Hydroelectric power a boon for Marana

By Arizona Daily Star


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Marana officials expect to save as much as $5 million in utility costs over the next 20 years after the Town Council approved a contract to use an allocation of hydroelectric power.

The one megawatt of power, which Marana will get annually for 20 years beginning October 1, comes from the Parker-Davis Project. That project generates hydroelectric power with a dam on the Colorado River near Lake Havasu City.

"We're very fortunate that we happen to be in a good spot," Marana Utility Director Brad DeSpain said of Marana's proximity to power lines running from the Parker-Davis Dam to a power plant in Cochise County run by the Arizona Electric Power Cooperative.

One of the cooperative's members is Trico Electric Cooperative Inc., which is based in Marana and is one of the two suppliers of electricity to the town and its residents. The other is Tucson Electric Power.

Hydroelectric power is a cheaper form of electricity because it does not require fuel to be burned. Using hydroelectric will save Marana between $7,000 and $22,000 a month depending on the time of year, said Karen Cathers, manager of contracts and regulatory affairs for Trico.

DeSpain said the hydroelectric allocation will be used to power the town's municipal facilities, lighting for its ball fields, streetlights and also its water department. DeSpain said it will also eventually be used to help power the town's wastewater department once Marana has officially taken over that operation from Pima County.

"Once we get wastewater there will be no problem for us to use that megawatt," DeSpain said.

Related News

Huge offshore wind turbine that can power 18,000 homes

Siemens Gamesa SG 14-222 DD advances offshore wind with a 14 MW direct-drive turbine, 108 m blades, a 222 m rotor, optional 15 MW boost, powering about 18,000 homes; prototype 2021, commercial launch 2024.

 

Key Points

A 14 MW offshore wind turbine with 108 m blades and a 222 m rotor, upgradable to 15 MW, targeting commercial use in 2024.

✅ 14 MW direct-drive, upgradable to 15 MW

✅ 108 m blades, 222 m rotor diameter

✅ Powers about 18,000 European homes annually

 

Siemens Gamesa Renewable Energy (SGRE) has released details of a 14-megawatt (MW) offshore wind turbine, as offshore green hydrogen production gains attention, in the latest example of how technology in the sector is increasing in scale.

With 108-meter-long blades and a rotor diameter of 222 meters, the dimensions of the SG 14-222 DD turbine are significant.

In a statement Tuesday, SGRE said that one turbine would be able to power roughly 18,000 average European households annually, while its capacity can also be boosted to 15 MW if needed. A prototype of the turbine is set to be ready by 2021, and it’s expected to be commercially available in 2024, as forecasts suggest a $1 trillion business this decade.

As technology has developed over the last few years, the size of wind turbines has increased, and renewables are set to shatter records globally.

Last December, for example, Dutch utility Eneco started to purchase power produced by the prototype of GE Renewable Energy’s Haliade-X 12 MW wind turbine. That turbine has a capacity of 12 MW, a height of 260 meters and a blade length of 107 meters.

The announcement of Siemens Gamesa’s new turbine plans comes against the backdrop of the coronavirus pandemic, which is impacting renewable energy companies around the world, even as wind power sees growth despite Covid-19 in many markets.

Earlier this month, the European company said Covid-19 had a “direct negative impact” of 56 million euros ($61 million) on its profitability between January and March, amid factory closures in Spain and supply chain disruptions. This, it added, was equivalent to 2.5% of revenues during the quarter.

The pandemic has, in some parts of the world, altered the sources used to power society. At the end of April, for instance, it was announced that a new record had been set for coal-free electricity generation in Great Britain, where UK offshore wind growth has accelerated, with a combination of factors — including coronavirus-related lockdown measures — playing a role.

On Tuesday, the CEO of another major wind turbine manufacturer, Danish firm Vestas, sought to emphasize the importance of renewable energy in the years and months ahead, and the lessons the U.S. can learn from the U.K. on wind deployment.

“I think we have actually, throughout this crisis, also shown to all society that renewables can be trusted,” Henrik Andersen said during an interview on CNBC’s Street Signs.

“But we both know ... that that transformation of energy sources is not going to happen overnight, it’s not going to happen from a quarter to a quarter, it’s going to happen by consistently planning year in, year out.”

 

Related News

View more

UK National Grid Commissions 2GW Substation

UK 2-GW Substation strengthens National Grid power transmission in Kent, enabling offshore wind integration, voltage regulation, and grid modernization to meet rising electricity demand and support the UK energy transition with resilient, reliable infrastructure.

 

Key Points

National Grid facility in Kent that steps voltage, regulates power, and connects offshore wind to strengthen UK grid.

✅ Adds 2 GW capacity to meet rising electricity demand

✅ Integrates offshore wind farms into transmission network

✅ Improves reliability, voltage control, and grid resilience

 

The United Kingdom has strengthened its national power grid with the commissioning of a major new 2-gigawatt capacity substation in Kent. This massive project, a key part of the National Grid's ongoing efforts to modernize and expand power transmission infrastructure, including plans to fast-track grid connections across critical projects, will play a critical role in supporting the UK's energy transition and growing electricity demands.


What is a Substation?

Substations are vital components of electricity grids. They serve as connection points, transforming high voltage electricity from power plants to lower voltages suitable for homes and businesses. They also help to regulate voltage levels, and, where appropriate, interface with expanding HVDC technology initiatives, ensuring stable electricity delivery.  Modern substations often act as hubs, supporting the integration of renewable power sources with the main electricity network.


Why This Substation Is Important

The new 2-gigawatt capacity substation is significant for several reasons:

  • Expanding Capacity: It adds significant capacity to the UK's grid, enabling the transmission of large amounts of electricity to where it's needed. This capacity boost is crucial for supporting growing electricity demand as the UK shifts its energy mix towards renewable sources.
  • Integrating Renewables: The substation will aid in integrating substantial amounts of offshore wind power, as projects like the Scotland-England subsea link illustrate, helping the UK achieve its ambitious clean energy goals. Offshore wind farms are a booming source of renewable energy in the UK, and ensuring reliable connections to the grid is essential in maximizing their potential.
  • Future-Proofing the Grid: The newly commissioned substation helps bolster the reliability and resilience of the UK's power transmission network, where reducing losses with superconducting cables could further enhance efficiency. It will play a key role in securing electricity supplies as older power plants are decommissioned and renewable energy sources become more dominant.


A Landmark Project

The commissioning of this substation is a major achievement for the National Grid, amid an independent operator transition underway in the sector, and UK energy infrastructure upgrades. The sheer scale of the project required extensive planning and collaboration with various stakeholders, underscoring the complexity of upgrading the nation's power grid to meet future needs.


The Path Towards a Cleaner Grid

The new substation is not an isolated project. It is part of a broader, multi-year effort by the National Grid to modernize and expand the country's power grid.  This entails building new transmission lines and urban conduits such as London's newest electricity tunnel now in service, investing in storage technologies, and adapting infrastructure to accommodate the shift towards distributed energy generation, where power is generated closer to the point of use.


Beyond Substations

While projects like the new 2-gigawatt substation are crucial, ensuring a successful energy transition requires more than just infrastructure upgrades. Continued support for renewable energy development, highlighted by recent offshore wind power milestones that demonstrate grid-readiness, investment in emerging energy storage solutions, and smart grid technology that leverages data for effective grid management are all important components of building a cleaner and more resilient energy future for the UK.

 

Related News

View more

Electricity Market Headed for a Reshuffle as Province Vows Overhaul

Alberta Electricity Market Overhaul will add renewables like wind and solar, curb price volatility tied to natural gas, boost competition, and reward energy efficiency, while safeguarding grid reliability and investor confidence through a transition roadmap.

 

Key Points

Alberta's 2027 market redesign adds renewables, boosts competition, and cuts volatility to protect reliability.

✅ Integrates wind and solar to meet climate and affordability goals.

✅ Increases competition and efficiency; reduces price volatility.

✅ Plans transition measures to maintain reliability and investment.

 

Alberta's electricity market is on the precipice of a significant transformation. The province, long reliant on fossil fuels for power generation, has committed to a market overhaul by 2027. This ambitious plan promises to shake up the current system, but industry players are wary of a lengthy period of uncertainty that could stifle much-needed investment in the sector.

The impetus for change stems from a confluence of factors. Soaring energy bills for consumers, reflecting rising electricity prices across the province, coupled with concerns about Alberta's environmental footprint, have pressured the government to seek a more sustainable and cost-effective electricity system. The current market, heavily influenced by natural gas prices, has been criticized for volatility and a lack of incentive for renewable energy development.

The details of the new electricity market design are still being formulated. However, the government has outlined some key objectives. One priority is to incorporate more renewable energy sources like wind and solar power into the grid. This aligns with Alberta's climate change goals and could lead to cleaner electricity generation, supporting the province's path to clean electricity in the coming years.

Another objective is to introduce more competition within the market. The current system is dominated by a few large players, and the government hopes increased competition will drive down prices for consumers, as the market needs more competition to function efficiently.

While the potential benefits of the overhaul are undeniable, industry leaders are apprehensive about the transition period, with a Calgary retailer urging the government to scrap the overhaul amid uncertainty. The lack of clarity surrounding the new market design creates uncertainty for power companies. This could discourage investment in new generation facilities, both renewable and traditional, potentially leading to supply shortages in the future.

John Kousinioris, CEO of TransAlta, a major Alberta power generator, expressed these concerns. "We need a clear roadmap for the future," he stated. "Uncertainty makes it difficult to justify significant investments in new power plants, which are essential to ensure a reliable electricity supply for Albertans."

The government acknowledges the need to minimize disruption during the transition. They have promised to engage in consultations with industry stakeholders throughout the redesign process, as the province changes how it produces and pays for electricity to support long-term stability. Additionally, measures may be implemented to ensure a smooth transition and provide some level of certainty for investors.

The success of Alberta's electricity market overhaul will depend on several factors. Striking a balance between environmental sustainability, affordability, and energy security will be crucial. The government must design a system that incentivizes investment in new, cleaner power generation while maintaining reliable electricity supply at a reasonable cost for consumers.

The role of natural gas, a dominant player in Alberta's current electricity mix, is another point of contention. While the government aims to incorporate more renewables, natural gas is likely to remain a part of the equation for some time. Determining the appropriate role for natural gas in the future market will be a critical decision.

The upcoming years will be a period of significant change for Alberta's electricity market. The province's commitment to a cleaner and more competitive system holds promise, but navigating the transition effectively will be a complex challenge. Open communication, collaboration between stakeholders, and a well-defined roadmap for the future will be essential for ensuring a successful electricity market overhaul and a brighter energy future for Alberta.

 

Related News

View more

Florida PSC approves Gulf Power’s purchase of renewable energy produced at municipal solid waste plant

Gulf Power renewable energy contract underscores a Florida PSC-approved power purchase from Bay County's municipal solid waste plant, delivering 13.65 MW at a fixed price, boosting fuel diversity, lowering landfill waste, and saving customers money.

 

Key Points

A fixed-price PPA for 13.65 MW from Bay County's waste-to-energy plant, approved by Florida PSC to cut costs.

✅ Fixed-price purchase; pay only for energy produced.

✅ 13.65 MW from Bay County waste-to-energy facility.

✅ Cuts landfill waste and natural gas dependency.

 

The Florida Public Service Commission (PSC) approved Tuesday a contract under which Gulf Power Company will purchase all the electricity generated by the Bay County Resource Recovery Facility, a municipal solid waste plant, similar to SaskPower-Manitoba Hydro deal structures seen elsewhere, over the next six years.

“Gulf’s renewable energy purchase promotes Florida’s fuel diversity, further reducing our dependency on natural gas,” PSC Chairperson Julie Brown said. “This renewable energy option also reduces landfill waste, saves customers money, and serves the public interest.”

The contract provides for Gulf to acquire the Panama City facility’s 13.65 megawatts of renewable generation for its customers beginning in July 2017. Gulf will pay a fixed price, aligned with approaches in Alberta's clean electricity RFP programs, and only pays for the energy produced. The contract is expected to save approximately $250,000 and provides security for customers, a contrast to overruns at the Kemper power plant project, because if the plant does not supply energy, Gulf does not have to provide payment.

This contract is the third renewable energy contract between Gulf and Bay County, at a time when the Southern California plant closures may be postponed, continuing agreements approved in 2008 and 2014. In making the decision, the PSC considered Gulf’s need for power and developments such as the Turkey Point license renewal process, as well as the contract’s cost-effectiveness, payment provisions, and performance guarantees, as required by rule.

 

Related News

View more

Renewable growth drives common goals for electricity networks across the globe

Energy Transition Grid Reforms address transmission capacity, interconnection, congestion management, and flexibility markets, enabling renewable integration and grid stability while optimizing network charges and access in Australia, Ireland, and Great Britain.

 

Key Points

Measures to expand transmission, boost flexibility, and manage congestion for reliable, low-carbon electricity systems.

✅ Transmission upgrades and interconnectors ease congestion

✅ Flexible markets, DER, and storage bolster grid stability

✅ Evolving network charges and access incentivize siting

 

Electricity networks globally are experiencing significant increases in the volume of renewable capacity as countries seek to decarbonise their power sectors, even as clean energy's 'dirty secret' highlights integration trade-offs, without impacting the security of supply. The scale of this change is creating new challenges for power networks and those responsible for keeping the lights on.

The latest insight paper from Cornwall Insight – Market design amidst global energy transition – looks into this issue. It examines the outlook for transmission networks, and how legacy design and policies are supporting decarbonisation, aligning with IRENA findings on renewables and shaping the system. The paper focuses on three key markets; Australia, Ireland and Great Britain (GB).

Australia's main priority is to enhance transmission capacity and network efficiency; as concerns over excess solar risking blackouts grow in distribution networks, without this, the transmission system will be a barrier to growth for decentralised flexibility and renewables. In contrast, GB and Ireland benefit from interconnection with other national markets. This provides them with additional levers that can be pulled to manage system security and supply. However, they are still trying to hone and optimise network flexibility in light of steepening decarbonisation objectives.

Unsurprisingly, renewable energy resources have been growing in all three markets, with Ireland regarded as a leader in grid integration, with this expected to continue for the foreseeable future. Many of these projects are often located in places where network infrastructure is not as well developed, creating pressure on system operation as a result.

In all three markets, unit charges are rising, driven by a reduced charging base as decentralised energy grows quickly. This combination of changes is leading to network congestion, a challenge mirrored by the US grid overhaul for renewables underway, as transmission network development struggles to keep up, and flexibility markets are being optimised and changed.

In summary, reforms are on-going in each jurisdiction to accommodate the rapid physical transformation of the generation mix. Each has its objectives and tensions which are reflective of wider global reform programmes being undertaken in most developed, liberalised and decarbonising energy markets.

Gareth Miller, CEO of Cornwall Insight, said: “Despite differences in market design and characteristics, all three markets are grappling with similar issues, that comes from committing to deep decarbonisation. This includes the most appropriate methods for charging for networks, managing access to them and dealing with issues such as network congestion and constraint.

“In all three countries, renewable projects are often placed in isolated locations, as seen in Scotland where more pylons are needed to keep the lights on, away from the traditional infrastructure that is closer to demand. However, as renewable growth is set to continue, the networks will need to transition from being demand-centric to more supply orientated.

“Both system operators and stakeholders will need to continually evaluate their market structures and designs to alleviate issues surrounding locational congestion and grid stability. Each market is at very different stages in the process in trying to improve any problems implementing solutions to allow for higher efficiencies in renewable energy integration.

“It is uncertain whether any of the proposed changes will fundamentally resolve the issues that come with increased renewables on the system. However, despite marked differences, they certainly could all learn from each other and elements of their network arrangements, as well as from US decarbonisation strategies research.”

 

Related News

View more

Utility giant Electricite de France acquired 50pc stake in Irish offshore wind farm

Codling Bank Offshore Wind Project will deliver a 1.1 GW offshore wind farm off the Wicklow coast, as EDF Renewables and Fred Olsen Renewables invest billions to support Ireland's CAP 2030 and cut carbon emissions.

 

Key Points

A 1.1 GW offshore wind farm off Co Wicklow, led by EDF and Fred Olsen, advancing Ireland's CAP 2030 targets.

✅ Up to 1.1 GW capacity; hundreds of turbines off Co Wicklow

✅ EDF Renewables partners with Fred Olsen Renewables

✅ Investment well over €2bn, supporting 70% electricity by 2030

 

It’s been previously estimated that the entire Codling Bank project, which will eventually see hundreds of wind turbines, such as a huge offshore wind turbine now coming to market, erected about 13km off the Co Wicklow coast, could be worth as much as €100m. The site is set to generate up to 1.1 gigawatts of electricity when it’s eventually operational.

It’s likely to cost well over €2bn to develop, and with new pipelines abroad where Long Island offshore turbine proposals are advancing, scale economies are increasingly relevant.

The other half of the project is owned by Norway’s Fred Olsen Renewables, with tens of millions of euro already reportedly spent on surveys and other works associated with the scheme. Initial development work started in 2003.

Mr Barrett will now continue to focus on his non-Irish renewable projects, at a time when World Bank wind power support is accelerating in developing countries, said Hazel Shore, the company that sold the stake. It added that Johnny Ronan and Conor Ronan, the developer’s brother, will retain an equity interest in the Codling project.

“The Hazel Shore shareholders remain committed to continuing their renewable and forestry businesses,” noted the firm, whose directors include Paddy Teahon, a former secretary of the Department of the Taoiseach and chairman of the National Offshore Wind Association of Ireland.

The French group’s EDF Renewables subsidiary will now partner with the Norwegian firm to develop and build the Codling Bank project, in a sector widely projected to become a $1 trillion business over the coming decades.

EDF pointed out that the acquisition of the Codling Bank stake comes after the government committed to reducing carbon emissions. A Climate Action Plan launched last year will see renewable projects generating 70pc of Ireland’s electricity by 2030, with more than a third of Irish electricity to be green within four years according to recent analysis. Offshore wind is expected to deliver at least 3.5GW of power in support of the objective.

Bruno Bensasson, EDF Group senior executive vice-president of renewable energies and the CEO of EDF Renewables said the French group is “committed to contributing to the Irish government’s renewables goals”.

“This important project clearly strengthens our strong ambition to be a leading global player in the offshore wind industry,” he added. “This is consistent with the CAP 2030 strategy that aims to double EDF’s renewable energy generation by 2030 and increase it to 50GW net.”

Matthieu Hue, the CEO of EDF Renewables UK and Ireland said the firm already has an office in Dublin and is looking for further renewable projects, as New York's biggest offshore wind farm moves ahead, underscoring momentum.

Last November, the ESB teamed up with EDF in Scotland, reflecting how UK offshore wind is powering up, with the Irish utility buying a 50pc stake in the Neart na Gaoithe offshore wind project. The massive wind farm is expected to generate up to 450MW of electricity and will cost about €2.1bn to develop.

EDF said work on that project is “well under way”.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.