News Archive Article

The Cascading Blackout: Why Wasn't the Power Outage Contained?

WASHINGTON, DC -- - The sometimes conflicting goals of providing reliability, moderating power prices, deferring transmission investments, and avoiding the economic liabilities associated with third-party power transactions can cause transmission operators to take greater risks with the grid than they have in the past. This is according to a recent report titled "Cascading Blackout: Why Wasn't the Power Outage Contained?" This paper outlines the competitive pressures on existing transmission grid operations.

"If no contingencies occur, the transmission system usually operates smoothly; we maintain reliability, wholesale power prices are stable, and third-party generators gain access to markets," says Philip Mihlmester, Senior Vice President of ICF Consulting's Energy Practice. "However, if a contingency occurs under high-risk circum-stances, there is very little room for maneuverability," continues Mihlmester. "It's like driving a car at 30 mph and having a tire blow versus the same scenario while driving 100 mph. There is very little reaction time in the latter case."

So why was the blackout allowed to cascade throughout the Northeastern United States and portions of Canada, and not contained locally?

When a transmission line fails, the power flow must be redirected onto neighboring lines. Without sufficient reserve margin on those lines, they become overloaded -- causing a cascading effect -- shutting the system or a large portion of it down. A possible reason the cascade was not stopped is because neighboring transmission lines did not have sufficient reserve margin available due to heavy volumes of power flow. North America's power usage and the number of wholesale power transactions over the transmission lines have simply outgrown the existing transmission structure and the traditional reliability-based operational protocols. The transmission grid also suffers from declining investment over the past 25 years.

"Setting and enforcing consistent transmission reliability standards, as well as incentivizing additional capital investment in transmission, will help to prevent similar massive outages in the future," emphasizes Mihlmester.

To learn more about the competing pressures of grid operations, why containment failed, and recommendations on preventing future cascade occurrences, visit www.icfconsulting.com/cascade-containment.

Related News

ttc-introduce-battery-electric-buses

TTC Introduces Battery Electric Buses

TORONTO - The Toronto Transit Commission (TTC) has embarked on an exciting new chapter in its commitment to sustainability with the introduction of battery-electric buses to its fleet. This strategic move not only highlights the TTC's dedication to reducing its environmental impact but also positions Toronto as a leader in the evolution of public transportation. As cities worldwide strive for greener solutions, the TTC’s initiative stands as a significant milestone toward a more sustainable urban future.

Embracing Green Technology

The decision to integrate battery-electric buses into Toronto's transit system aligns with a growing trend among urban centers to adopt cleaner,…

READ MORE
romania nuclear plant

Romania moves to terminate talks with Chinese partner in nuke project

READ MORE

boardroom

DBRS Confirms Ontario Power Generation Inc. at A (low)/R-1 (low), Stable Trends

READ MORE

coal strip mining

Disruptions in the U.S. coal, nuclear power industries strain the economy and invite brownouts

READ MORE

solar panels

Solar power growth, jobs decline during pandemic

READ MORE