The Northwest Territories has opened negotiations to sell hydro power to the Diavik diamond mine, a move northern leaders hope will lead to new mineral development in the central Arctic fuelled by cheap electricity instead of expensive diesel.
"Once there's power there, it becomes basin-opening," said the territory's premier, Joe Handley.
Diavik's energy needs are poised to double as the mine shifts from open-pit to underground operations, said spokesman Tom Hoefer. That means profits could be eroded by the rising price of diesel, used by almost all communities and industrial developments in the North to generate power.
Diavik's move underground also means more fuel will have to be trucked in over an ice road that is already near its capacity - a capacity likely to shrink as climate change reduces the ice-road season. If the road melts before the season's requirements are trucked in, as happened in 2006, fuel will have to be flown in at an even steeper cost.
"Were interested in alternative power if the price is right," Hoefer said.
Enter the Taltson River project.
Located 56 kilometres northeast of Fort Smith, N.W.T., the project would expand an already-existing 20 megawatt generator to about 58 megawatts. The project, which would not require a new dam, would cost between $300 million and $350 million for the generator and would need about 700 kilometres of power lines and the necessary substations - enough to bring it to both Diavik and DeBeers' new Snap Lake diamond mine.
A joint venture between the local Akaitcho and Metis development corporations and the N.W.T. Energy Corporation, the project has the support of area aboriginal groups. Parks Canada has also agreed to allow a power line through land reserved for the future East Arm National Park on Great Slave Lake.
The project, now under regulatory and environmental review, could be generating power by 2011. However, hydro projects usually require decades of power sales to pay back the cost of construction, and the N.W.T.'s diamond mines will be closed up and returned to the tundra long before then.
Hoefer said Diavik is wary of attempts to use high electricity prices to make Taltson profitable within the lifetime of those mines.
"In that case, were not interested," he said.
But Handley says you've got to have faith in the potential of the North, especially the mineral-rich Slave Geological Province of the central barrens.
"We have to assume some risk here and say these are not the last mines in that area. It has to be a public investment."
In fact, Handley is banking on it. He believes the availability of reasonably priced, dependable electricity would lower costs for everyone in the area, leading to longer lives for existing mines and making previously marginal projects more attractive.
Taltson, which is near the Alberta-N.W.T. boundary, could even eventually supply power to the Fort McMurray area, he said.
"There's lots of scenarios that have to be played," said Handley. "It looks like a good economic venture for our power."
Hydro development has been a major theme for Handley, who recently announced he would not stand for re-election in the upcoming territorial elections.
He has proposed as many as seven expansions or new developments, including one for the Great Bear River, near the community of Tulita west of Great Bear Lake. That project could supply power to facilities required by the Mackenzie Valley natural gas pipeline, a $16-billion project currently under environmental review.
Japan Power Demand Slowdown highlights reduced electricity consumption as industrial activity stalls amid the coronavirus pandemic, pressuring utilities, the grid, and manufacturing, with economic impacts monitored by Chubu Electric and the federation of electric utilities.
Key Points
A drop in Japan's electricity use as industrial activity slows during the coronavirus pandemic, pressuring utilities.
✅ Utilities monitor grid stability and demand trends
✅ Pandemic-linked economic risks weigh on power sector
Japan's power demand has been hit by a slowdown in industrial activity due to the coronavirus outbreak, reflecting broader shifts in electricity demand worldwide, Japanese utilities federation's head said on Friday, without giving specific figures.
Electricity load profiles during lockdowns revealed changes in daily routines, as shown by lockdown electricity data across multiple regions.
"We are closely watching development of the pandemic, underscoring the need for electricity during such crises, as further reduction in corporate and economic activities would lead to serious impacts," Satoru Katsuno, the chairman of Japan's federation of electric utilities and president of Chubu Electric Power Co Inc, told a news conference.
In parallel, the power industry has intensified coordination with federal partners to sustain grid reliability and protect critical workers.
NuScale SMR Design Certification marks NRC Phase 6 FSER approval, validating small modular reactor safety and design review, enabling UAMPS deployment at Idaho National Laboratory and advancing DOE partnerships and Canadian vendor assessments.
Key Points
It is the NRC FSER approval confirming NuScale SMR safety design, enabling licensed deployment and vendor reviews.
✅ 60 MW modules, up to 12 per plant; UAMPS project at Idaho National Laboratory
US-based NuScale Power announced on 28 August that the US Nuclear Regulatory Commission (NRC) had completed Phase 6 review—the last and final phase—of the Design Certification Application (DCA) for its small modular reactor (SMR) with the issuance of the Final Safety Evaluation Report (FSER).
The FSER represents completion of the technical review and approval of the NuScale SMR design. With this final phase of NuScale’s DCA now complete, customers can proceed with plans to develop NuScale power plants as Ontario breaks ground on first SMR projects advance, with the understanding that the NRC has approved the safety aspects of the NuScale design.
“This is a significant milestone not only for NuScale, but also for the entire US nuclear sector and the other advanced nuclear technologies that will follow,” said NuScale chairman and CEO John Hopkins.
“The approval of NuScale’s design is an incredible accomplishment and we would like to extend our deepest thanks to the NRC for their comprehensive review, to the US Department of Energy (DOE) for its continued commitment to our successful private-public partnership to bring the country’s first SMR to market, and to the many other individuals who have dedicated countless hours to make this extraordinary moment a reality,” he added. “Additionally, the cost-shared funding provided by Congress over the past several years has accelerated NuScale’s advancement through the NRC Design Certification process.”
NuScale’s design certification application was accepted by the NRC in March 2017. NuScale spent over $500 million, with the backing of Fluor, and over 2 million hours to develop the information needed to prepare its DCA application, an effort that, similar to Rolls-Royce’s MoU with Exelon, underscores private-sector engagement to advance nuclear innovation. The company also submitted 14 separate Topical Reports in addition to the over 12,000 pages for its DCA application and provided more than 2 million pages of supporting information for NRC audits.
NuScale’s SMR is a fully factory-fabricated, 60MW power module based on pressurised water reactor technology. The scalable design means a power plant can house up to 12 individual power modules, and jurisdictions like Ontario have announced plans for four SMRs at Darlington to leverage modularity.
The NuScale design is so far the only small modular reactor to undergo a design certification review by the NRC, while in the UK UK approval for Rolls-Royce SMR is expected by mid-2024, signaling parallel regulatory progress. The design certification process addresses the various safety issues associated with the proposed nuclear power plant design, independent of a specific site and is valid for 15 years from the date of issuance.
NuScale's first customer, Utah Associated Municipal Power Systems (UAMPS), is planning a 12-module SMR plant at a site at the Idaho National Laboratory as efforts like TerraPower's molten-salt mini-reactor advance in parallel. Construction was scheduled to start in 2023, with the first module expected to begin operation in 2026. However, UAMPS has informed NuScale it needs to push back the timeline for operation of the first module from 2026 to 2029, the Washington Examiner reported on 24 August.
The NuScale SMR is also undergoing a vendor design review with the Canadian Nuclear Safety Commission, amid provincial activity such as New Brunswick's SMR debate that highlights domestic interest. NuScale has signed agreements with entities in the USA, Canada, Romania, the Czech Republic, and Jordan.
Hydro-Quebec Crypto Mining Pause signals a temporary halt as blockchain power requests surge; energy regulator review will weigh electricity demand, winter peak constraints, tariffs, investments, and local jobs to optimize grid stability and revenues.
Key Points
A provincial halt on new miner power requests as Hydro-Quebec sets rules to safeguard demand, winter peaks, and rates.
✅ Temporary halt on new electricity sales to crypto miners
✅ Regulator to rank projects by jobs, investment, and revenue
✅ Winter peak demand and tariffs central to new framework
Major Canadian electricity provider Hydro-Québec will temporarily stop processing requests from cryptocurrency miners in order for the company to fulfil its obligations to supply energy to the entire province, while its global ambitions adjust to changing demand, according to a press release published June 7.
Hydro-Québec is experiencing “unprecedented” demand from blockchain companies, which reportedly exceeds the electric utility’s short and medium-term capacity. In this regard, the Quebec provincial government has ordered Hydro-Québec to halt electric power sales to cryptocurrency miners, and, following the New Hampshire rejection of Northern Pass announced a new framework for this category of electricity consumers.
In the coming days, Hydro-Québec will reportedly file an application to local energy regulator Régie de l'énergie, proposing a selection process for blockchain industry projects so as “not to miss the opportunities offered by this industry.” Regulators will reportedly target companies which can offer the province the most profitable economic advantages, including investments and local job creation.
#google#
Régie de l'énergie is instructed to consider “the need for a reserved block of energy for this category of consumers, the possibility of maximizing Hydro-Québec's revenues, and issues related to the winter peak period” as well as interprovincial arrangements like the Ontario-Québec electricity deal under discussion. Éric Filion, President of Hydro-Québec Distribution, said:
"The blockchain industry is a promising avenue for Hydro-Québec. Guidelines are nevertheless required to ensure that the development of this industry maximizes spinoffs for Québec without resulting in rate increases for our customers. We are actively participating in the Régie de l'énergie's process so that these guidelines can be produced as quickly as possible."
With this move, the government of Québec deviates from its decision to reportedly open the electricity market to miners at the end of last month, even as an Ontario-Quebec energy swap helps manage electricity demands. In March, the government said it was not interested in providing cheap electricity to Bitcoin miners, stating that cryptocurrency mining at a discount without any sort of “added value” for the local economy was unfavorable.
SaskPower 2019-20 Annual Report highlights $205M net income, grid capacity upgrades, emissions reduction progress, Chinook Power Station natural gas baseload, and wind and solar renewable energy to support Saskatchewan's Growth Plan and Prairie Resilience.
Key Points
SaskPower's 2019-20 results: $205M income, grid upgrades, emissions cuts, and new gas baseload with wind and solar.
✅ $205M net income, up $8M year-over-year
✅ Chinook Power Station adds stable natural gas baseload
✅ Increased grid capacity enables more wind and solar
SaskPower presented its annual report on Monday, with a net income of $205 million in 2019-20, even as Manitoba Hydro's financial pressures highlight regional market dynamics.
“Reliable, sustainable and cost-effective electricity is crucial to achieving the economic goals laid out in the Government of Saskatchewan’s Growth Plan and the emissions reductions targets outlined in Prairie Resilience, our made-in-Saskatchewan climate change strategy,” Minister Responsible for SaskPower Dustin Duncan said.
In the last year, SaskPower has repaired and upgraded old infrastructure, invested in growth projects and increased grid capacity, including plans to buy more electricity from Manitoba Hydro to support reliability and benefiting from new turbine investments across the region.
“During the past year, we continued to move toward our target to reduce carbon dioxide emissions 40 per cent from 2005 levels by 2030, as part of efforts to double renewable electricity by 2030 across Saskatchewan,” SaskPower President and CEO Mike Marsh said. “The newly commissioned natural gas-fired Chinook Power Station will provide a stable source of baseload power while enabling the ongoing addition of intermittent renewable generation capacity, and exploring geothermal power alongside wind and solar generation.”
California Rooftop Solar Cost Shift examines PG&E rate hikes, net metering changes, and utility infrastructure spending impacts on low-income households, distributed generation, and clean energy adoption, potentially raising bills and undermining grid resilience.
Key Points
A claim that rooftop solar shifts fixed grid costs to others; critics cite PG&E rates, avoided costs, and impacts.
✅ PG&E rates outpace national average, underscoring cost drivers.
✅ Net metering cuts risk burdening low- and middle-income homes.
✅ Distributed generation avoids infrastructure spend and grid strain.
California is grappling with soaring electricity prices across the state, with Pacific Gas & Electric (PG&E) rates more than double the national average and increasing at an average of 12.5% annually over the past six years. In response, Governor Gavin Newsom issued an executive order directing state energy agencies to identify ways to reduce power costs. However, recent policy shifts targeting rooftop solar users may exacerbate the problem rather than alleviate it.
The "Cost Shift" Theory
A central justification for these pricing changes is the "cost shift" theory. This theory posits that homeowners with rooftop solar panels reduce their electricity consumption from the grid, thereby shifting the fixed costs of maintaining and operating the electrical grid onto non-solar customers. Proponents argue that this leads to higher rates for those without solar installations.
However, this theory is based on a flawed assumption: that PG&E owns 100% of the electricity generated by its customers and is entitled to full profits even for energy it does not deliver. In reality, rooftop solar users supply only about half of their energy needs and still pay for the rest. Moreover, their investments in solar infrastructure reduce grid strain and save ratepayers billions by avoiding costly infrastructure projects and reducing energy demand growth, aligning with efforts to revamp electricity rates to clean the grid as well.
Impact on Low- and Middle-Income Households
The majority of rooftop solar users are low- and middle-income households. These individuals often invest in solar panels to lower their energy bills and reduce their carbon footprint. Policy changes that undermine the financial viability of rooftop solar disproportionately affect these communities, and efforts to overturn income-based charges add uncertainty about affordability and access.
For instance, Assembly Bill 942 proposes to retroactively alter contracts for millions of solar consumers, cutting the compensation they receive from providing energy to the grid, raising questions about major changes to your electric bill that could follow if their home is sold or transferred. This would force those with solar leases—predominantly lower-income individuals—to buy out their contracts when selling their homes, potentially incurring significant financial burdens.
The Real Drivers of Rising Energy Costs
While rooftop solar users are being blamed for rising electricity rates, calls for action have mounted as the true culprits lie elsewhere. Unchecked utility infrastructure spending has been a significant factor in escalating costs. For example, PG&E's rates have increased rapidly, yet the utility's spending on infrastructure projects has often been criticized for inefficiency and lack of accountability. Instead of targeting solar users, policymakers should scrutinize utility profit motives and infrastructure investments to identify areas where costs can be reduced without sacrificing service quality.
California's approach to addressing rising electricity costs by targeting rooftop solar users is misguided. The "cost shift" theory is based on flawed assumptions and overlooks the substantial benefits that rooftop solar provides to the grid and ratepayers. To achieve a sustainable and equitable energy future, the state must focus on controlling utility spending, promoting clean energy access for all, especially as it exports its energy policies across the West, and ensuring that policies support—not undermine—the adoption of renewable energy technologies.
ITER Nuclear Fusion advances tokamak magnetic confinement, heating deuterium-tritium plasma with superconducting magnets, targeting net energy gain, tritium breeding, and steam-turbine power, while complementing laser inertial confinement milestones for grid-scale electricity and 2025 startup goals.
Key Points
ITER Nuclear Fusion is a tokamak project confining D-T plasma with magnets to achieve net energy gain and clean power.
✅ Tokamak magnetic confinement with high-temp superconducting coils
✅ Deuterium-tritium fuel cycle with on-site tritium breeding
✅ Targets net energy gain and grid-scale, low-carbon electricity
It sounds like the stuff of dreams: a virtually limitless source of energy that doesn’t produce greenhouse gases or radioactive waste. That’s the promise of nuclear fusion, often described as the holy grail of clean energy by proponents, which for decades has been nothing more than a fantasy due to insurmountable technical challenges. But things are heating up in what has turned into a race to create what amounts to an artificial sun here on Earth, one that can provide power for our kettles, cars and light bulbs.
Today’s nuclear power plants create electricity through nuclear fission, in which atoms are split, with next-gen nuclear power exploring smaller, cheaper, safer designs that remain distinct from fusion. Nuclear fusion however, involves combining atomic nuclei to release energy. It’s the same reaction that’s taking place at the Sun’s core. But overcoming the natural repulsion between atomic nuclei and maintaining the right conditions for fusion to occur isn’t straightforward. And doing so in a way that produces more energy than the reaction consumes has been beyond the grasp of the finest minds in physics for decades.
But perhaps not for much longer. Some major technical challenges have been overcome in the past few years and governments around the world have been pouring money into fusion power research as part of a broader green industrial revolution under way in several regions. There are also over 20 private ventures in the UK, US, Europe, China and Australia vying to be the first to make fusion energy production a reality.
“People are saying, ‘If it really is the ultimate solution, let’s find out whether it works or not,’” says Dr Tim Luce, head of science and operation at the International Thermonuclear Experimental Reactor (ITER), being built in southeast France. ITER is the biggest throw of the fusion dice yet.
Its $22bn (£15.9bn) build cost is being met by the governments of two-thirds of the world’s population, including the EU, the US, China and Russia, at a time when Europe is losing nuclear power and needs energy, and when it’s fired up in 2025 it’ll be the world’s largest fusion reactor. If it works, ITER will transform fusion power from being the stuff of dreams into a viable energy source.
Constructing a nuclear fusion reactor ITER will be a tokamak reactor – thought to be the best hope for fusion power. Inside a tokamak, a gas, often a hydrogen isotope called deuterium, is subjected to intense heat and pressure, forcing electrons out of the atoms. This creates a plasma – a superheated, ionised gas – that has to be contained by intense magnetic fields.
The containment is vital, as no material on Earth could withstand the intense heat (100,000,000°C and above) that the plasma has to reach so that fusion can begin. It’s close to 10 times the heat at the Sun’s core, and temperatures like that are needed in a tokamak because the gravitational pressure within the Sun can’t be recreated.
When atomic nuclei do start to fuse, vast amounts of energy are released. While the experimental reactors currently in operation release that energy as heat, in a fusion reactor power plant, the heat would be used to produce steam that would drive turbines to generate electricity, even as some envision nuclear beyond electricity for industrial heat and fuels.
Tokamaks aren’t the only fusion reactors being tried. Another type of reactor uses lasers to heat and compress a hydrogen fuel to initiate fusion. In August 2021, one such device at the National Ignition Facility, at the Lawrence Livermore National Laboratory in California, generated 1.35 megajoules of energy. This record-breaking figure brings fusion power a step closer to net energy gain, but most hopes are still pinned on tokamak reactors rather than lasers.
In June 2021, China’s Experimental Advanced Superconducting Tokamak (EAST) reactor maintained a plasma for 101 seconds at 120,000,000°C. Before that, the record was 20 seconds. Ultimately, a fusion reactor would need to sustain the plasma indefinitely – or at least for eight-hour ‘pulses’ during periods of peak electricity demand.
A real game-changer for tokamaks has been the magnets used to produce the magnetic field. “We know how to make magnets that generate a very high magnetic field from copper or other kinds of metal, but you would pay a fortune for the electricity. It wouldn’t be a net energy gain from the plant,” says Luce.
One route for nuclear fusion is to use atoms of deuterium and tritium, both isotopes of hydrogen. They fuse under incredible heat and pressure, and the resulting products release energy as heat
The solution is to use high-temperature, superconducting magnets made from superconducting wire, or ‘tape’, that has no electrical resistance. These magnets can create intense magnetic fields and don’t lose energy as heat.
“High temperature superconductivity has been known about for 35 years. But the manufacturing capability to make tape in the lengths that would be required to make a reasonable fusion coil has just recently been developed,” says Luce. One of ITER’s magnets, the central solenoid, will produce a field of 13 tesla – 280,000 times Earth’s magnetic field.
The inner walls of ITER’s vacuum vessel, where the fusion will occur, will be lined with beryllium, a metal that won’t contaminate the plasma much if they touch. At the bottom is the divertor that will keep the temperature inside the reactor under control.
“The heat load on the divertor can be as large as in a rocket nozzle,” says Luce. “Rocket nozzles work because you can get into orbit within minutes and in space it’s really cold.” In a fusion reactor, a divertor would need to withstand this heat indefinitely and at ITER they’ll be testing one made out of tungsten.
Meanwhile, in the US, the National Spherical Torus Experiment – Upgrade (NSTX-U) fusion reactor will be fired up in the autumn of 2022, while efforts in advanced fission such as a mini-reactor design are also progressing. One of its priorities will be to see whether lining the reactor with lithium helps to keep the plasma stable.
Choosing a fuel Instead of just using deuterium as the fusion fuel, ITER will use deuterium mixed with tritium, another hydrogen isotope. The deuterium-tritium blend offers the best chance of getting significantly more power out than is put in. Proponents of fusion power say one reason the technology is safe is that the fuel needs to be constantly fed into the reactor to keep fusion happening, making a runaway reaction impossible.
Deuterium can be extracted from seawater, so there’s a virtually limitless supply of it. But only 20kg of tritium are thought to exist worldwide, so fusion power plants will have to produce it (ITER will develop technology to ‘breed’ tritium). While some radioactive waste will be produced in a fusion plant, it’ll have a lifetime of around 100 years, rather than the thousands of years from fission.
At the time of writing in September, researchers at the Joint European Torus (JET) fusion reactor in Oxfordshire were due to start their deuterium-tritium fusion reactions. “JET will help ITER prepare a choice of machine parameters to optimise the fusion power,” says Dr Joelle Mailloux, one of the scientific programme leaders at JET. These parameters will include finding the best combination of deuterium and tritium, and establishing how the current is increased in the magnets before fusion starts.
The groundwork laid down at JET should accelerate ITER’s efforts to accomplish net energy gain. ITER will produce ‘first plasma’ in December 2025 and be cranked up to full power over the following decade. Its plasma temperature will reach 150,000,000°C and its target is to produce 500 megawatts of fusion power for every 50 megawatts of input heating power.
“If ITER is successful, it’ll eliminate most, if not all, doubts about the science and liberate money for technology development,” says Luce. That technology development will be demonstration fusion power plants that actually produce electricity, where advanced reactors can build on decades of expertise. “ITER is opening the door and saying, yeah, this works – the science is there.”
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.