively selling electricity back to the grid and earning up to $8,400 over the life of their vehicle.

According to the report, Ontario could have as many as 18,555 vehicles participating in mobile storage by 2030. At this level, the daily electricity demand would be reduced by 565 MWh. This, in turn, would reduce demand for natural gas-fired electricity generation, a fossil-fuel electricity source, avoiding the expense of gas purchases while reducing GHG emissions.

The second-life storage opportunity begins when the vehicle lifespan ends. “EV batteries will still have over 80% of their storage capacity after being driven for 13 years and providing mobile storage,” the report states. “Those-second life batteries could provide a low-cost energy storage solution for the electricity grid and enhance grid stability over time.”

Some of the savings could be shared with EV owners in the form of a rebate worth up to 20 per cent of the batteries’ initial cost.

Call to action
The report concludes with a call to action for EV advocates to press policy makers and other stakeholders to take actions on building codes, the federal Clean Fuel Standard and other business models in order to maximize the benefits of using EV batteries for the electricity system in this way, even as growing adoption could challenge power grids in some regions.

“EVs are often approached as an environmental solution to climate change,” says Cara Clairman, Plug’n Drive president and CEO. “While this is true, there are significant economic opportunities that are often overlooked.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.