Coal ash polluting water, says group

By Rapid City Journal


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Coal ash waste from three power plants in North Dakota and South Dakota is polluting groundwater with arsenic, lead and other metals that could foul drinking water wells, three environmental groups asserted in a report.

The Environmental Integrity Project, the Sierra Club and Earthjustice said the report documented 39 new examples in 21 states of water pollution caused by coal ash.

The organizations contend state regulation of coal ash dumps is weak, and they want the Environmental Protection Agency to take over the job. The federal agency has proposed rules on the subject and is holding public hearings to take comment about them, the first of which is scheduled for Arlington, Va.

"The bottom line is that we can't just leave monitoring and drinking water protection up to the states. That hasn't worked," said J. Drake Hamilton, science policy director for Fresh Energy, a St. Paul, Minn., organization that advocates alternatives to coal-generated electric power.

State health regulators in North Dakota and South Dakota disputed some of the report's conclusions. It singles out the Antelope Valley and Leland Olds power stations in west-central North Dakota, which are owned by Bismarck-based Basin Electric Power Cooperative, and the Big Stone plant near Milbank in northeastern South Dakota, which is run by Otter Tail Power Co., of Fergus Falls, Minn.

David Glatt, environmental health chief for North Dakota's Health Department, said federal regulatory standards would probably be similar to the state's existing oversight of coal ash disposal sites.

North Dakota requires disposal of coal ash in a storage space lined with clay or composite plastic, Glatt said. Those cannot be near drinking water sources, he said, and monitoring wells keep track of groundwater conditions.

"We feel we have a program that would be equivalent to, or exceed, what EPA would come up with," Glatt said. "We do feel that environmentally, North Dakota is doing it right."

The report says arsenic levels at three monitoring wells at Basin Electric's Antelope Valley station have "risen dramatically" over 26 years. "The increasing arsenic trends... indicate that the arsenic is linked to the coal ash disposal," the report says.

Wells at the Leland Olds plant also have detected elevated levels of arsenic, lead and selenium, it says. All three are heavy metals that can cause health problems.

Scott Radig, director of the Health Department's waste management division, said the groundwater pollution was confined to the ash waste disposal sites. There is no evidence it is affecting drinking water, Radig said.

"We do not know of any public water supply or private water supply wells that are impacted at all," he said.

Health officials said the presence of arsenic, which occurs naturally in soils, is not unusual in North Dakota. Floyd Robb, a Basin spokesman, said the three Antelope Valley water monitoring wells cited in the report are at a higher elevation than other wells that have roughly the same arsenic levels, he said.

"Arsenic doesn't run uphill," he said.

The report says 21 of 25 water monitoring wells at South Dakota's Big Stone plant are contaminated, with up to 13 times the maximum drinking water standard for arsenic and seven times the amount of lead.

"Groundwater contour maps indicate the pollution is moving off site, yet no offsite monitoring or sampling of surface waters has occurred, despite state records indicating more than 100 private and public water wells are within five miles of the site," the report says.

A rebuttal posted at the South Dakota Department of Environment and Natural Resources' website links the groundwater readings to a leaking brine pond that is used to store waste from water-softening treatment. One brine pond leaked before the problem was discovered in 1998, the agency said.

"The Environmental Integrity Project is taking the ground water quality data gathered from a brine pond release that occurred more than 20 years ago," the agency's statement says. "The water treatment process used by Big Stone Power has nothing to do with its coal ash disposal practices, and in no way should be used to support any new regulations for coal ash disposal."

The agency said the soils around Big Stone also have naturally high levels of sulfate and metals.

Related News

N.B. Power hits pause on large new electricity customers during crypto review

N.B. Power Crypto Mining Moratorium underscores electricity demand risks from bitcoin mining, straining the energy grid and industrial load capacity in New Brunswick, as a cabinet order prioritizes grid reliability, utility planning, and allocation.

 

Key Points

Official pause on new large-scale crypto mining to protect N.B. Power grid capacity, stability, and reliable supply.

✅ Cabinet order halts new large-scale crypto load requests

✅ Review targets grid reliability, planning, and capacity

✅ Non-crypto industrial customers exempt from prolonged pause

 

N.B. Power says a freeze on servicing new, large-scale industrial customers in the province remains in place over concerns that the cryptocurrency sector's heavy electricity use could be more than the utility can handle.

The Higgs government quietly endorsed the moratorium in a cabinet order in March 2022 and ordered a review of how the sector might affect the reliable electricity supply and broader electricity future planning in the province.

The cabinet order, filed with the Energy and Utilities Board, said N.B. Power had "policy, technical and operational concerns about [its] capacity to service the anticipated additional load demand" from energy-intensive customers such as crypto mines.

It said the utility had received "several new large-scale, short-notice service requests" to supply electricity to crypto mining companies that could put "significant pressure" on the existing electricity supply.

The order, signed by Premier Blaine Higgs, said non-crypto companies shouldn't be subject to the pause for any longer than required for the review, amid shifts in regional plans like the Atlantic Loop that are altering timelines. Ws.

The freeze was ordered months after Taal Distributed Information Technologies Inc. announced plans to establish a 50-megawatt bitcoin mining operation and transaction processing facility in Grand Falls.

A town official said this week that the deal never went ahead.

24 hours a day
The Taal facility would have joined a 70-megawatt bitcoin mine in Grand Falls operated by Hive Blockchain Technologies.

Hive's Bitcoin mine comprises four large warehouses containing thousands of computers running 24 hours a day to earn cryptocurrency units.

The combined annual electricity consumption of the two mines would exceed what could be produced by the small modular nuclear reactor being designed by ARC Clean Energy Canada of Saint John, even as Nova Scotia advances efforts to harness the Bay of Fundy's powerful tides for clean power.

Put another way, the two mines would gobble up more than three months' electricity from N.B. Power's coal-fired Belledune generating station under current operations.

 

Related News

View more

Fire in manhole leaves thousands of Hydro-Québec customers without power

Montreal Power Outage linked to Hydro-Que9bec infrastructure after an underground explosion and manhole fire in Rosemont–La Petite–Patrie, disrupting the STM Blue Line and forcing strategic, cold-weather grid restoration on Be9langer Street.

 

Key Points

Outage from an underground blast and manhole fire disrupted STM service; Hydro-Que9bec restored the grid in cold weather.

✅ Peak impact: 41,000 customers; 10,981 still without power by 7:00 p.m.

✅ STM Blue Line restored after afternoon shutdown; Be9langer Street reopened.

✅ Hydro-Que9bec pacing restoration to avoid grid overload in cold weather.

 

Hydro-Québec says a power outage affecting Montreal is connected to an underground explosion and a fire in a manhole in Rosemont—La Petite–Patrie. 

The fire started in underground pipes belonging to Hydro-Québec on Bélanger Street between Boyer and Saint-André streets, according to Montreal firefighters, who arrived on the scene at 12:18 p.m.

The electricity had to be cut so that firefighters could get into the manhole where the equipment was located.

At the peak of the shutdown, nearly 41,000 customers were without power across Montreal.  As of 7:00 p.m., 10,981 clients still had no power.

In similar storms, Toronto power outages have persisted for hundreds, underscoring restoration challenges.

Hydro-Québec spokesperson Louis-Olivier Batty said the utility is being strategic about how it restores power across the grid. 

Because of the cold, and patterns seen during freezing rain outages, it anticipates that people will crank up the heat as soon as they get their electricity back, and that could trigger an overload somewhere else on the network, Batty said.

The Metro's Blue line was down much of the afternoon, but the STM announced the line was back up and running just after 4:30 p.m.

Bélanger Street was blocked to traffic much of the afternoon, however, it has now been reopened.

Batty said once the smoke clears, Hydro-Québec workers will take a look at the equipment to see what failed. 

 

Related News

View more

The UK’s energy plan is all very well but it ignores the forecast rise in global sea-levels

UK Marine Energy and Climate Resilience can counter sea level rise and storm surge with tidal power, subsea turbines, heat pumps, and flood barriers, delivering renewable electricity, stability, and coastal protection for the United Kingdom.

 

Key Points

Integrated use of tidal power, barriers, and heat pumps to curb sea level rise, manage storms, and green the UK grid.

✅ Tidal bridges and subsea turbines enhance baseload renewables

✅ Integrated barriers cut storm surge and river flood risk

✅ Heat pumps and marine heat networks decarbonize coastal cities

 

IN concentrating on electrically driven cars, the UK’s new ten-point energy plans, and recent UK net zero policies, ignores the elephant in the room.

It fails to address the forecast six-metre sea level rise from global warming rapidly melting the Greenland ice sheet.

Rising sea levels and storm surge, combined with increasingly heavy rainfall swelling our rivers, threaten not only hundreds of coastal communities but also much unprotected strategic infrastructure, including electricity systems that need greater resilience.

New nuclear power stations proposed in this United Kingdom plan would produce radioactive waste requiring thousands of years to safely decay.

This is hardly the solution for the Green Energy future, or the broader global energy transition, that our overlooked marine energy resource could provide.

Sea defences and barrier design, built and integrated with subsea turbines and heat pumps, can deliver marine-driven heat and power to offset the costs, not only of new Thames Barriers, but also future Severn, Forth and other barrages, while reducing reliance on high-GWP gases such as SF6 in switchgear across the grid.

At the Pentland Firth, existing marine turbine power could be enhanced by turbines deployed from new tidal bridges to provide much of UK’s electricity needs, as nations chart an electricity future that replaces fossil fuels, from its estimated 60 gigawatt capability.

Energy from Bluemull Sound could likewise be harvested and exported or used to enhance development around UK’s new space station at Unst.

The 2021 Climate Change Summit gives Glasgow the platform to secure Scotland’s place in a true green, marine energy future and help build an electric planet for the long term.

We must not waste this opportunity.

THERE is no vaccine for climate change.

It is, of course, wonderful news that such progress is being made in the development of Covid-19 vaccines but there is a risk that, no matter how serious the Covid crisis is, it is distracting attention, political will and resources from the climate crisis, a much longer term and more devastating catastrophe.

They are intertwined. As climate and ecological systems change, vectors and pathogens migrate and disease spreads.

What lessons can be learned from one to apply to the other?

Prevention is better than cure. We need to urgently address the climate crisis, charting a path to net zero electricity by the middle of the century, to help prevent future pandemics.

We are only as safe as the most vulnerable. Covid immunisation will protect the most vulnerable; to protect against the effects of climate change we need to look far more deeply. Global challenges require systemic change.

Neither Covid or climate change respect national borders and, for both, we need to value and trust science and the scientific experts and separate them from political posturing.

 

Related News

View more

Ontario Ministry of Energy proposes growing hydrogen economy through reduced electricity rates

Ontario Hydrogen Strategy accelerates green hydrogen via electrolysis, reduced electricity rates, and IESO pilots, leveraging ICI, interruptible rates, and surplus power to grow clean tech, low-carbon energy, and export markets across Ontario.

 

Key Points

A provincial plan to scale green hydrogen with electricity costs, IESO pilots, and surplus power to boost tech.

✅ Amends ICI to admit hydrogen producers from 50 kW demand

✅ Enables co-located electrolysers to use surplus curtailed power

✅ Offers interruptible rates via IESO pilot for flexible loads

 

The Ontario Ministry of Energy is seeking input on accelerating Ontario’s hydrogen economy. The province has been promoting growth in the clean tech sector, including low-carbon energy production and the Hydrogen Innovation Fund, as an avenue for post-COVID-19 economic recovery. Hydrogen produced through electrolysis (or “green hydrogen”) has been central to these efforts, complimenting both federal and provincial initiatives to create vibrant domestic and export markets for the energy as a principal alternative to conventional fossil fuels.

On April 14, 2022, the Ministry filed a proposal (the Proposal) on the Environmental Registry of Ontario (ERO) to gather input from stakeholders, aligning with the province’s industrial electricity pricing consultation underway. As part of Ontario’s Hydrogen Strategy, the Ministry is considering several options that would provide reduced electricity rates for green hydrogen producers to make production more economically competitive with other energies. To date, the relatively high production cost of green hydrogen has been a challenge facing its adoption, both domestically and internationally.

The Proposal features three options:

  • Amending the rules for the Industrial Conservation Initiative (ICI) applicable to hydrogen producers;
  • Enabling onsite hydrogen production using electricity that would otherwise be curtailed; and
  • Providing an interruptible electricity rate for hydrogen producers.

Option 1: Amending the ICI rules

Option 1 would amend the ICI rules to allow all hydrogen producers with an average monthly peak demand of 50kW to participate. Hydrogen producers’ facilities could qualify for ICI in the first year of operation with a peak demand factor determined based on a deemed consumption profile, using a method yet to be determined by the Ministry. At the end of the first year, their global adjustment (GA) charges would be reconciled based on their actual consumption pattern. As set out in our prior article, GA was introduced by the province in January 2005 to ensure reliable, sustainable and a diverse supply of power at stable and competitive prices, aligning with plans to rely on battery storage to meet rising energy demand. The Ministry’s current proposal would require hydrogen producers to place a security deposit for their facilities’ first year of operation with the Independent Electricity System Operator (IESO) or their Local Distribution Company (LDC) to ensure other consumer would not be adversely affected.

Option 2: Enable onsite hydrogen production using surplus electricity

Option 2 would allow businesses to co-locate hydrogen electrolysers at electricity generation facilities, drawing on recent electrolyzer investment trends, to make use of what would become curtailed generation. Under this option in the Proposal, the developer for the hydrogen production facility would be required to be a separate legal entity from the one that owns or operates the electricity generation facility. Based on this required level of independence, the hydrogen developer would be required to pay the electricity generator for the electricity supply.

At this stage, it is not clear whether, or how the generator would be required to share the revenue with other consumers. The next steps of the Proposal may require regulatory amendments, and/or amendments to electricity generator’s contracts, consistent with efforts enabling storage in Ontario's electricity system to integrate flexible resources.

Option 3: Interruptible electricity rates for hydrogen producers

In 2021, the Ministry posted a proposal on the ERO including an Interruptible Rate Pilot that was to be developed in conjunction with the IESO in order to address stakeholder feedback received during the 2019 Industrial Consultation specific to the challenges of identifying and responding to peak demand events while participating in the ICI. The pilot was targeted towards large electricity consumers, where participants were charged GA at a reduced rate in exchange for agreeing to reduce consumption during system or local reliability events, as identified by IESO.

Option 3 would allow for the introduction for a dedicated stream for hydrogen producers into the interruptible rate pilot, which is currently under development with the IESO. This would take into account the unique circumstances of hydrogen producers, as well as the importance of the hydrogen sector in Ontario’s Low-Carbon Hydrogen Strategy. Under the pilot, participants would be given advance notice by the IESO to reduce demand over a fixed number of hours, several times each year, and emerging vehicle-to-grid models where EV owners can sell electricity back to the grid highlight additional flexibility options. Ultimately, the pilot would support low-carbon hydrogen production by offering large electricity consumers, such as hydrogen producers, reduced electricity rates in exchange for reduces consumption during system or local reliability events.

Following this initial development work, the Ministry intends to consult with stakeholders later this year to determine design details, as well as the timing for the potential roll out of the proposed pilot.

Key takeaways

The design options are not meant to be mutually exclusive, and might be pursued by the Ministry in combination. Ultimately, Ontario is focusing on ways to reduce electricity rates in an attempt to make the province a leader in the adoption of green hydrogen, as made clear in the Ontario Hydrogen Strategy, even as an electricity supply crunch looms, underscoring the urgency. Stakeholders will want to participate in this process given its long-term implications for both the hydrogen and power sectors.

 

Related News

View more

Ottawa sets out to protect its hydro heritage

Ottawa Hydro Substation Heritage Designation highlights Hydro Ottawa's 1920s architecture, Art Deco facades, and municipal utility history, protecting key voltage-reduction sites in Glebe, Carling-Merivale, Holland, King Edward, and Old Ottawa South.

 

Key Points

A city plan to protect Hydro Ottawa's 1920s substations for architecture, utility role, and civic electrical heritage.

✅ Protects five operating voltage-reduction sites citywide

✅ Recognizes Art Deco and early 20th century utility architecture

✅ Allows emergency demolition to ensure grid safety

 

The city of Ottawa is looking to designate five hydro substations built nearly a century ago as heritage structures, a move intended to protect the architectural history of Ottawa's earliest forays into the electricity business, even as Ottawa electricity consumption has shifted in recent years.

All five buildings are still used by Hydro Ottawa to reduce the voltage coming from transmission lines before the electricity is transmitted to homes and businesses, and when severe weather causes outages, Sudbury Hydro crews work to reconnect service across communities.

Electricity came to Ottawa in 1882 when two carbon lamps were installed on LeBreton Flats, heritage planner Anne Fitzpatrick told the city's built heritage subcommittee on Tuesday. It became a lucrative business, and soon a privately owned monopoly that drew public scrutiny similar to debates over retroactive charges in neighboring jurisdictions.

In 1905, city council held a special meeting to buy the electrical company, which led to a dramatic drop in electricity rates for residents, a contrast with recent discussions about peak hydro rates for self-isolating customers.

The substations are now owned by Hydro Ottawa, which agreed to the heritage designations on the condition it not be prevented from emergency demolitions if it needs to address incidents such as damaging storms in Ontario while it works to "preserve public safety and the continuity of critical hydro electrical services."

Built in 1922, the substation at the intersection of Glebe and Bronson avenues was the first to be built by the new municipal electrical department, long before modern battery storage projects became commonplace on Ontario's grid.

The largest of the substations being protected dates back to 1929 and is found at the corner of Carling Avenue and Merivale Road. It was built to accommodate a growing population in areas west of downtown including Hintonburg and Mechanicsville.

The substation on Holland Avenue near the Queensway is different from the others because it was built in 1924 to serve the Ottawa Electric Railway Company. The streetcar company operated from 1891 to 1959, and urban electrical infrastructure can face failures such as the Hydro-Québec manhole fire that left thousands without power.

This substation on King Edward Avenue was built in 1931 and designed by architect William Beattie, who also designed York Street Public School in Lowertown and the substation on Carling Avenue. 

The last substation to be built in a 'bold and decorative style' is at 39 Riverdale Ave. in Old Ottawa South, according to city staff. It was designed in an Art Deco style by prominent architect J. Albert Ewart, who was also behind the Civic Hospital and nearby Southminster Church on Bank Street.

 

Related News

View more

Fixing California's electric grid is like repairing a car while driving

CAISO Clean Energy Transition outlines California's path to 100% carbon-free power by 2045, scaling renewables, battery storage, and offshore wind while safeguarding grid reliability, managing natural gas, and leveraging Western markets like EDAM.

 

Key Points

CAISO Clean Energy Transition is the plan to reach 100% carbon-free power by 2045 while maintaining grid reliability.

✅ Target: add 7 GW/year to reach 120 GW capacity by 2045

✅ Battery storage up 30x; smooths intermittent solar and wind

✅ EDAM and WEIM enhance imports, savings, and reliability

 

Mark Rothleder, Chief Operating Officer and Senior Vice President at the California Independent System Operator (CAISO), which manages roughly 80% of California’s electric grid, has expressed cautious optimism about meeting the state's ambitious clean energy targets while keeping the lights on across the grid. However, he acknowledges that this journey will not be without its challenges.

California aims to transition its power system to 100% carbon-free sources by 2045, ensuring a reliable electricity supply at reasonable costs for consumers. Rothleder, aware of the task's enormity, likens it to a complex car repair performed while the vehicle is in motion.

Recent achievements have demonstrated California's ability to temporarily sustain its grid using clean energy sources. According to Rothleder, the real challenge lies in maintaining this performance round the clock, every day of the year.

Adding thousands of megawatts of renewable energy into California’s existing 50-gigawatt system, which needs to expand to 120 gigawatts to meet the 2045 goal, poses a significant challenge, though recent grid upgrade funding offers some support for needed infrastructure. CAISO estimates that an addition of 7 gigawatts of clean power per year for the next two decades is necessary, all while ensuring uninterrupted power delivery.

While natural gas currently constitutes California's largest single source of power, Rothleder notes the need to gradually decrease reliance on it, even as it remains an operational necessity in the transition phase.

In 2023, CAISO added 5,660 megawatts of new power to the grid, with plans to integrate over 1,100 additional megawatts in the next six to eight months of 2024. Battery storage, crucial for mitigating the intermittent nature of wind and solar power, has seen substantial growth as California turns to batteries for grid support, increasing 30-fold in three years.

Rothleder emphasizes that electricity reliability is paramount, as consumers always expect power availability. He also highlights the potential of offshore wind projects to significantly contribute to California's power mix by 2045.

The offshore wind industry faces financial and supply chain challenges despite these plans. CAISO’s 20-year outlook indicates a significant increase in utility-scale solar, requiring extensive land use and wider deployment of advanced inverters for grid stability.

Addressing affordability is vital, especially as California residents face increasing utility bills. Rothleder suggests a broader energy cost perspective, encompassing utility and transportation expenses.

Despite smooth grid operations in 2023, challenges in previous years, including extreme weather-induced power outages driven by climate change, underscore the need for a robust, adaptable grid. California imports about a quarter of its power from neighbouring states and participates in the Western Energy Imbalance Market, which has yielded significant savings.

CAISO is also working on establishing an extended day-ahead electricity market (EDAM) to enhance the current energy market's success, building on insights from a Western grid integration report that supports expanded coordination.

Rothleder believes that a thoughtfully designed, diverse power system can offer greater reliability and resilience in the long run. A future grid reliant on multiple, smaller power sources such as microgrids could better absorb potential losses, ensuring a more reliable electricity supply for California.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.