Verbund planning 88 MW hydropower plant

By Industrial Info Resources


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
A new hydropower plant is planned for the Upper Inn Valley in Austria. Austrian energy providers Verbund AG, TIWAG and Engadiner Kraftwerke AG will unite their strengths and invest about $500 million (350 million euros) in the construction of an 88-megawatt (MW) hydropower plant.

Construction is planned to begin June 2010, with completion set for January 2013. At the moment, the project is in the midst of environmental impact studies — the strictest permitting procedure in Europe. After receiving approvals, the project company Gemeinschaftskraftwerk Inn GmbH will open a tender to select the engineering firm, equipment supplier and subcontractors.

The powerhouse will be constructed between the Austrian villages Prutz and Ried, close to the Inn River. Two 44-MW Francis turbines and generators will be placed in a subterranean shaft. The turbines will be driven by the Inn River, which will be dammed more than 20 kilometers upstream. The pressure tunnel, which will conduct the water to the turbines, will have a diameter of 6.5 meters and will be 130 to 1,200 meters deep. After being used, the water will re-enter the Inn via a subterranean duct.

Gemeinschaftskraftwerk Inn GmbH is a joint venture of Verbund AG (50%), TIWAG (36%) and Engadiner Kraftwerke AG (14%). At the moment TIWAG is conducting the permitting process for the 180-MW Kuehtai II Pumped storage plant. The Verbund subsidiary Verbund-Austrian Hydro Power is also advancing with the company's Reisseck II (430 MW) and Limberg II (480 MW) projects.

Related News

China to build 2,000-MW Lawa hydropower station on Jinsha River

Lawa Hydropower Station approved on the Jinsha River, a Yangtze tributary, delivers 2,000 MW via four units; 784 ft dam, 12 sq mi reservoir, Sichuan-Tibet site, US$4.59b investment, Huadian stake, renewable energy generation.

 

Key Points

A 2,000 MW dam project on the Jinsha River with four units, a 784 ft barrier, and 8.36 billion kWh annual output.

✅ Sichuan-Tibet junction on the Jinsha River

✅ 2,000 MW capacity; four turbine-generator units

✅ 8.36 bn kWh/yr; US$4.59b total; Huadian 48% stake

 

China has approved construction of the 2,000-MW Lawa hydropower station, a Yangtze tributary hydropower project on the Jinsha River, multiple news agencies are reporting.

Lawa, at the junction of Sichuan province and the Tibet autonomous region, will feature a 784-foot-high dam and the reservoir will submerge about 12 square miles of land. The Jinsha River is a tributary of the Yangtze River, and the project aligns with green hydrogen development in China.

The National Development and Reform Commission of the People’s Republic of China, which also guides China's nuclear energy development as part of national planning, is reported to have said that four turbine-generator units will be installed, and the project is expected to produce about 8.36 billion kWh of electricity annually.

Total investment in the project is to be US$4.59 billion, and Huadian Group Co. Ltd. will have a 48% stake in the project, reflecting overseas power infrastructure activity, with minority stakes held by provincial firms, according to China Daily.

In other recent news in China, Andritz received an order in December 2018 to supply four 350-MW reversible pump-turbines and motor-generators, alongside progress in compressed air generation technologies, for the 1,400-MW ZhenAn pumped storage plant in Shaanxi province.

 

Related News

View more

Massive power line will send Canadian hydropower to New York

Twin States Clean Energy Link connects New England to Hydro-Quebec via a 1,200 MW transmission line, DOE-backed capacity, underground segments, existing corridors, boosting renewable energy reliability across Vermont and New Hampshire with cross-border grid flexibility.

 

Key Points

DOE-backed 1,200 MW line linking Hydro-Quebec to New England, adding clean capacity with underground routes.

✅ 1,200 MW cross-border capacity for the New England grid

✅ Uses existing corridors; underground in VT and northern NH

✅ DOE capacity contract lowers risk and spurs investment

 

A proposal to build a new transmission line to connect New England with Canadian hydropower is one step closer to reality.

The U.S. Department of Energy announced Monday that it has selected the Twin States Clean Energy Link as one of three transmission projects that will be part of its $1.3 billion cross-border transmission initiative to add capacity to the grid.

WBUR is a nonprofit news organization. Our coverage relies on your financial support. If you value articles like the one you're reading right now, give today.

