Build more reactors in Bowmanville soon, insiders say

By Durham News


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The recession isn't going to last forever and when it ends, Ontario needs to be well into the process aimed at providing baseload electricity — and that's why the province needs to get building new reactors at Darlington, say industry insiders.

The province announced June 29 that while Atomic Energy of Canada Limited had provided a compliant bid to build much-anticipated new nuclear reactors at Bowmanville's Darlington site, it was billions too high. Energy and Infrastructure Minister George Smitherman said federally-owned AECL needed to "sharpen its pencils" before coming back with a better offer.

A few weeks later, Bruce Power, which owns the nuclear plant in Bruce County on Lake Huron, announced it wouldn't go ahead with building new reactors there. That came just as news broke that decreased demand meant Bruce was selling power at low or negative prices to keep reactors going, or, on occasion, even shutting them down completely.

So, do we still need new reactors?

Yes, say insiders, some of whom call the province's delay in moving on new reactors at Darlington shortsighted, given both the lead time necessary to build them, and the premise lower demand caused by economic turbulence isn't likely to last.

"Ontario cannot afford to wait much longer," said Rosemary Yeremian, of Toronto-based market research firm Strategic Insights, in a letter to Mr. Smitherman. "The longer the wait, the more likely we will face electricity shortages when the economy bounces back — a scenario our manufacturers and businesses cannot afford."

Ms. Yeremian recently published a paper looking at what is likely to happen when the recession ends. She looked at two other fairly recent recessions, in the 1980s and 1990s, and determined that in spite of changes to Ontario's economy and some shift in the manufacturing sector present in today's recession, and in spite of shifts toward conservation, there is likely to be a "resurgence of electricity demand" when the current economic downturn ends.

That's not to say Ontario should expect to see the peaks in demand seen after the previous two recessions, she noted in her paper. But Ontario still needs to be prepared.

"It's important to be careful and not get carried away by current recessionary circumstances," she said in the research document. "It is easy to predict doom and gloom for the manufacturing sector given the realities of today's credit environment. However, it is also important to remember that the heart of Ontario's manufacturing base continues to be strong."

The current delay to get moving on the new reactors is shortsighted, she said in an interview.

"Ontario has absolutely no other choice for baseload electricity generation other than nuclear," she said.

It's a perspective shared by Dr. Neil Alexander, president of the Organization of CANDU Industries.

Not only could the delay have implications in terms of ensuring consistent provision of baseload electricity, but it risks Canada's place in the growing nuclear market, Dr. Alexander said.

Ontario's first mistake, he contends, is that by going to a Request for Proposal and having non-Canadian firms bid along with Canadian AECL, the wrong message was sent to those international countries considering building reactors.

"It's a bit like the chairman of GM saying, 'I have to buy a new car; I think I'll see what BMW and Volkswagen can do for me'," Dr. Alexander said.

The delay in moving forward was the next error, said Dr. Alexander, adding what needs to happen, instead of the province simply throwing the ball back into the federal court without hinting at "what game they're playing," is the two sides get together and negotiate.

"I'm absolutely sure that if they were able to do that, we could sharpen the pencils dramatically," Dr. Alexander said.

Meanwhile, the Power Workers Union also said it's time to get going on the new reactors.

"As the economy rebuilds, and some analysts are saying that now, you have to have an affordable, reliable electricity supply to accommodate the upswing in the economy," said John Sprackett, staff officer with the PWU. "Ontario has a long history of being very good at that."

True, said Jacquie Hoornweg, of Ontario Power Generation. Right now, OPG's nuclear plants in Durham are providing about 30 per cent of all the electricity used in the province.

"One in every three light bulbs that go on, that power's coming from Durham," she said.

The existing reactors at Darlington figure strongly into OPG's performance, Ms. Hoornweg said, noting the plant's 94-per cent capability factor in 2008.

"Darlington really has become a leader, not only in Canada, but across the industry," she said.

And, the future should include more of the same, said Dr. Alexander.

It would be an easy sell, he said, "if anyone was listening.

"It's one of the few industries that we are now a leader in, one of the few industries that is growing," he said. "It's a great opportunity. We're struggling to understand why other people don't see that."

Related News

The Impact of AI on Corporate Electricity Bills

AI Energy Consumption strains corporate electricity bills as data centers and HPC workloads run nonstop, driving carbon emissions. Efficiency upgrades, renewable energy, and algorithm optimization help control costs and enhance sustainability across industries.

