Iran starts nationÂ’s first reactor

By Associated Press


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Trucks rumbled into Iran's first reactor to begin loading tons of uranium fuel in a long-delayed startup touted by officials as both a symbol of the country's peaceful intentions to produce nuclear energy as well as a triumph over Western pressure to rein in its nuclear ambitions.

The Russian-built Bushehr nuclear power plant will be internationally supervised, including a pledge by Russia to safeguard it against materials being diverted for any possible use in creating nuclear weapons. Iran's agreement to allow the oversight was a rare compromise by the Islamic state over its atomic program.

Western powers have cautiously accepted the deal as a way to keep spent nuclear fuel from crossing over to any military use. They say it illustrates their primary struggle: to block Iran's drive to create material that could be used for nuclear weapons and not its pursuit of peaceful nuclear power.

Iran has long declared it has a right like other nations to produce nuclear energy. The country's nuclear chief described the startup as a "symbol of Iranian resistance and patience."

"Despite all pressure, sanctions and hardships imposed by Western nations, we are now witnessing the startup of the largest symbol of Iran's peaceful nuclear activities," Ali Akbar Salehi told reporters.

The Russian agreement to control the supply of nuclear fuel at Bushehr eased opposition by Washington and its allies. Bushehr's operations are not covered by United Nations sanctions imposed after Iran refused to stop uranium enrichment.

After years of delays in completing the plant, Moscow now claims that the project is essential to persuading Iran to cooperate with international efforts to ensure it does not develop the bomb.

UN nuclear inspectors were on hand as the first truckloads of fuel were taken from a storage site to a "pool" inside the reactor. Over the next two weeks, 163 fuel assemblies will be moved inside the building and then into the reactor core.

Related News

Scientists Built a Genius Device That Generates Electricity 'Out of Thin Air'

Air-gen Protein Nanowire Generator delivers clean energy by harvesting ambient humidity via Geobacter-derived conductive nanowires, generating continuous hydrovoltaic electricity through moisture gradients, electrodes, and proton diffusion for sustainable, low-waste power in diverse climates.

 

Key Points

A device using Geobacter protein nanowires to harvest humidity, producing continuous DC power via proton diffusion.

✅ 7 micrometer film between electrodes adsorbs water vapor.

✅ Output: ~0.5 V, 17 uA/cm2; stack units to scale power.

✅ Geobacter optimized via engineered E. coli for mass nanowires.

 

They found it buried in the muddy shores of the Potomac River more than three decades ago: a strange "sediment organism" that could do things nobody had ever seen before in bacteria.

This unusual microbe, belonging to the Geobacter genus, was first noted for its ability to produce magnetite in the absence of oxygen, but with time scientists found it could make other things too, like bacterial nanowires that conduct electricity.

For years, researchers have been trying to figure out ways to usefully exploit that natural gift, and they might have just hit pay-dirt with a device they're calling the Air-gen. According to the team, their device can create electricity out of… well, almost nothing, similar to power from falling snow reported elsewhere.

"We are literally making electricity out of thin air," says electrical engineer Jun Yao from the University of Massachusetts Amherst. "The Air-gen generates clean energy 24/7."

The claim may sound like an overstatement, but a new study by Yao and his team describes how the air-powered generator can indeed create electricity with nothing but the presence of air around it. It's all thanks to the electrically conductive protein nanowires produced by Geobacter (G. sulfurreducens, in this instance).

The Air-gen consists of a thin film of the protein nanowires measuring just 7 micrometres thick, positioned between two electrodes, referencing advances in near light-speed conduction in materials science, but also exposed to the air.

Because of that exposure, the nanowire film is able to adsorb water vapour that exists in the atmosphere, offering a contrast to legacy hydropower models, enabling the device to generate a continuous electrical current conducted between the two electrodes.

The team says the charge is likely created by a moisture gradient that creates a diffusion of protons in the nanowire material.

"This charge diffusion is expected to induce a counterbalancing electrical field or potential analogous to the resting membrane potential in biological systems," the authors explain in their study.

"A maintained moisture gradient, which is fundamentally different to anything seen in previous systems, explains the continuous voltage output from our nanowire device."

The discovery was made almost by accident, when Yao noticed devices he was experimenting with were conducting electricity seemingly all by themselves.

"I saw that when the nanowires were contacted with electrodes in a specific way the devices generated a current," Yao says.