Twin States is a proposal from National Grid, a utility company that serves Massachusetts, New York, and Rhode Island, and also owns transmission in England and Wales as the region advances projects like the Scotland-to-England subsea link that expand renewable flows, and the non-profit Citizens Energy Corporation.

The transmission line would connect New England with power from Hydro-Quebec, moving into the United States from Canada in Northern Vermont and crossing into New Hampshire near Dalton. It would run through parts of Grafton, Merrimack, and Hillsborough counties, routing through a substation in Dunbarton and ending at a proposed new substation in Londonderry. (Here's a map of the Twin States proposal.)

The federal funding will allow the U.S. Department of Energy to purchase capacity on the planned transmission line, which officials say reduces the risk for other investors and can help encourage others to purchase capacity.

The project has gotten support from local officials in Vermont and New Hampshire, but there are still hurdles to cross. The contract negotiation process is beginning, National Grid said, and the proposal still needs approvals from regulators before construction could begin.

First Nations communities in Canada have opposed transmission lines connecting Hydro-Quebec with New England in the past, and the company has faced scrutiny from environmental groups.

What would Twin States look like?
Transmission projects, like the failed Northern Pass proposal, have been controversial in New England, though the Great Northern Transmission Line progressed in Minnesota.

But Reihaneh Irani-Famili, vice president of capital delivery, project management and construction at National Grid, said this one is different because the developers listened to community concerns before planning the project.

“They did not want new corridors of infrastructure, so we made sure that we're using existing right of way,” she said. “They did not want the visual impact and some of the newer corridors of infrastructure, we're making sure we're undergrounding portions of the line.”

In Vermont and northern New Hampshire, the transmission lines would be buried underground along state roads. South of Littleton, they would be located within existing transmission corridors.

The developers say the lines could provide 1,200 megawatts of transmission capacity. The project would have the ability to carry electricity from hydro facilities in Quebec to New England, and would also be able to bring electricity from New England into Quebec, a step toward broader macrogrid connectivity across regions.

“Those hydro dams become giant green batteries for the region, and they hold that water until we need the electrons,” Irani-Famili said. “So if you think about our energy system not as one that sees borders, but one that sees resources, this is connecting the Quebec resources to the New England resources and helping all of us get into that cleaner energy future with a lot less build than we otherwise would have.”

Irani-Famili says the transmission line could help facilitate more clean energy resources like offshore wind coming online. In a report released last week by New Hampshire’s Department of Energy, authors said importing Canadian hydropower could be one of the most cost-effective ways to move away from fossil fuels on the electric grid.

National Grid estimates the project will help save energy customers $8.3 billion in its first 12 years. The developers are constructing a $260 million “community benefits plan” that would take some profits from the transmission line and give that money back to communities that host the transmission lines and environmental justice communities in New England.

 

Related News

View more

Wartsila to Power USA’s First Battery-Electric High-Speed Ferries

San Francisco Battery-Electric Ferries will deliver zero-emission, high-speed passenger service powered by Wartsila electric propulsion, EPMS, IAS, batteries, and shore power, advancing maritime decarbonization under the REEF program and USCG Subchapter T standards.

 

Key Points

They are the first US zero-emission high-speed passenger ferries using integrated electric propulsion and shore power

✅ Dual 625 kW motors enable up to 24-knot service speeds

✅ EPMS, IAS, DC hub, and shore power streamline operations

✅ Built to USCG Subchapter T for safety and compliance

 

Wartsila, a global leader in sustainable marine technology, has been selected to supply the electric propulsion system for the United States' first fully battery-electric, zero-emission high-speed passenger ferries. This significant development marks a pivotal step in the decarbonization of maritime transport, aligning with California's ambitious environmental goals, including recent clean-transport investments across ports and corridors.

A Leap Toward Sustainable Maritime Transport

The project, commissioned by All American Marine (AAM) on behalf of San Francisco Bay Ferry, involves the construction of three 150-passenger ferries, reflecting broader U.S. advances like the Washington State Ferries hybrid upgrade now underway. These vessels will operate on new routes connecting the rapidly developing neighborhoods of Treasure Island and Mission Bay to downtown San Francisco. The ferries are part of the Rapid Electric Emission Free (REEF) Ferry Program, a comprehensive initiative by San Francisco Bay Ferry to transition its fleet to zero-emission propulsion technology. The first vessel is expected to join the fleet in early 2027.

Wärtsilä’s Role in the Project

Wärtsilä's involvement encompasses the supply of a comprehensive electric propulsion system, including the Energy and Power Management System (EPMS), integrated automation system (IAS), batteries, DC hub, transformers, electric motors, and shore power supply. This extensive scope underscores Wärtsilä’s expertise in providing integrated solutions for emission-free marine transportation. The company's extensive global experience in developing and supplying integrated systems and solutions for zero-emission high-speed vessels, as seen with electric ships on the B.C. coast operating today, was a key consideration in the selection process.

Technical Specifications of the Ferries

The ferries will be 100 feet (approximately 30 meters) in length, with a beam of 26 feet and a draft of 5.9 feet. Each vessel will be powered by dual 625-kilowatt electric motors, enabling them to achieve speeds of up to 24 knots. The vessels will be built to U.S. Coast Guard Subchapter T standards, ensuring compliance with stringent safety regulations.

Environmental and Operational Benefits

The transition to battery-electric propulsion offers numerous environmental and operational advantages. Electric ferries produce zero emissions during operation, as demonstrated by Berlin's electric ferry deployments, significantly reducing the carbon footprint of maritime transport. Additionally, electric propulsion systems are generally more efficient and require less maintenance compared to traditional diesel engines, leading to lower operational costs over the vessel's lifespan.

Broader Implications for Maritime Decarbonization

This project is part of a broader movement toward sustainable maritime transport in the United States. San Francisco Bay Ferry has also approved the purchase of two larger 400-passenger battery-electric ferries for transbay routes, further expanding its commitment to zero-emission operations. The agency has secured approximately $200 million in funding from local, state, and federal sources, echoing infrastructure bank support seen in B.C., to support these initiatives, including vessel construction and terminal electrification.

Wartsila’s involvement in this project highlights the company's leadership in the maritime industry's transition to sustainable energy solutions, including hybrid-electric pathways like BC Ferries' new hybrids now in service. With a proven track record in supplying integrated systems for zero-emission vessels, Wärtsilä is well-positioned to support the global shift toward decarbonized maritime transport.

As the first fully battery-electric high-speed passenger ferries in the United States, these vessels represent a significant milestone in the journey toward sustainable and environmentally responsible maritime transportation, paralleling regional advances such as the Kootenay Lake electric-ready ferry entering service. The collaboration between Wärtsilä, All American Marine, and San Francisco Bay Ferry exemplifies the collective effort required to realize a zero-emission future for the maritime industry.

The deployment of these battery-electric ferries in San Francisco Bay not only advances the city's environmental objectives but also sets a precedent for other regions to follow. With continued innovation and collaboration, the maritime industry can look forward to a future where sustainable practices are the standard, not the exception.

 

Related News

View more

Ontario plunging into energy storage as electricity supply crunch looms

Ontario Energy Storage Procurement accelerates grid flexibility as IESO seeks lithium batteries, pumped storage, compressed air, and flywheels to balance renewables, support EV charging, and complement gas peakers during Pickering refits and rising electricity demand.

 

Key Points

Ontario's plan to procure 2,500 MW of storage to firm renewables, aid EV charging, and add flexible grid capacity.

✅ 2,500 MW storage plus 1,500 MW gas for 2025-2027 reliability

✅ Mix: lithium batteries, pumped storage, compressed air, flywheels

✅ Enables VPPs via EVs, demand response, and hybrid solar-storage

 

Ontario is staring down an electricity supply crunch and amid a rush to secure more power, it is plunging into the world of energy storage — a relatively unknown solution for the grid that experts say could also change energy use at home.

Beyond the sprawling nuclear plants and waterfalls that generate most of the province’s electricity sit the batteries, the underground caverns storing compressed air to generate electricity, and the spinning flywheels waiting to store energy at times of low demand and inject it back into the system when needed.

The province’s energy needs are quickly rising, with the proliferation of electric vehicles and growing Canada-U.S. collaboration on EV adoption, and increasing manufacturing demand for electricity on the horizon just as a large nuclear plant that supplies 14 per cent of Ontario’s electricity is set to be retired and other units are being refurbished.

The government is seeking to extend the life of the Pickering Nuclear Generating Station, planning an import agreement for power with Quebec, rolling out conservation programs, and — controversially — relying on more natural gas to fill the looming gap between demand and supply, amid Northern Ontario sustainability debates.

Officials with the Independent Electricity System Operator say a key advantage of natural gas generation is that it can quickly ramp up and down to meet changes in demand. Energy storage can provide that same flexibility, those in the industry say.

Energy Minister Todd Smith has directed the IESO to secure 1,500 megawatts of new natural gas capacity between 2025 and 2027, along with 2,500 megawatts of clean technology such as energy storage that can be deployed quickly, which together would be enough to power the city of Toronto.

It’s a far cry from the 54 megawatts of energy storage in use in Ontario’s grid right now.

Smith said in an interview that it’s the largest active procurement for energy storage in North America.

“The one thing that we want to ensure that we do is continue to add clean generation as much as possible, and affordable and clean generation that’s reliable,” he said.

Rupp Carriveau, director of the Environmental Energy Institute at the University of Windsor, said the timing is good.

“The space is there, the technology is there, and the willingness among private industry to respond is all there,” he said. “I know of a lot of companies that have been rubbing their hands together, looking at this potential to construct storage capacity.”

Justin Rangooni, the executive director of Energy Storage Canada, said because of the relatively tight timelines, the 2,500 megawatts is likely to be mostly lithium batteries. But there are many other ways to store energy, other than a simple battery.

“As we get to future procurements and as years pass, you’ll start to see possibly pump storage, compressed air, thermal storage, different battery chemistry,” he said.

Pump storage involves using electricity during off-peak periods to pump water into a reservoir and slowly releasing it to run a turbine and generate electricity when it’s needed. Compressed air works similarly, and old salt caverns in Goderich, Ont., are being used to store the compressed air.

In thermal storage, electricity is used to heat water when demand is low and when it’s needed, water stored in tanks can be used as heat or hot water.

Flywheels are large spinning tops that can store kinetic energy, which can be used to power a turbine and produce electricity. A flywheel facility in Minto, Ont., also installed solar panels on its roof and became the first solar storage hybrid facility in Ontario, said a top IESO official.

Katherine Sparkes, the IESO’s director of innovation, research and development, said it’s exciting, from a grid perspective.

“As we kind of look to the future and we think about gas phase out and electrification, one of the big challenges that all power systems across North America and around the world are looking at is: how do you accommodate increasing amounts of variable, renewable resources and just make better use of your grid assets,” she said.

“Hybrids, storage generation pairings, gives you that opportunity to deal with the variability of renewables, so to store electricity when the sun isn’t shining, or the wind isn’t blowing, and use it when you need it to.”

The small amount of storage already in the system provides more fine tuning of the electricity system, whereas 2,500 megawatts will be a more “foundational” part of the toolkit, said Sparkes.

But what’s currently on the grid is far from the only storage in the province. Many commercial and industrial consumers, such as large manufacturing facilities or downtown office buildings, are using storage to manage their electricity usage, relying on battery energy when prices are high.

The IESO sees that as an opportunity and has changed market rules to allow those customers to sell electricity back to the grid when needed.

As well, the IESO has its eye on the thousands of mobile batteries in electric vehicles, a trend seen in California, that shuttle people around the province every day but sit unused for much of the time.

“If we can enable those batteries to work together in aggregation, or work with other types of technologies like solar or smart building systems in a configuration, like a group of technologies, that becomes a virtual power plant,” Sparkes said.

Peak Power, a company that seeks to “make power plants obsolete,” is running a pilot project with electric vehicles in three downtown Toronto office buildings in which the car batteries can provide electricity to reduce the facility’s overall demand during peak periods using vehicle-to-building charging with bidirectional chargers.

In that model, one vehicle can earn $8,000 per year, said cofounder and chief operating officer Matthew Sachs.

“Battery energy storage will change the energy industry in the same way and for the same reasons that refrigeration changed the milk industry,” he said.

“As you had refrigeration, you could store your commodity and that changed the distribution channels of it. So I believe that energy storage is going to radically change the distribution channels of energy.”

If every home has a solar panel, an electric vehicle and a residential battery, it becomes a generating station, a decentralization that’s not only more environmentally friendly, but also relies less on “monopolized utilities,” Sachs said.

In the next decade, energy demand from electric vehicles is projected to skyrocket, making vehicle-to-grid integration increasingly relevant, and Sachs said the grid can’t grow enough to accommodate a peak demand of hundreds of thousands of vehicles being plugged in to charge at the end of the workday commute. Authorities need to be looking at more incentives such as time-of-use pricing and price signals to ensure the demand is evened out, he said.

“It’s a big risk as much as it’s a big opportunity,” he said. “If we do it wrong, it will cost us billions to fix. If we do it right, it can save us billions.”

Jack Gibbons, the chair of the Ontario Clean Air Alliance, said the provincial and federal governments need to fund and install bidirectional chargers in order to fully take advantage of electric vehicles.

“This is a huge missed opportunity,” he said.

 

Related News

View more

Ontario Breaks Ground on First Small Modular Nuclear Reactor

Ontario SMR BWRX-300 leads Canada in next-gen nuclear energy at Darlington, with GE Vernova and Hitachi, delivering clean, reliable power via modular design, passive safety, scalability, and lower costs for grid integration.

 

Key Points

Ontario SMR BWRX-300 is a 300 MW modular boiling water reactor at Darlington with passive safety and clean power.

✅ 300 MW BWR supplies power for about 300,000 homes

✅ Passive safety enables safe shutdown without external power

✅ Modular design reduces costs and speeds grid integration

 

Ontario has initiated the construction of Canada's first small modular nuclear reactor (SMR), supported by OPG's SMR commitment to deployment, marking a significant milestone in the province's energy strategy. This development positions Ontario at the forefront of next-generation nuclear technology within the G7 nations.

The project, known as the Darlington New Nuclear Project, is being led by Ontario Power Generation (OPG) in collaboration with GE Vernova and Hitachi Nuclear Energy, and through its OPG-TVA partnership on new nuclear technology development. The chosen design is the BWRX-300, a 300-megawatt boiling water reactor that is approximately one-tenth the size and complexity of traditional nuclear reactors. The first unit is expected to be operational by 2029, with plans for additional units to follow.

Each BWRX-300 reactor is projected to supply electricity to about 300,000 homes, contributing to Ontario's efforts, which include the decision to refurbish Pickering B for additional baseload capacity, to meet the anticipated 75% increase in electricity demand by 2050. The compact design of the SMR allows for easier integration into existing infrastructure, reducing the need for extensive new transmission lines.

The economic impact of the project is substantial. The construction of four such reactors is expected to create up to 18,000 jobs and contribute approximately $38.5 billion CAD to the Canadian economy, reflecting the economic benefits of nuclear projects over 65 years. The modular nature of SMRs also allows for scalability, with each additional unit potentially reducing costs through economies of scale.

Safety is a paramount consideration in the design of the BWRX-300. The reactor employs passive safety features, meaning it can safely shut down without the need for external power or operator intervention. This design enhances the reactor's resilience to potential emergencies, aligning with stringent regulatory standards.

Ontario's commitment to nuclear energy is further demonstrated by its plans for four SMRs at the Darlington site. This initiative reflects a broader strategy to diversify the province's energy mix, incorporating clean and reliable power sources to complement renewable energy efforts.

While the development of SMRs in Ontario is a significant step forward, it also aligns with the Canadian nuclear initiative positioning Canada as a leader in the global nuclear energy landscape. The successful implementation of the BWRX-300 could serve as a model for other nations exploring advanced nuclear technologies.

Ontario's groundbreaking work on small modular nuclear reactors represents a forward-thinking approach to energy generation. By embracing innovative technologies, the province is not only addressing future energy demands but also, through the Pickering NGS life extension, contributing to the global transition towards sustainable and secure energy solutions.

 

Related News

View more

Report: Solar ITC Extension Would Be ‘Devastating’ for US Wind Market

Solar ITC Impact on U.S. Wind frames how a 30% solar investment tax credit could undercut wind PTC economics, shift corporate procurement, and, without transmission and storage, slow onshore builds despite offshore wind momentum.

 

Key Points

It is how a solar ITC extension may curb U.S. wind growth absent PTC parity, transmission, storage, and offshore backing.

✅ ITC at 30% risks shifting corporate procurement to solar.

✅ Post-PTC wind faces grid, transmission, and curtailment headwinds.

✅ Offshore wind, storage pairing, TOU demand could offset.

 

The booming U.S. wind industry, amid a wind power surge, faces an uncertain future in the 2020s. Few factors are more important than the fate of the solar ITC.

An extension of the solar investment tax credit (ITC) at its 30 percent value would be “devastating” to the future U.S. wind market, according to a new Wood Mackenzie report.

The U.S. is on track to add a record 14.6 gigawatts of new wind capacity in 2020, despite Covid-19 impacts, and nearly 39 gigawatts during a three-year installation boom from 2019 to 2021, according to Wood Mackenzie’s 2019 North America Wind Power Outlook.

But the market’s trajectory begins to look highly uncertain from the early 2020s onward, and solar is one of the main reasons why.

Since the dawn of the modern American renewables market, the wind and solar sectors have largely been allies on the national stage, benefiting from many of the same favorable government plans and sharing big-picture goals. Until recently, wind and solar companies rarely found themselves in direct competition.

But the picture is changing as solar catches up to wind on cost and the grid penetration of renewables surges. What was once a vague alliance between the two fastest growing renewables technologies could morph into a serious rivalry.

While many project developers are now active in both sectors, including NextEra Energy Resources, Invenergy and EDF, the country’s thriving base of wind manufacturers could face tougher days ahead.

 

The ITC's inherent advantage

At this point, wind remains solar’s bigger sibling in many ways.

The U.S. has nearly 100 gigawatts of installed wind capacity today, compared to around 67 gigawatts of solar. With their substantially higher capacity factors, wind farms generated four times more power for the U.S. grid last year than utility-scale solar plants, for a combined wind-solar share of 8.2 percent, according to government figures, even as renewables are projected to reach one-fourth of U.S. electricity generation. (Distributed PV systems further add to solar’s contribution.)

But it's long been clear that wind would lose its edge at some point. The annual solar market now regularly tops wind. The cost of solar energy is falling more rapidly, and appears to have more runway for further reduction. Solar’s inherent generation pattern is more valuable in many markets, delivering power during peak-demand hours, while the wind often blows strongest at night.

 

And then there’s the matter of the solar ITC.

In 2015, both wind and solar secured historic multi-year extensions to their main federal subsidies. The extensions gave both industries the longest period of policy clarity they’ve ever enjoyed, setting in motion a tidal wave of installations set to crest over the next few years.

Even back in 2015, however, it was clear that solar got the better deal in Washington, D.C.

While the wind production tax credit (PTC) began phasing down for new projects almost immediately, solar developers were given until the end of 2019 to qualify projects for the full ITC.

And critically, while the wind PTC drops to nothing after its sunset, commercially owned solar projects will remain eligible for a 10 percent ITC forever, based on the existing legislation. Over time, that amounts to a huge advantage for solar.

In another twist, the solar industry is now openly fighting for an extension of the 30 percent ITC, while the wind industry seemingly remains cooler on the prospect of pushing for a similar prolongation — having said the current PTC extension would be the last.

 

Plenty of tailwinds, too

Wood Mackenzie's report catalogues multiple factors that could work for or against the wind market in the "uncharted" post-PTC years, many of them, including the Covid-19 crisis, beyond the industry’s direct control.

If things go well, annual installations could bounce back to near-record levels by 2027 after a mid-decade contraction, the report says. But if they go badly, installations could remain depressed at 4 gigawatts or below from 2022 through most of the coming decade, and that includes an anticipated uplift from the offshore market.

An extension of the solar ITC without additional wind support would “severely compound” the wind market’s struggle to rebound in the 2020s, the report says. The already-evident shift in corporate renewables procurement from wind to solar could intensify dramatically.

The other big challenge for wind in the 2020s is the lack of progress on transmission infrastructure that would connect potentially massive low-cost wind farms in interior states with bigger population centers. A hoped-for national infrastructure package that might address the issue has not materialized.

Even so, many in the wind business remain cautiously optimistic about the post-PTC years, with a wind jobs forecast bolstering sentiment, and developers continue to build out longer-term project pipelines.

Turbine technology continues to improve. And an extension of the solar ITC is far from assured.

Other factors that could work in wind’s favor in the years ahead include:

The nascent offshore sector, which despite lingering regulatory uncertainty at the federal level looks set to blossom into a multi-gigawatt annual market by the mid-2020s, in line with an offshore wind forecast that highlights substantial growth potential. Lobbying efforts for an offshore wind ITC extension are gearing up, offering a potential area for cooperation between wind and solar.

The potential linkage of policy support for energy storage to wind projects, building on the current linkage with solar.

Growing electric vehicle sales and a shift toward time-of-use retail electricity billing, which could boost power demand during off-peak hours when wind generation is strong.

The land-use advantages wind farms have over solar in some agricultural regions.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.