 

Key Points

AI Energy Consumption is the power used by AI compute and data centers, impacting costs and sustainability.

✅ Optimize cooling, hardware, and workloads to cut kWh per inference

✅ Integrate on-site solar, wind, or PPAs to offset data center power

✅ Tune models and algorithms to reduce compute and latency

 

Artificial Intelligence (AI) is revolutionizing industries with its promise of increased efficiency and productivity. However, as businesses integrate AI technologies into their operations, there's a significant and often overlooked impact: the strain on corporate electricity bills.

AI's Growing Energy Demand

The adoption of AI entails the deployment of high-performance computing systems, data centers, and sophisticated algorithms that require substantial energy consumption. These systems operate around the clock, processing massive amounts of data and performing complex computations, and, much like the impact on utilities seen with major EV rollouts, contributing to a notable increase in electricity usage for businesses.

Industries Affected

Various sectors, including finance, healthcare, manufacturing, and technology, rely on AI-driven applications for tasks ranging from data analysis and predictive modeling to customer service automation and supply chain optimization, while manufacturing is influenced by ongoing electric motor market growth that increases electrified processes.

Cost Implications

The rise in electricity consumption due to AI deployments translates into higher operational costs for businesses. Corporate entities must budget accordingly for increased electricity bills, which can impact profit margins and financial planning, especially in regions experiencing electricity price volatility in Europe amid market reforms. Managing these costs effectively becomes crucial to maintaining competitiveness and sustainability in the marketplace.

Sustainability Challenges

The environmental impact of heightened electricity consumption cannot be overlooked. Increased energy demand from AI technologies contributes to carbon emissions and environmental footprints, alongside rising e-mobility demand forecasts that pressure grids, posing challenges for businesses striving to meet sustainability goals and regulatory requirements.

Mitigation Strategies

To address the escalating electricity bills associated with AI, businesses are exploring various mitigation strategies:

  1. Energy Efficiency Measures: Implementing energy-efficient practices, such as optimizing data center cooling systems, upgrading to energy-efficient hardware, and adopting smart energy management solutions, can help reduce electricity consumption.

  2. Renewable Energy Integration: Investing in renewable energy sources like solar or wind power and energy storage solutions to enhance flexibility can offset electricity costs and align with corporate sustainability initiatives.

  3. Algorithm Optimization: Fine-tuning AI algorithms to improve computational efficiency and reduce processing times can lower energy demands without compromising performance.

  4. Cost-Benefit Analysis: Conducting thorough cost-benefit analyses of AI deployments to assess energy consumption against operational benefits and potential rate impacts, informed by cases where EV adoption can benefit customers in broader electricity markets, helps businesses make informed decisions and prioritize energy-saving initiatives.

Future Outlook

As AI continues to evolve and permeate more aspects of business operations, the demand for electricity will likely intensify and may coincide with broader EV demand projections that increase grid loads. Balancing the benefits of AI-driven innovation with the challenges of increased energy consumption requires proactive energy management strategies and investments in sustainable technologies.

Conclusion

The integration of AI technologies presents significant opportunities for businesses to enhance productivity and competitiveness. However, the corresponding surge in electricity bills underscores the importance of proactive energy management and sustainability practices. By adopting energy-efficient measures, leveraging renewable energy sources, and optimizing AI deployments, businesses can mitigate cost impacts, reduce environmental footprints, and foster long-term operational resilience in an increasingly AI-driven economy.

 

Related News

View more

More pylons needed to ensure 'lights stay on' in Scotland, says renewables body

Scottish Renewable Grid Upgrades address outdated infrastructure, expanding transmission lines, pylons, and substations to move clean energy, meet rising electricity demand, and integrate onshore wind, offshore wind, and battery storage across Scotland.

 

Key Points

Planned transmission upgrades in Scotland to move clean power via new lines and substations for a low-carbon grid.

✅ Fivefold expansion of transmission lines by 2030

✅ Enables onshore and offshore wind integration

✅ New pylons, substations, and routes face local opposition

 

Renewable energy in Scotland is being held back by outdated grid infrastructure, industry leaders said, with projects stuck on hold underscoring their warning that new pylons and power lines are needed to "ensure our lights stay on".

Scottish Renewables said new infrastructure is required to transmit the electricity generated by green power sources and help develop "a clean energy future" informed by a broader green recovery agenda.

A new report from the organisation - which represents companies working across the renewables sector - makes the case for electricity infrastructure to be updated, aligning with global network priorities identified elsewhere.

But it comes as electricity firms looking to build new lines or pylons face protests, with groups such as the Strathpeffer and Contin Better Cable Route challenging power giant SSEN over the route chosen for a network of pylons that will run for about 100 miles from Spittal in Caithness to Beauly, near Inverness.

Scottish Renewables said it is "time to be upfront and honest" about the need for updated infrastructure.

It said previous work by the UK National Grid estimated "five times more transmission lines need to be built by 2030 than have been built in the past 30 years, at a cost of more than £50bn".

The Scottish Renewables report said: "Scotland is the UK's renewable energy powerhouse. Our winds, tides, rainfall and longer daylight hours already provide tens of thousands of jobs and billions of pounds of economic activity.

"But we're being held back from doing more by an electricity grid designed for fossil fuels almost a century ago, a challenge also seen in the Pacific Northwest today."

Investment in the UK transmission network has "remained flat, and even decreased since 2017", echoing stalled grid spending trends elsewhere, the report said.

It added: "We must build more power lines, pylons and substations to carry that cheap power to the people who need it - including to people in Scotland.

"Electricity demand is set to increase by 50% in the next decade and double by mid-century, so it's therefore wrong to say that Scottish households don't need more power lines, pylons and substations.

Renewable energy in Scotland is being held back by outdated grid infrastructure, industry leaders said, as they warned new pylons and power lines are needed to "ensure our lights stay on".

Scottish Renewables said new infrastructure is required to transmit the electricity generated by green power sources and help develop "a clean energy future".

A new report from the organisation - which represents companies working across the renewables sector - makes the case for electricity infrastructure to be updated.

But it comes as electricity firms looking to build new lines or pylons face protests, with groups such as the Strathpeffer and Contin Better Cable Route challenging power giant SSEN over the route chosen for a network of pylons that will run for about 100 miles from Spittal in Caithness to Beauly, near Inverness.

Scottish Renewables said it is "time to be upfront and honest" about the need for updated infrastructure.

It said previous work by the UK National Grid estimated "five times more transmission lines need to be built by 2030 than have been built in the past 30 years, at a cost of more than £50bn".

The Scottish Renewables report said: "Scotland is the UK's renewable energy powerhouse. Our winds, tides, rainfall and longer daylight hours already provide tens of thousands of jobs and billions of pounds of economic activity.

"But we're being held back from doing more by an electricity grid designed for fossil fuels almost a century ago."

Investment in the UK transmission network has "remained flat, and even decreased since 2017", the report said.

It added: "We must build more power lines, pylons and substations to carry that cheap power to the people who need it - including to people in Scotland.

"Electricity demand is set to increase by 50% in the next decade and double by mid-century, so it's therefore wrong to say that Scottish households don't need more power lines, pylons and substations.

"We need them to ensure our lights stay on, as excess solar can strain networks in the same way consumers elsewhere in the UK need them.

"With abundant natural resources, Scotland's home-grown renewables can be at the heart of delivering the clean energy needed to end our reliance on imported, expensive fossil fuel.

"To do this, we need a national electricity grid capable of transmitting more electricity where and when it is needed, echoing New Zealand's electricity debate as well."

Click to subscribe to ClimateCast with Tom Heap wherever you get your podcasts

Nick Sharpe, director of communications and strategy at Scottish Renewables, said the current electricity network is "not fit for purpose".

He added: "Groups and individuals who object to the construction of power lines, pylons and substations largely do so because they do not like the way they look.

"By the end of this year, there will be just over 70 months left to achieve our targets of 11 gigawatts (GW) offshore and 12 GW onshore wind.

"To ensure we maximise the enormous socioeconomic benefits this will bring to local communities, we will need a grid fit for the 21st century."

 

Related News

View more

Russia and Ukraine Accuse Each Other of Violating Energy Ceasefire

Russia-Ukraine Energy Ceasefire Violations escalate as U.S.-brokered truce frays, with drone strikes, shelling, and grid attacks disrupting gas supply and power infrastructure across Kursk, Luhansk, Sumy, and Dnipropetrovsk, prompting sanctions calls.

 

Key Points

Alleged breaches of a U.S.-brokered truce, with both sides striking power grids, gas lines, and critical energy nodes.

✅ Drone and artillery attacks reported on power and gas assets

✅ Both sides accuse each other of breaking truce terms

✅ U.S. mediation faces verification and compliance hurdles

 

Russia and Ukraine have traded fresh accusations regarding violations of a fragile energy ceasefire, brokered by the United States, which both sides had agreed to last month. These new allegations highlight the ongoing tensions between the two nations and the challenges involved in implementing a truce amid global energy instability in such a complex and volatile conflict.

The U.S.-brokered ceasefire had initially aimed to reduce the intensity of the fighting, specifically in the energy sector, where both sides had previously targeted each other’s infrastructure. Despite this agreement, the accusations on Wednesday suggest that both Russia and Ukraine have continued their attacks on each other's energy facilities, a crucial aspect of the ceasefire’s terms.

Russia’s Ministry of Defence claimed that Ukrainian forces had launched drone and shelling attacks in the western Kursk region, cutting power to over 1,500 homes. This attack allegedly targeted key infrastructure, leaving several localities without electricity. Additionally, in the Russian-controlled part of Ukraine's Luhansk region, a Ukrainian drone strike hit a gas distribution station, severely disrupting the gas supply for over 11,000 customers in the area around Svatove.

In response, Ukrainian President Volodymyr Zelensky accused Russia of breaking the ceasefire. He claimed that Russian drone strikes had targeted an energy substation in Ukraine’s Sumy region, while artillery fire had damaged a power line in the Dnipropetrovsk region, leaving nearly 4,000 consumers without power even as Ukraine increasingly leans on electricity imports to stabilize the grid. Ukraine's accusations painted a picture of continued Russian aggression against critical energy infrastructure, a strategy that had previously been a hallmark of Russia’s broader military operations in the war.

The U.S. had brokered the energy truce as a potential stepping stone toward a more comprehensive ceasefire agreement. However, the repeated violations raise questions about the truce’s viability and the broader prospects for peace between Russia and Ukraine. Both sides are accusing each other of undermining the agreement, which had already been delicate due to previous suspicions and mistrust. In particular, the U.S. administration, led by President Donald Trump, has expressed impatience with the slow progress in moving toward a lasting peace, amid debates over U.S. national energy security priorities.

Kremlin spokesperson Dmitry Peskov defended Russia’s stance, emphasizing that President Vladimir Putin had shown a commitment to peace by agreeing to the energy truce, despite what he termed as daily Ukrainian attacks on Russian infrastructure. He reiterated that Russia would continue to cooperate with the U.S., even though the Ukrainian strikes were ongoing. This perspective suggests that Russia remains committed to the truce but views Ukraine’s actions as violations that could potentially derail efforts to reach a more comprehensive ceasefire.

On the other hand, President Zelensky argued that Russia was not adhering to the terms of the ceasefire. He urged the U.S. to take a stronger stance against Russia, including increasing sanctions on Moscow as punishment for its violations. Zelensky’s call for heightened sanctions is a continuation of his efforts to pressure international actors, particularly the U.S. and European countries, to provide greater energy security support for Ukraine’s struggle and to hold Russia accountable for its actions.

The ceasefire’s fragility is also reflected in the differing views between Ukraine and Russia on what constitutes a successful resolution. Ukraine had proposed a full 30-day ceasefire, but President Putin declined, raising concerns about monitoring and verifying compliance with the terms. This disagreement suggests that both sides are not entirely aligned on what a peaceful resolution should look like and how it can be realistically achieved.

The situation is complicated by the broader context of the war, which has now dragged on for over three years. The conflict has seen significant casualties, immense destruction, and deep geopolitical ramifications. Both countries are heavily reliant on their energy infrastructures, making any attack on these systems not only a military tactic but also a form of economic warfare. Energy resources, including electricity and natural gas, have become central to the ongoing conflict, with both sides using them to exert pressure on the other amid Europe's deepening energy crisis that reverberates beyond the battlefield.

As of now, it remains unclear whether the recent violations of the energy ceasefire will lead to a breakdown of the truce or whether the United States will intervene further to restore compliance, even as Ukraine prepares for winter amid energy challenges. The situation remains fluid, and the international community continues to closely monitor the developments. The U.S., which played a central role in brokering the energy ceasefire, has made it clear that it expects both sides to uphold the terms of the agreement and work toward a more permanent cessation of hostilities.

The continued accusations between Russia and Ukraine regarding the breach of the energy ceasefire underscore the challenges of negotiating peace in such a complex and entrenched conflict. While both sides claim to be upholding their commitments, the reality on the ground suggests that reaching a full and lasting peace will require much more than temporary truces. The international community, particularly the U.S., will likely continue to push for stronger actions to enforce compliance and to prevent the conflict from further escalating. The outcome of this dispute will have significant implications for both countries and the broader European energy landscape and security landscape.

 

Related News

View more

USA: 3 Ways Fossil Energy Ensures U.S. Energy Security

DOE Office of Fossil Energy safeguards energy security via the Strategic Petroleum Reserve, domestic critical minerals from coal byproducts, and carbon capture to curb CO2, strengthening resiliency amid shocks and supporting U.S. manufacturing and defense.

 

Key Points

A DOE program advancing energy security through SPR stewardship, critical minerals R&D, and carbon capture.

✅ Manages the Strategic Petroleum Reserve for emergency crude supply

✅ Develops domestic critical minerals from coal and mining byproducts

✅ Deploys carbon capture, utilization, and storage to cut CO2

 

The global economy has just experienced a period of unique transformation because of COVID-19. The fact that remains constant in this new economic landscape is that our society relies on energy; it’s an integral part of our day-to-day lives, even as U.S. energy use has evolved over time. According to the U.S. Energy Information Administration, approximately 80 percent of energy consumption in the United States comes from fossil fuels, so having access to a secure and reliable supply of those energy resources is more important than ever for national energy security considerations today. Below are three examples that highlight how our work at the U.S. Department of Energy’s Office of Fossil Energy (FE) helps ensure the Nation’s energy security and resiliency.

(1) Open crude oil reserves to respond to crises

FE has overall program responsibility for carrying out the mission of the Strategic Petroleum Reserve (SPR), the world’s largest supply of emergency crude oil. These federally-owned stocks are stored in massive underground salt caverns along the coastline of the Gulf of Mexico. The SPR is a powerful tool U.S. leaders use to respond to a wide range of crises, including energy crisis impacts on electricity and fuels, involving crude oil disruption or demand loss.  When the COVID-19 pandemic hit, the oil markets crashed and crude oil demand dropped drastically across the world. U.S. oil producers turned to the SPR to store their oil while broader energy dominance constraints were becoming evident in practice. This helped alleviate the pressure on producers to shut in oil production and proved to be a critical asset for American energy and national security.

(2) Use the Nation’s abundant coal reserves to produce valuable materials

Critical materials, including rare earth elements, are a group of chemical elements and materials with unique properties that support manufacturing of most modern technologies. They are essential components for critical defense and homeland security applications, green energy technologies, hybrid and electric vehicles, and high-value electronics. While these materials are not rare, they are hard to separate and expensive to extract. The United States relies heavily on imports from China. To reduce U.S. dependence on foreign sources, FE has a research and development program aimed at producing a domestic supply of critical materials from the Nation’s abundant coal resources and associated byproducts from legacy and current mining operations. Many of the technologies being developed can also be used to separate critical minerals from other mining materials and byproducts. Tapping into these resources has the potential to create new industries and revitalize coal communities and the workforce in coal-producing regions.

(3) Decrease carbon emissions for a cleaner energy future

FE is committed to balancing the Nation’s energy use with the need to protect the environment, and has a comprehensive portfolio of technological solutions that help keep carbon dioxide (CO2) emissions out of the atmosphere. For example, amid high natural gas prices that reinforce the case for clean electricity, the Department has been investing in carbon capture, utilization, and storage technologies for over a decade. These technologies capture CO2 emissions from various sources, including coal-fired power plants and manufacturing plants, before they enter the atmosphere. Several of these cutting-edge technologies have been deployed at major demonstration sites, supported by clean energy funding that aims to benefit millions. Three of these projects—Petra Nova, Archer Daniels Midland, and Air Products & Chemicals—have captured and injected over 10.8 million metric tons of CO2. The success of these projects is paving the way toward a cleaner and more sustainable American energy future.

 

Related News

View more

Grounding and Bonding and The NEC - Section 250

Electrical Grounding and Bonding NEC 250 Training equips electricians with Article 250 expertise, OSHA compliance knowledge, lightning protection strategies, and low-impedance fault current path design for safer industrial, commercial, and institutional power systems.

 

Key Points

Live NEC 250 course on grounding and bonding, covering safety, testing, and OSHA-compliant design.

✅ Interprets NEC Article 250 grounding and bonding rules

✅ Designs low-impedance fault current paths for safety

✅ Aligns with OSHA, lightning protection, and testing best practices

 

The Electricity Forum is organizing a series of live online Electrical Grounding and Bonding - NEC 250 training courses this Fall:

  • September 8-9 , 2020 - 10:00 am - 4:30 pm ET
  • October 29-30 , 2020 - 10:00 am - 4:30 pm ET
  • November 23-24 , 2020 - 10:00 am - 4:30 pm ET

 

This interactive 12-hour live online instructor-led  Grounding and Bonding and the NEC Training course takes an in-depth look at Article 250 of the National Electrical Code (NEC) and is designed to give students the correct information they need to design, install and maintain effective electrical grounding and bonding systems in industrial, commercial and institutional power systems, with substation maintenance training also relevant in many facilities.

One of the most important AND least understood sections of the NEC is the section on Electrical Grounding, where resources like grounding guidelines can help practitioners navigate key concepts.

No other section of the National Electrical Code can match Article 250 (Grounding and Bonding) for confusion that leads to misapplication, violation, and misinterpretation. It's generally agreed that the terminology used in Section 250 has been a source for much confusion for industrial, commercial and institutional electricians. Thankfully, this has improved during the last few revisions to Article 250.

Article 250 covers the grounding requirements for providing a path to the earth to reduce overvoltage from lightning, with lightning protection training providing useful context, and the bonding requirements for a low-impedance fault current path back to the source of the electrical supply to facilitate the operation of overcurrent devices in the event of a ground fault.

Our Electrical Grounding Training course will address all the latest changes to  the Electrical Grounding rules included in the NEC, and relate them to VFD drive training considerations for modern systems.

Our course will cover grounding fundamentals, identify which grounding system tests can prevent safety and operational issues at your facilities, and introduce related motor testing training topics, and details regarding which tests can be conducted while the plant is in operation versus which tests require a shutdown will be discussed. 

Proper electrical grounding and bonding of equipment helps ensure that the electrical equipment and systems safely remove the possibility of electric shock, by limiting the voltage imposed on electrical equipment and systems from lightning, line surges, unintentional contact with higher-voltage lines, or ground-fault conditions. Proper grounding and bonding is important for personnel protection, with electrical safety tips offering practical guidance, as well as for compliance with OSHA 29 CFR 1910.304(g) Grounding.

It has been determined that more than 70 per cent of all electrical problems in industrial, commercial and institutional power systems, including large projects like the New England Clean Power Link, are due to poor grounding, and bonding errors. Without proper electrical grounding and bonding, sensitive electronic equipment is subjected to destruction of data, erratic equipment operation, and catastrophic damage. This electrical grounding and bonding training course will National Electrical Code.

Complete course details here:

https://electricityforum.com/electrical-training/electrical-grounding-nec

 

 

 

Related News

View more

In 2021, 40% Of The Electricity Produced In The United States Was Derived From Non-Fossil Fuel Sources

Renewable Electricity Generation is accelerating the shift from fossil fuels, as wind, solar, and hydro boost the electric power sector, lowering emissions and overtaking nuclear while displacing coal and natural gas in the U.S. grid.

 

Key Points

Renewable electricity generation is power from non-fossil sources like wind, solar, and hydro to cut emissions.

✅ Driven by wind, solar, and hydro adoption

✅ Reduces fossil fuel dependence and emissions

✅ Increasing share in the electric power sector

 

The transition to electric vehicles is largely driven by a need to reduce our reliance on fossil fuels and reduce emissions associated with burning fossil fuels, while declining US electricity use also shapes demand trends in the power sector. In 2021, 40% of the electricity produced by the electric power sector was derived from non-fossil fuel sources.

Since 2007, the increase in non-fossil fuel sources has been largely driven by “Other Renewables” which is predominantly wind and solar. This has resulted in renewables (including hydroelectric) overtaking nuclear power’s share of electricity generation in 2021 for the first time since 1984. An increasing share of electricity generation from renewables has also led to a declining share of electricity from fossil fuel sources like coal, natural gas, and petroleum, with renewables poised to eclipse coal globally as deployment accelerates.

Includes net generation of electricity from the electric power sector only, and monthly totals can fluctuate, as seen when January power generation jumped on a year-over-year basis.

Net generation of electricity is gross generation less the electrical energy consumed at the generating station(s) for station service or auxiliaries, and the projected mix of sources is sensitive to policies and natural gas prices over time. Electricity for pumping at pumped-storage plants is considered electricity for station service and is deducted from gross generation.

“Natural Gas” includes blast furnace gas and other manufactured and waste gases derived from fossil fuels, while in the UK wind generation exceeded coal for the first time in 2016.

“Other Renewables” includes wood, waste, geo-thermal, solar and wind resources among others.

“Other” category includes batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and, beginning in 2001, non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels), noting that trends vary by country, with UK low-carbon generation stalling in 2019.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.