"I found that exposure to atmospheric humidity was essential and that protein nanowires adsorbed water, producing a voltage gradient across the device."

Previous research has demonstrated hydrovoltaic power generation using other kinds of nanomaterials – such as graphene-based systems now under study – but those attempts have largely produced only short bursts of electricity, lasting perhaps only seconds.

By contrast, the Air-gen produces a sustained voltage of around 0.5 volts, with a current density of about 17 microamperes per square centimetre, and complementary fuel cell solutions can help keep batteries energized, with a current density of about 17 microamperes per square centimetre. That's not much energy, but the team says that connecting multiple devices could generate enough power to charge small devices like smartphones and other personal electronics – concepts akin to virtual power plants that aggregate distributed resources – all with no waste, and using nothing but ambient humidity (even in regions as dry as the Sahara Desert).

"The ultimate goal is to make large-scale systems," Yao says, explaining that future efforts could use the technology to power homes via nanowire incorporated into wall paint, supported by energy storage for microgrids to balance supply and demand.

"Once we get to an industrial scale for wire production, I fully expect that we can make large systems that will make a major contribution to sustainable energy production."

If there is a hold-up to realising this seemingly incredible potential, it's the limited amount of nanowire G. sulfurreducens produces.

Related research by one of the team – microbiologist Derek Lovley, who first identified Geobacter microbes back in the 1980s – could have a fix for that: genetically engineering other bugs, like E. coli, to perform the same trick in massive supplies.

"We turned E. coli into a protein nanowire factory," Lovley says.

"With this new scalable process, protein nanowire supply will no longer be a bottleneck to developing these applications."

 

Related News

View more

Rolls-Royce expecting UK approval for mini nuclear reactor by mid-2024

Rolls-Royce SMR UK Approval underscores nuclear innovation as regulators review a 470 MW factory-built modular reactor, aiming for grid power by 2029 to boost energy security, cut fossil fuels, and accelerate decarbonization.

 

Key Points

UK regulatory clearance for Rolls-Royce's 470 MW modular reactor, targeting grid power by 2029 to support clean energy.

✅ UK design approval expected by mid 2024

✅ First 470 MW unit aims for grid power by 2029

✅ Modular, factory-built; est. £1.8b per 10-acre site

 

A Rolls-Royce (RR.L) design for a small modular nuclear reactor (SMR) will likely receive UK regulatory approval by mid-2024, reflecting progress seen in the US NRC safety evaluation for NuScale as a regulatory benchmark, and be able to produce grid power by 2029, Paul Stein, chairman of Rolls-Royce Small Modular Reactors.

The British government asked its nuclear regulator to start the approval process in March, in line with the UK's green industrial revolution agenda, having backed Rolls-Royce’s $546 million funding round in November to develop the country’s first SMR reactor.

Policymakers hope SMRs will help cut dependence on fossil fuels and lower carbon emissions, as projects like Ontario's first SMR move ahead in Canada, showing momentum.

Speaking to Reuters in an interview conducted virtually, Stein said the regulatory “process has been kicked off, amid broader moves such as a Canadian SMR initiative to coordinate development, and will likely be complete in the middle of 2024.

“We are trying to work with the UK Government, and others to get going now placing orders, echoing expansions like Darlington SMR plans in Ontario, so we can get power on grid by 2029.”

In the meantime, Rolls-Royce will start manufacturing parts of the design that are most unlikely to change, while advancing partnerships like a MoU with Exelon to support deployment, Stein added.

Each 470 megawatt (MW) SMR unit costs 1.8 billion pounds ($2.34 billion) and would be built on a 10-acre site, the size of around 10 football fields, though projects in New Brunswick SMR debate have prompted questions about costs and timelines.

Unlike traditional reactors, SMRs are cheaper and quicker to build and can also be deployed on ships and aircraft. Their “modular” format means they can be shipped by container from the factory and installed relatively quickly on any proposed site.

 

Related News

View more

Nuclear plant workers cite lack of precautions around virus

Millstone COVID-19 safety concerns center on a nuclear refueling outage in Connecticut, temporary workers, OSHA complaints, PPE shortages, and disinfecting protocols, as Dominion Energy addresses virus precautions, staffing, and cybersecurity for safe voting infrastructure.

 

Key Points

Employee and union claims about PPE, cleaning, and OSHA compliance during a refueling outage at the nuclear plant.

✅ 10 positive cases; 750 temporary workers during refueling outage

✅ Union cites PPE gaps, partitions, and disinfectant effectiveness

✅ Dominion Energy notes increased cleaning, communication, staffing

 

Workers at Connecticut's only nuclear power plant worry that managers are not taking enough precautions against the coronavirus, as some utilities weigh on-site staffing measures to maintain operations, after 750 temporary employees were brought in to help refuel one of the two active reactors.

Ten employees at the Millstone Power Station in Waterford have tested positive for the virus, and, amid a U.S. grid pandemic warning, the arrival of the temporary workers alarms some of the permanent employees, The Day newspaper reported Sunday.

"Speaking specifically for the guard force, there's a lot of frustration, there's a lot of concern, and I would say there's anger," said Millstone security officer Jim Foley.

Foley, vice president of the local chapter of the United Government Security Officers of America, noted broader labor concerns such as unpaid wages for Kentucky miners while saying security personnel have had to fight for personal protective equipment and for partitions at access points to separate staff from security.

Foley also has filed a complaint with the Occupational Safety and Health Administration saying Millstone staff are using ineffective cleaning materials and citing a lack of cleaning and sanitizing, as telework limits at the EPA drew scrutiny during the pandemic, he said.

Officials at Millstone, owned by Dominion Energy, have not heard internal criticism about the plant's virus precautions, Millstone spokesman Kenneth Holt said.

"We've actually gotten a lot of compliments from employees on the steps we've taken," he said. "We've stepped up communications with employees to let them know what's going on."

As another example of communication efforts, COVID-19 updates at Site C have been published to keep workers informed.

Millstone recently increased cleaning staff on the weekends, Holt said, and there is regular disinfecting at the plant.

Separately, utility resilience remains a concern, as extended outages for tornado survivors in Kentucky may last weeks, affecting essential services.

Responding to the complaint about ineffective cleaning materials, Holt said staff members early in the pandemic went to a Home Depot and got a bottle of disinfectant that wasn't approved by the federal government as effective against the coronavirus. An approved disinfectant was brought in the next day, he said.

The deaths of nearly 2,500 Connecticut residents have been linked to COVID-19, the disease caused by the virus. More than 29,000 state residents have tested positive. As of Sunday, hospitalizations had declined for 11 consecutive days, to over 1,480.

With more people working remotely, utilities have reported higher residential electricity use during the pandemic, affecting household bills.

For most people, the coronavirus causes mild or moderate symptoms, such as fever and cough, that clear up in two to three weeks. For some, especially older adults and people with existing health problems, it can cause more severe illness, including pneumonia, and death.

In other developments related to the coronavirus:

SAFE VOTING

Secretary of the State Denise Merrill released a plan Monday aimed at making voting safe during the Aug. 11 primary and Nov. 3 general election.

Merrill said her office is requiring all cities and towns in the state to submit plans for the two elections that include a list of cleaning and safety products to be used, a list of polling locations, staffing levels at each polling location, and the names of polling workers and moderators.

Municipalities will be eligible for grants to cover the extra costs of holding elections during a pandemic, including expenses for cleaning products and increased staffing.

Merrill also announced her office and the Connecticut National Guard will perform a high-level cybersecurity assessment of the election infrastructure of all 169 towns in the state to guard against malicious actors.

Merrill's office also will provide network upgrades to the election infrastructures of 20 towns that have had chronic problems with connecting to the elections system.

 

Related News

View more

Rooftop Solar Grids

Rooftop solar grids transform urban infrastructure with distributed generation, photovoltaic panels, smart grid integration and energy storage, cutting greenhouse gas emissions, lowering utility costs, enabling net metering and community solar for low-carbon energy systems.

 

Key Points

Rooftop solar grids are PV systems on buildings that generate power, cut emissions, and enable smart grid integration.

✅ Lowers utility bills via net metering and demand offset

✅ Reduces greenhouse gases and urban air pollution

✅ Enables resiliency with storage, smart inverters, and microgrids

 

As urban areas expand and the climate crisis intensifies, cities are seeking innovative ways to integrate renewable energy sources into their infrastructure. One such solution gaining traction is the installation of rooftop solar grids. A recent CBC News article highlights the significant impact of these solar systems on urban environments, showcasing their benefits and the challenges they present.

Harnessing Unused Space for Sustainable Energy

Rooftop solar panels are revolutionizing how cities approach energy consumption and environmental sustainability. By utilizing the often-overlooked space on rooftops, these systems provide a practical solution for generating renewable energy in densely populated areas. The CBC article emphasizes that this approach not only makes efficient use of available space but also contributes to reducing a city's reliance on non-renewable energy sources.

The ability to generate clean energy directly from buildings helps decrease greenhouse gas emissions and, as scientists work to improve solar and wind power, promotes a shift towards a more sustainable energy model. Solar panels absorb sunlight and convert it into electricity, reducing the need for fossil fuels and lowering overall carbon footprints. This transition is crucial as cities grapple with rising temperatures and air pollution.

Economic and Environmental Advantages

The economic benefits of rooftop solar grids are considerable. For homeowners and businesses, installing solar panels can lead to substantial savings on electricity bills. The initial investment in solar technology is often balanced by long-term energy savings and financial incentives, such as tax credits or rebates, and evidence that solar is cheaper than grid electricity in Chinese cities further illustrates the trend toward affordability. According to the CBC report, these financial benefits make solar energy a compelling option for many urban residents and enterprises.

Environmentally, the advantages are equally compelling. Solar energy is a renewable and clean resource, and increasing the number of rooftop solar installations can play a pivotal role in meeting local and national renewable energy targets, as illustrated when New York met its solar goals early in a recent milestone. The reduction in greenhouse gas emissions from fossil fuel energy sources directly contributes to mitigating climate change and improving air quality.

Challenges in Widespread Adoption

Despite the clear benefits, the adoption of rooftop solar grids is not without its challenges. One of the primary hurdles is the upfront cost of installation. While prices for solar panels have decreased over time, the initial financial outlay remains a barrier for some property owners, and regions like Alberta have faced solar expansion challenges that highlight these constraints. Additionally, the effectiveness of solar panels can vary based on factors such as geographic location, roof orientation, and local weather patterns.

The CBC article also highlights the importance of supportive infrastructure and policies for the success of rooftop solar grids. Cities need to invest in modernizing their energy grids to accommodate the influx of solar-generated electricity, and, in the U.S., record clean energy purchases by Southeast cities have signaled growing institutional demand. Furthermore, policies and regulations must support solar adoption, including issues related to net metering, which allows solar panel owners to sell excess energy back to the grid.

Innovative Solutions and Future Prospects

The future of rooftop solar grids looks promising, thanks to ongoing technological advancements. Innovations in photovoltaic cells and energy storage solutions are expected to enhance the efficiency and affordability of solar systems. The development of smart grid technology and advanced energy management systems, including peer-to-peer energy sharing, will also play a critical role in integrating solar power into urban infrastructures.

The CBC report also mentions the rise of community solar projects as a significant development. These projects allow multiple households or businesses to share a single solar installation, making solar energy more accessible to those who may not have suitable rooftops for solar panels. This model expands the reach of solar technology and fosters greater community engagement in renewable energy initiatives.

Conclusion

Rooftop solar grids are emerging as a key element in the transition to sustainable urban energy systems. By leveraging unused rooftop space, cities can harness clean, renewable energy, reduce greenhouse gas emissions, and, as developers learn that more energy sources make better projects, achieve long-term economic savings. While there are challenges to overcome, such as initial costs and regulatory hurdles, the benefits of rooftop solar grids make them a crucial component of the future energy landscape. As technology advances and policies evolve, rooftop solar grids will play an increasingly vital role in shaping greener, more resilient urban environments.

 

Related News

View more

France’s first offshore wind turbine produces electricity

Floatgen Floating Offshore Wind Turbine exports first kWh to France's grid from SEM-REV off Le Croisic, showcasing Ideol's concrete floating foundation by Bouygues and advancing marine renewable energy leadership ambitions.

 

Key Points

A grid-connected demo turbine off Le Croisic, proving Ideol's floating foundation at SEM-REV.

✅ First power exported to French grid from SEM-REV site

✅ Ideol concrete floating base built by Bouygues

✅ Demonstrator can supply up to 5,000 inhabitants

 

Floating offshore wind turbine Floatgen, the first offshore wind turbine installed off the French coast, exported its first KWh to the electricity grid, echoing the offshore wind power milestone experienced by U.S. customers recently.

The connection of the electricity export cable, similar in ambition to the UK's 2 GW substation program, and a final series of tests carried out in recent days enabled the Floatgen wind turbine, which is installed 22 km off Le Croisic (Loire-Atlantique), to become fully operational on Tuesday 18 September.

This announcement is a highly symbolic step for the partners involved in this project. This wind turbine is the first operational unit of the floating foundation concept patented by Ideol and built in concrete by Bouygues Travaux Publics. A second unit of the Ideol foundation will soon be operational off Japan. For Centrale Nantes, this is the first production tool and the first injection of electricity into its export cable at its SEM-REV test site dedicated to marine renewable energies, alongside projects such as the Scotland-England subsea power link that expand transmission capacity (third installation after tests on acoustic sensors and cable weights).

This announcement is also symbolic for France since Floatgen lays the foundation for an industrial offshore wind energy sector and represents a unique opportunity to become the global leader in floating wind, as major clean energy corridors like the Canadian hydropower line to New York illustrate growing demand.

With its connection to the grid, SEM-REV will enable the wind turbine to supply electricity to 5000 inhabitants, and similar integrated microgrid initiatives show how local reliability can be enhanced.

 

Related News

View more

Vietnam Redefines Offshore Wind Power Regulations

Vietnam Offshore Wind Regulations expand coastal zones to six nautical miles, remove water depth limits, streamline permits, and boost investment, grid integration, and renewable energy capacity across deeper offshore wind resource areas.

 

Key Points

Policies extend sites to six nautical miles, scrap depth limits, and speed permits to scale offshore wind.

✅ Extends offshore zones to six nautical miles from shore

✅ Removes water depth limits to access stronger winds

✅ Streamlines permits, aiding grid integration and finance

 

Vietnam has recently redefined its regulations for offshore wind power projects, marking a significant development in the country's renewable energy ambitions. This strategic shift aims to streamline regulatory processes, enhance project feasibility, and accelerate the deployment of offshore wind energy in Vietnam's coastal regions, amid a trillion-dollar offshore wind market globally.

Regulatory Changes

The Vietnamese government has adjusted offshore wind power regulations by extending the allowable distance from shore for wind farms to six nautical miles (approximately 11 kilometers), a move that aligns with evolving global practices such as Canada's offshore wind plan announced recently by regulators. This expansion from previous limits aims to unlock new areas for development and maximize the utilization of Vietnam's vast offshore wind potential.

Scrapping Depth Restrictions

In addition to extending offshore boundaries, Vietnam has removed restrictions on water depth for offshore wind projects. This revision allows developers to explore deeper waters, where wind resources may be more abundant, thereby diversifying project opportunities and optimizing energy generation capacity.

Strategic Implications

The redefined regulations are expected to stimulate investment in Vietnam's renewable energy sector, attracting domestic and international stakeholders keen on capitalizing on the country's favorable wind resources, with World Bank support for wind underscoring the growing pipeline in developing markets. The move aligns with Vietnam's broader energy diversification goals and commitment to reducing reliance on fossil fuels.

Economic Opportunities

The expansion of offshore wind development zones creates economic opportunities across the value chain, from project planning and construction to operation and maintenance. The influx of investments is anticipated to spur job creation, technology transfer, and infrastructure development in coastal communities, as industry groups like Marine Renewables Canada shift toward offshore wind specialization.

Environmental and Energy Security Benefits

Harnessing offshore wind power contributes to Vietnam's efforts to mitigate greenhouse gas emissions and combat climate change. By integrating renewable energy sources into its energy mix, Vietnam enhances energy security, as seen in the UK offshore wind expansion, reduces dependency on imported fuels, and promotes sustainable economic growth.

Challenges and Considerations

Despite the promising outlook, offshore wind projects face challenges such as technical complexities, environmental impact assessments, and grid integration, as well as exposure to policy risk exemplified by U.S. opposition to offshore wind debates.

Future Outlook

Looking ahead, Vietnam's redefined offshore wind regulations position the country as a key player in the global renewable energy transition, a trend reinforced by progress in offshore wind in Europe elsewhere. Continued policy support, investment facilitation, and technological innovation will be critical in unlocking the full potential of offshore wind power and achieving Vietnam's renewable energy targets.

Conclusion

Vietnam's revision of offshore wind power regulations reflects a proactive approach to advancing renewable energy development and fostering a conducive investment environment. By expanding development zones and eliminating depth restrictions, Vietnam sets the stage for accelerated growth in offshore wind capacity, contributing to both economic prosperity and environmental stewardship. As stakeholders seize opportunities in this evolving landscape, collaboration and innovation will drive Vietnam towards a sustainable energy future powered by offshore wind.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified