Composite Technology inks turbine deal in Canada

By Marketwire


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Composite Technology Corporation (CTC) is pleased to announce that its DeWind subsidiary has signed an agreement for the sale of ten advanced DeWind D9 two megawatt wind turbines to Energy Farming Ontario, LLC.

The D9 turbine is the advanced version of the D8.2 synchronous power turbine, which incorporates a 90 meter rotor for greater energy capture.

The contract is valued in excess of $23 million with scheduled delivery of the turbines set for late 2009. The contract provides for delivery of ten nacelles and blade sets. Energy Farming Ontario, a part of the Seeba-Energy Farming Group, will design 105m Seeba-lattice type towers to boost economics further.

Energy Farming Ontario will deploy the turbines in Ontario, Canada, and has several large scale wind development projects underway. This is the first of several phases to be built out in Canada.

"We are very pleased to be selected by Energy Farming Ontario for this site. This region is very attractive for wind power and we believe our larger rotor turbine will be an excellent generator for the conditions in Ontario. The 90 meter rotor D9 turbine is in development at DeWind and will be ready for serial production in the second half of 2009. The D9 incorporates and optimizes all of the features of the groundbreaking D8.2 80 meter rotor turbine," commented Marv Sepe, President of DeWind and Chief Operating Officer of CTC.

"Typical inland sites require two things: a large 90m rotor such as the Dewind D9, and secondly a tall Seeba-tower to harvest the winds. We have 10 years of experience with our lattice type Seeba-towers, and we will now design one for the Dewind D9 wind turbine," comments Thomas Tschiesche, President of the Seeba-Energy Farming Group.

Related News

DOE Announces $28M Award for Wind Energy

DOE Wind Energy Funding backs 13 R&D projects advancing offshore wind, distributed energy, and utility-scale turbines, including microgrids, battery storage, nacelle and blade testing, tall towers, and rural grid integration across the United States.

 

Key Points

DOE Wind Energy Funding is a $28M R&D effort in offshore, distributed, and utility-scale wind to lower cost and risk.

✅ $6M for rural microgrids, storage, and grid integration.

✅ $7M for offshore R&D, nacelle and long-blade testing.

✅ Up to $10M demos; $5M for tall tower technology.

 

The U.S. Department of Energy announced that in order to advance wind energy in the U.S., 13 projects have been selected to receive $28 million. Project topics focus on technology development while covering distributed, offshore wind growth and utility-scale wind found on land.

The selections were announced by the DOE’s Assistant Secretary for the Office of Energy Efficiency and Renewable Energy, Daniel R. Simmons, at the American Wind Energy Association Offshore Windpower Conference in Boston, as New York's offshore project momentum grows nationwide.

 

Wind Project Awards

According to the DOE, four Wind Innovations for Rural Economic Development projects will receive a total of $6 million to go toward supporting rural utilities via facilitating research drawing on U.K. wind lessons for deployment that will allow wind projects to integrate with other distributed energy resources.

These endeavors include:

Bergey WindPower (Norman, Oklahoma) working on developing a standardized distributed wind/battery/generator micro-grid system for rural utilities;

Electric Power Research Institute (Palo Alto, California) working on developing modeling and operations for wind energy and battery storage technologies, as large-scale projects in New York progress, that can both help boost wind energy and facilitate rural grid stability;

Iowa State University (Ames, Iowa) working on optimization models and control algorithms to help rural utilities balance wind and other energy resources; and

The National Rural Electric Cooperative Association (Arlington, Virginia) providing the development of standardized wind engineering options to help rural-area adoption of wind.

Another six projects are to receive a total of $7 million to facilitate research and development in offshore wind, as New York site investigations advance, with these projects including:

Clemson University (North Charleston, South Carolina) improving offshore-scale wind turbine nacelle testing via a “hardware-in-the-loop capability enabling concurrent mechanical, electrical and controller testing on the 7.5-megawatt dynamometer at its Wind Turbine Drivetrain Testing Facility to accelerate 1 GW on the grid progress”; and

The Massachusetts Clean Energy Center (Boston) upgrading its Wind Technology Testing Center to facilitate structural testing of 85- to 120-meter-long (roughly 278- to 393-foot-long) blades, as BOEM lease requests expand, among other projects.

Additionally, two offshore wind technology demonstration projects will receive up to $10 million for developing initiatives connected to reducing wind energy risk and cost. One last project will also be granted $5 million for the development of tall tower technology that can help overcome restrictions associated with transportation.

“These projects will be instrumental in driving down technology costs and increasing consumer options for wind across the United States as part of our comprehensive energy portfolio,” said Simmons.

 

Related News

View more

Questions abound about New Brunswick's embrace of small nuclear reactors

New Brunswick Small Modular Reactors promise clean energy, jobs, and economic growth, say NB Power, ARC Nuclear, and Moltex Energy; critics cite cost overruns, nuclear waste risks, market viability, and reliance on government funding.

 

Key Points

Compact reactors proposed in NB to deliver low-carbon power and jobs; critics warn of costs, waste, and market risks.

✅ Promised jobs, exports, and net-zero support via NB Power partnerships

✅ Critics cite cost overruns, nuclear waste, and weak market demand

✅ Government funding pivotal; ARC and Moltex advance licensing

 

When Mike Holland talks about small modular nuclear reactors, he sees dollar signs.

When the Green Party hears about them, they see danger signs.

The loquacious Progressive Conservative minister of energy development recently quoted NB Power's eye-popping estimates of the potential economic impact of the reactors: thousands of jobs and a $1 billion boost to the provincial economy.

"New Brunswick is positioned to not only participate in this opportunity, but to be a world leader in the SMR field," Holland said in the legislature last month.

'Huge risk' nuclear deal could let Ontario push N.B. aside, says consultant
'Many issues' with modular nuclear reactors says environmental lawyer
Green MLAs David Coon and Kevin Arseneau responded cheekily by ticking off the Financial and Consumer Services Commission's checklist on how to spot a scam.

Is the sales pitch from a credible source? Is the windfall being promised by a reputable institution? Is the risk reasonable?

For small nuclear reactors, they said, the answer to all those questions is no. 

"The last thing we need to do is pour more public money down the nuclear-power drain," Coon said, reminding MLAs of the Point Lepreau refurbishment project that went $1 billion over budget.

The Greens aside, New Brunswick politicians have embraced small modular reactors as part of a broader premiers' nuclear initiative to develop SMR technology, which they say can both create jobs and help solve the climate crisis.

Smaller and cheaper, supporters say
They're "small" because, depending on the design, they would generate from three to 300 megawatts of electricity, less than, for example, Point Lepreau's 660 megawatts.

It's the modular design that is supposed to make them more affordable, as explained in next-gen nuclear guides, with components manufactured elsewhere, sometimes in existing factories, then shipped and assembled. 

Under Brian Gallant, the Liberals handed $10 million to two Saint John companies working on SMRs, ARC Nuclear and Moltex Energy.


Greens point to previous fiascoes
The Greens and other opponents of nuclear power fear SMRS are the latest in a long line of silver-bullet fiascoes, from the $23 million spent on the Bricklin in 1975 to $63.4 million in loans and loan guarantees to the Atcon Group a decade ago.

"It seems that [ARC and Moltex] have been targeting New Brunswick for another big handout ... because it's going to take billions of dollars to build these things, if they ever get off the drawing board," said Susan O'Donnell, a University of New Brunswick researcher.

O'Donnell, who studies technology adoption in communities, is part of a small new group called the Coalition for Responsible Energy Development formed this year to oppose SMRs.

"What we really need here is a reasonable discussion about the pros and cons of it," she said.


Government touts economic spinoffs
According to the Higgs government's throne speech last month, if New Brunswick companies can secure just one per cent of the Canadian market for small reactors, the province would see $190 million in revenue. 

The figures come from a study conducted for NB Power by University of Moncton economist Pierre-Marcel Desjardins.

But a four-page public summary does not include any sales projections and NB Power did not provide them to CBC News. 

"What we didn't see was a market analysis," O'Donnell said. "How viable is the market? … They're all based on a hypothetical market that probably doesn't exist."

O'Donnell said her group asked for the full report but was told it's confidential because it contains sensitive commercial information.

Holland said he's confident there will be buyers. 

"It won't be hard to find communities that will be looking for a cost effective, affordable, safe alternative to generate their electricity and do it in a way that emits zero emissions," he said.

SMRs come in different sizes and while some proponents talk about using "micro" reactors to provide electricity to remote northern First Nations communities, ARC and Moltex plan larger models to sell to power utilities looking to shift away from coal and gas.

"We have utilities and customers across Canada, where Ontario's first SMR groundbreaking has occurred already, across the United States, across Asia and Europe saying they desperately want a technology like this," said Moltex's Saint John-based CEO for North America Rory O'Sullivan. 

"The market is screaming for this product," he said, adding "all of the utilities" in Canada are interested in Moltex's reactors

ARC's CEO Norm Sawyer is more specific, guessing 30 per cent of his SMR sales will be in Atlantic Canada, 30 per cent in Ontario, where Darlington SMR plans are advancing, and 40 per cent in Alberta and Saskatchewan — all provincial power grids.

O'Donnell said it's an important question because without a large number of guaranteed sales, the high cost of manufacturing SMRs would make the initiative a money-loser. 

The cost of building the world's only functioning SMR, in Russia, was four times what was expected. 

An Australian government agency said initial cost estimates for such major projects "are often initially too low" and can "overrun." 


Up-front costs can be huge
University of British Columbia physicist M.V. Ramana, who has authored studies on the economics of nuclear power, said SMRs face the same financial reality as any large-scale manufacturing.

"You're going to spend a huge amount of money on the basic fixed costs" at the outset, he said, with costs per unit becoming more viable only after more units are built and sold. 

He estimates a company would have to build and sell more than 700 SMRs to break even, and said there are not enough buyers for that to happen. 

But Sawyer said those estimates don't take into account technological advances.

"A lot of what's being said ... is really based on old technology," he said, estimating ARC would be viable even if it sold an amount of reactors in the low double digits. 

O'Sullivan agrees.

"In fact, just the first one alone looks like it will still be economical," he said. "In reality, you probably need a few … but you're talking about one or two, maximum three [to make a profit] because you don't need these big factories."

'Paper designs' prove nothing, says expert
Ramana doesn't buy it. 

"These are all companies that have been started by somebody who's been in the nuclear industry for some years, has a bright idea, finds an angel investor who's given them a few million dollars," he said.

"They have a paper design, or a Power Point design. They have not built anything. They have not tested anything. To go from that point … to a design that can actually be constructed on the field is an enormous amount of work." 

Both CEOs acknowledge the skepticism about SMRs.

'The market is screaming for this product,' said Moltex’s Saint John-based CEO for North America, Rory O’Sullivan. (Brian Chisholm, CBC)
"I understand New Brunswick has had its share of good investments and its share of what we consider questionable investments," said Sawyer, who grew up in Rexton.

But he said ARC's SMR is based on a long-proven technology and is far past the on-paper design stage "so you reduce the risk." 

Moltex is now completing the first phase of the Canadian Nuclear Safety Commission's review of its design, a major hurdle. ARC completed that phase last year.

But, Ramana said there are problems with both designs. Moltex's molten salt model has had "huge technical challenges" elsewhere while ARC's sodium-cooled system has encountered "operational difficulties."


Ottawa says nuclear is needed for climate goals
The most compelling argument for looking at SMRs may be Ottawa's climate change goals, and international moves like the U.K.'s green industrial revolution plan point to broader momentum.  

The national climate plan requires NB Power to phase out burning coal at its Belledune generating station by 2030. It's scrambling to find a replacement source of electricity.

The Trudeau government's throne speech in October promised to "support investments in renewable energy and next-generation clean energy and technology solutions."

And federal Natural Resources Minister Seamus O'Regan told CBC earlier this year that he's "very excited" about SMRs and has called nuclear key to climate goals in Canada as well.

"We have not seen a model where we can get to net-zero emissions by 2050 without nuclear,"  he said.

O'Donnell said while nuclear power doesn't emit greenhouse gases, it's hardly a clean technology because of the spent nuclear fuel waste. 


Government support is key 
She also wonders why, if SMRs make so much sense, ARC and Moltex are relying so much on government money rather than private capital.

Holland said "the vast majority" of funding for the two companies "has to come from private sector investments, who will be very careful to make sure they get a return on that investment."

Sawyer said ARC has three dollars for every dollar it has received from the province, and General Electric has a minority ownership stake in its U.S.-based parent company.

O'Sullivan said Moltex has attracted $5 million from a European engineering firm and $6 million from "the first-ever nuclear crowdfunding campaign." 

But he said for new technologies, including nuclear power, "you need government to show policy support.

"Nuclear technology has always been developed by governments around the world. This is a very new change to have an industry come in and lead this, so private investors can't take the risk to do that on their own," he said. 

So far, Ottawa hasn't put up any funding for ARC or Moltex. During the provincial election campaign, Higgs implied federal money was imminent, but there's been no announcement in the almost three months since then.

Last month the federal government announced $20 million for Terrestrial Energy, an Ontario company working on SMRs, alongside OPG's commitment to SMRs in the province, underscoring momentum.

"We know we have the best technology pitch," O'Sullivan said. "There's others that are slightly more advanced than us, but we have the best overall proposition and we think that's going to win out at the end of the day."

But O'Donnell said her group plans to continue asking questions about SMRs. 

"I think what we really need is to have an honest conversation about what these are so that New Brunswickers can have all the facts on the table," she said.

 

Related News

View more

South Africa's Eskom could buy less power from wind farms during lockdown

Eskom Wind Power Curtailment reflects South Africa's lockdown-driven drop in electricity demand, prompting grid-balancing measures as Eskom signals reduced IPP procurement from renewable energy projects during low-demand hours, despite guarantees and flexible generation constraints.

 

Key Points

A temporary reduction of wind IPP purchases by Eskom to balance surplus grid capacity during the COVID-19 lockdown slump

✅ Demand drop of 7,500 MW reduced need for variable renewables.

✅ Curtailment likely during low-demand early-morning hours.

✅ IPP revenues protected via contract extensions and guarantees.

 

South African state utility Eskom has told independent wind farms that it could buy less of their power in the coming days, as electricity demand has plummeted during a lockdown, reflecting the Covid-19 impact on renewables worldwide, aimed at curbing the spread of the coronavirus.

Eskom, which is mired in a financial crisis and has struggled to keep the lights on in the past year, said on Tuesday that power demand had dropped by more than 7,500 megawatts since the lockdown started on Friday and that it had taken offline some of its own generators.

The utility supplements its generating capacity, which is mainly derived from coal, by buying power from solar and wind farms, as wind becomes a competitive source of electricity globally, under contracts signed as part of the government’s renewable energy programme.

Spokesman Sikonathi Mantshantsha said Eskom had not yet curtailed power procurement from wind farms but that it had told them, echoing industry warnings on wind investment risk seen by the sector, this could happen “for a few hours a day during the next few days, perhaps until the lockdown is lifted”.

“Most of them are able to feed power into the grid in the early hours of the day. That coincides with the lowest demand period and can highlight curtailment challenges when supply exceeds need. And we now have a lot more capacity than needed,” Mantshantsha said.

During the lockdown imposed by President Cyril Ramaphosa, businesses apart from those deemed “essential services” are closed, mirroring Spanish wind factory closures elsewhere. Many power-hungry mines and furnaces have suspended operations.

Eskom has relatively little of its own “flexible generation” capacity, which can be ramped up or down easily, unlike regions riding a renewables boom in South Australia to export power.

The government has committed to buy up to 200 billion rand ($11.1 billion) of electricity from independent power producers and has issued state guarantees for those purchases.

“They will be compensated for their losses, amid U.S. utility-solar slowdowns being reported - each day lost will be added to their contracts,” Mantshantsha said of the wind farms. “In the end they will not be worse off.”

 

Related News

View more

Hydro One deal to buy Avista receives U.S. antitrust clearance

Hydro One-Avista Acquisition secures U.S. antitrust clearance under Hart-Scott-Rodino, pending approvals from state utility commissions, the FCC, and CFIUS, with prior FERC approval and shareholder vote supporting the cross-border utility merger.

 

Key Points

A $6.7B cross-border utility merger cleared under HSR, still awaiting state, FCC, and CFIUS approvals; FERC approved earlier.

✅ HSR waiting period expired; U.S. antitrust clearance obtained

✅ Approvals pending: state commissions, FCC, and CFIUS

✅ FERC and Avista shareholders have approved the transaction

 

Hydro One Ltd. says it has received antitrust clearance in the United States for its deal to acquire U.S. energy company Avista Corp., even as it sought to redesign customer bills in Ontario.

The Ontario-based utility says the 30-day waiting period under the Hart-Scott-Rodino Antitrust Improvements Act expired Thursday night.

Hydro One announced the friendly deal to acquire Avista last summer, amid customer backlash in some service areas, in an agreement that valued the company at $6.7 billion.

The deal still requires several other approvals, including those from utility commissions in Washington, Idaho, Oregon, Montana and Alaska.

Analysts also warned of political risk for Hydro One during this period, reflecting concerns about provincial influence.

The U.S. Federal Communications Commission must also sign off on the transaction, and although U.S. regulators later rejected the $6.7B takeover following review, clearance is required by the Committee on Foreign Investment in the United States.

The agreement has received approval from the U.S. Federal Energy Regulatory Commission as well as Avista shareholders, and it mirrored other cross-border deals such as Algonquin Power's acquisition of Empire District that closed in the sector.

 

Related News

View more

European Power Hits Records as Plants Start to Buckle in Heat

European Power Crisis intensifies as record electricity prices, nuclear output cuts, gas supply strain, heatwave drought, and Rhine shipping bottlenecks hit Germany, France, and Switzerland, tightening winter storage and driving long-term contracts higher.

 

Key Points

A surge in European power prices from heatwaves, nuclear curbs, Rhine coal limits, and reduced Russian gas supply.

✅ Record year-ahead prices in Germany and France

✅ Nuclear output curbed by warm river cooling limits

✅ Rhine low water disrupts coal logistics and generation

 

Benchmark power prices in Europe hit fresh records Friday as utilities are increasingly reducing electricity output in western Europe because of the hot weather. 

Next-year contracts in Germany and France, Europe’s biggest economies rose to new highs after Switzerland’s Axpo Holding AG announced curbs at one of its nuclear plants. Electricite de France SA is also reducing nuclear output because of high river temperatures and cooling water restrictions, while Uniper SE in Germany is struggling to get enough coal up the river Rhine. 

Europe is suffering its worst energy crunch in decades, and losing nuclear power is compounding the strain as gas cuts made by Russia in retaliation for sanctions drive a surge in prices. The extreme heat led to the driest July on record in France and is underscoring the impact that a warming climate is having on vital infrastructure.

Water levels on Germany’s Rhine have fallen so low that the river may effectively close soon, impacting supplies of coal to the plants next to it. The Rhone and Garonne in France and the Aare in Switzerland are all too warm to be used to cool nuclear plants effectively, forcing operators to limit energy output under environmental constraints. 

Northwest European weather forecast for the next two weeks:
relates to European Power Hits Records as Plants Start to Buckle in Heat
  
The German year-ahead contract gained as much as 2% to 413 euros a megawatt-hour on the European Energy Exchange AG. The French equivalent rose 1.9% to a record 535 euros. Long-term prices are coming under pressure because producing less power from nuclear and coal will increase the demand for natural gas, which is badly needed to fill storage sites ahead of the winter.  


France to Curb Nuclear Output as Europe’s Energy Crisis Worsens
Uniper SE said on Thursday that two of its coal-fired stations along the Rhine may need to curb output during the next few weeks as transporting coal along the Rhine becomes impossible. 

Plants on the river near Mannheim and Karlsruhe, operated by Grosskraftwerk Mannheim AG and EnBW AG, have previously struggled to source coal because of the shallow water, even as German renewables deliver more electricity than coal and nuclear at times. Both companies said generation hasn’t been affected yet. 

“The low tide is not currently affecting our generation of energy because our plants do not have the need for continuous fresh water,” a Steag GmbH spokesman said on Friday. “But the low tide level can make running plants and transporting coal more complicated than usual.”

The spokesman said though that there is slight reduction in output of about 10 to 15 megawatts, which would equate to a few percent, because of the hot temperatures. “This has been happening over some time now and is a problem for everyone because the plant system is not designed to withstand such hot temperatures,” he said.

 

Related News

View more

Starved of electricity, Lebanon picks Dubai's ENOC to swap Iraqi fuel

Lebanon-ENOC Fuel Swap secures Iraqi high sulphur fuel oil, Grade B fuel oil, and gasoil via tender, easing electricity generation shortfalls, diesel shortages, and grid outages amid Lebanon's energy crisis and power sector emergency.

 

Key Points

A tender-based exchange trading Iraqi HSFO for cleaner fuel oil and gasoil to stabilize Lebanon's electricity generation.

✅ Swaps 84,000t Iraqi HSFO for 30,000t Grade B fuel oil and 33,000t gasoil

✅ Supports state electricity generation during acute power shortages

✅ Tender won by ENOC under Lebanon-Iraq goods-for-fuel deal

 

Lebanon's energy ministry said it had picked Dubai's ENOC in a tender to swap 84,000 tonnes of Iraqi high sulphur fuel oil, as LNG export authorizations expand globally, with 30,000 tonnes of Grade B fuel oil and 33,000 tonnes of gasoil.

ENOC won the tender, part of a deal between the two countries that allows the cash-strapped Lebanese government, even as electricity tensions persist, to pay for 1 million tonnes of Iraqi heavy fuel oil a year in goods and services.

As Lebanon suffers what the World Bank has described as one of the deepest depressions of modern history, shortages of fuel this month have meant state-powered electricity, alongside ongoing electricity sector reform, has been available for barely a few hours a day if at all.

Residents turning to private generators for their power supply face diesel shortages, even as other countries roll out measures to secure electricity supplies to mitigate risks.

The swap tenders are essential as Iraqi fuel is unsuitable for Lebanese electricity generation, and regional projects like the Jordan-Saudi electricity linkage underscore broader grid strategies.

Lebanese caretaker Energy Minister Raymond Ghajar said in July the fuel from the Iraqi deal would be used for electricity generation by the state provider, even as France advances a new electricity pricing scheme in Europe, and was enough for around four months.

ENOC is set to receive the Iraq fuel between Sept. 3-5 and will deliver it to Lebanon two weeks after, the energy ministry said, following a recent deal on electricity prices abroad that could influence markets.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified