Power protests in Bangladesh

By United Press International


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Protests against power shortages in energy-starved Bangladesh turned violent as the country experiences a record 2,000-megawatt shortfall against a demand for at least 6,000 megawatts of electricity.

Hundreds of people stormed a power office in Narayanganj, a town outside Dhaka. At least 50 people, including policemen, were injured.

Protesters blocked roads and railways, with similar violent protests reported in northwestern Rajashahi and six other towns.

"Attempts to destabilize law and order by protesting about issues of power, gas and water will be dealt with strictly," Home Minister Sahara Khatun told reporters after an emergency inter-ministerial meeting, Press Trust of India reports.

She said the government would make "maximum efforts" ensure uninterrupted supply of water, electricity and natural gas, particularly during the month of Ramadan, which began, adding that it would depend "on the capacity of relevant departments."

Only about 40 percent of Bangladeshis have access to electricity, with frequent power outages the norm across the country.

Water shortages are also a problem. The 2010 Global Annual Assessment of Sanitation and Drinking Water by the World Health Organization states that more than 30 million people in Bangladesh do not have access to safe drinking water.

Prime Minister Sheikh Hasina blamed the country's power crisis on the former BNP-Jamaat coalition government, saying that it had kept the power sector in a fragile state.

"During our previous tenure from 1996 to 2001, we have raised the country's power production to 4,300 megawatts from 1,600 megawatts and undertaken various projects to raise generation up to 5,500 megawatts," The Daily Star quoted her as saying.

But when the BNP-Jamaat government assumed office, she said, it didn't take the initiative to raise power production.

"Rather, they had destroyed the vital sector through looting and mismanagement that increased sufferings of the people," she said.

Hasina said her administration has added 1,000 megawatts of electricity during the last year and a half and has taken steps to increase power production by setting up new plants and repairing old ones.

"We are making all out efforts to improve the situation to minimize sufferings of the people," the premier said.

Bangladesh signed a landmark 35-year power transmission agreement with India last month to import 250 megawatts of electricity starting from late 2012.

In May, Bangladesh and Russia signed a framework agreement for Bangladesh's first nuclear plant, expected to produce at least 2,000 megawatts of electricity by 2020.

Related News

Opinion: Now is the time for a western Canadian electricity grid

Western Canada Electric Grid could deliver interprovincial transmission, reliability, peak-load support, reserve sharing, and wind and solar integration, lowering costs versus new generation while respecting AESO markets and Crown utility structures.

 

Key Points

Interprovincial transmission to share reserves, boost reliability, integrate wind and solar, and cut peak capacity costs.

✅ Cuts reserve margins via diversity of peak loads

✅ Enables wind and solar balancing across provinces

✅ Saves ratepayers vs replacing retiring thermal plants

 

The 2017 Canadian Free Trade Agreement does not do much to encourage provinces to trade electric energy east and west. Would a western Canada electric grid help electricity consumers in the western provinces? Some Alberta officials feel that their electric utilities are investor owned and they perceive the Crown corporations of BC Hydro, SaskPower and Manitoba Hydro to be subsidized by their provincial governments, so an interprovincial electric energy trade would not be on a level playing field.

Because of the limited trade of electric energy between the western provinces, each utility maintains an excessive reserve of thermal and hydroelectric generation greater than their peak loads, to provide a reliable supply during peak load days as grids are increasingly exposed to harsh weather across Canada. This excess does not include variable wind and solar generation, which within a province can’t be guaranteed to be available when needed most.

This attitude must change. Transmission is cheaper than generation, and coordinated macrogrids can further improve reliability and cut costs. By constructing a substantial grid with low profile and aesthetically designed overhead transmission lines, the excess reserve of thermal and hydroelectric generation above the peak electric load can be reduced in each province over time. Detailed assessments will ensure each province retains its required reliability of electric supply.

As the provinces retire aging thermal and coal-fired generators, they only need to replace them to a much lower level, by just enough to meet their future electric loads and Canada's net-zero grid by 2050 goals. Some of the money not spent in replacing retired generation can be profitably invested in the transmission grid across the four western provinces.

But what about Alberta, which does not want to trade electric energy with the other western provinces? It can carry on as usual within the Alberta Electric System Operator’s (AESO) market and will save money by keeping the installed reserve of thermal and hydroelectric generation to a minimum. When Alberta experiences a peak electric load day and some generators are out of service due to unplanned maintenance, it can obtain the needed power from the interprovincial electric grid. None of the other three western provinces will peak at the same time, because of different weather and time zones, so they will have spare capacity to help Alberta over its peak. The peak load in a province only lasts for a few hours, so Alberta will get by with a little help from its friends if needed.

The grid will have no energy flowing on it for this purpose except to assist a province from time to time when it’s unable to meet its peak load. The grid may only carry load five per cent of the time in a year for this purpose. Under such circumstances, the empty grid can then be used for other profitable markets in electric energy. This includes more effective use of variable wind and solar energy, by enabling a province to better balance such intermittent power as well as allowing increased installation of it in every province. This is a challenge for AESO which the grid would substantially ease.

Natural Resources Canada promoted the “Regional Electricity Co-Operative and Strategic Infrastructure” initiative for completion this year and contracted through AESO, alongside an Atlantic grid study to explore regional improvements. This is a first step, but more is needed to achieve the full benefit of a western grid.

In 1970 a study was undertaken to electrically interconnect Britain with France, which was justified based on the ability to reduce reserve generation in both countries. Initially Britain rejected it, but France was partially supportive. In time, a substantial interconnection was built, and being a profitable venture, they are contemplating increasing the grid connections between them.

For the sake of the western consumers of electricity and to keep electricity rates from rising too quickly, as well as allowing productive expansion of wind and solar energy in places like British Columbia's clean energy shift efforts, an electric grid is essential across western Canada.

Dennis Woodford is president of Electranix Corporation in Winnipeg, which studies electric transmission problems, particularly involving renewable energy generators requiring firm connection to the grid.

 

Related News

View more

Advocates call for change after $2.9 million surplus revealed for BC Hydro fund

BC Hydro Customer Crisis Fund Surplus highlights unused grants, pilot program imbalance, and calls to reduce fees or expand eligibility. Ratepayers, regulators, and social agencies urge awareness, rebates, and aid for overdue electricity bills.

 

Key Points

A funding carryover from BC Hydro's crisis grants, sparking debate over fee reductions or more aid eligibility.

✅ $2.9M surplus from 25-cent monthly customer fee

✅ Only 2,250 grants issued; awareness and eligibility questioned

✅ Regulator may refund balance or adjust program design

 

BC Hydro is sitting on a surplus of about $2.9 million in its customer crisis fund, even as BC Hydro rates rise 3% across the province, leading to calls for the utility to reduce its take from the average customer or provide more money to those in need.

B.C. Liberal Energy Critic Greg Kyllo said if the imbalance continues in the year-old pilot program, amid a provincial rate freeze announced by the province, it’s time to cut the monthly 25 cent fee in half.

"If the grant requirement or the need in the province is going to remain where it is, they should look at rolling back the contribution level in the fund," he told CTV News Vancouver from Salmon Arm.

But social agencies who were part of the consultation around the fund in the beginning said it’s more likely that people in need don’t know about the fund and more time is necessary to get the word out.

"If they collect the money, then the program’s got to change to make sure more people are able to be helped," said Gudrun Langolf of the Council of Senior Citizens Organizations of BC.

The customer crisis fund was started in spring 2018 to give people short-term relief when they can’t pay their electricity bills, especially as a $2 monthly hike pressures household budgets. Customers can apply to get a grant of up to $500 to keep the lights on, and up to $600 if electricity heats their homes.

The public utility took in about 25 cents per customer per month which added up to a revenue of $4.5 million in the year since the program started, BC Hydro confirmed to CTV News.

But the agency only gave out 2,250 grants totalling $850,000.

Administration costs added up around $750,000 – leaving the $2.9 million remaining.

The news will come as a welcome relief to those who suddenly struggle to pay their hydro bills, particularly as Alberta ratepayers are on the hook under a utility deferral program elsewhere in Canada.

Some people who come into Disability Alliance B.C. are often anxious and emotional when they’re suddenly unable to pay their bills, said Shar Saremi, an advocate there.

"I’ve had people crying. I’ve had people who have experienced a loss in the family," she said. "A lot of the time people are stressed out, anxious, really upset. They are looking for assistance, and they aren’t sure what is available for them."

She said people are only eligible if their bills are under $1,000, which could be cutting out the people who are most in need. And because the program is in its first year, it could be undersubscribed, she said.

"A lot of people don’t know about the program, don’t know how to apply, or what kind of assistance is out there," Saremi said.

The fund was established thanks to an order from the B.C. Utilities Commission, the utilities regulator in the province.

The pilot program is going to be examined by the regulator at the end of its first year.

"Any remaining balance in the account at the end of the pilot would be returned to residential ratepayers," says a BCUC fact sheet, as BC Hydro rates are set to rise 3.75% over two years. The decision on exactly what to do with the money hasn’t yet been made.

In Manitoba, a similar program is by donation, and in Newfoundland and Labrador a lump-sum credit was offered to bill payers in a separate initiative. That program raised about $200,000 from customers and $60,000 in other income. It spent $199,000 on grants to applicants, but lost about $20,000 a year.

In Ontario, private utilities are expected to raise 0.12 per cent of their revenue, and Hydro One reconnections have highlighted the stakes for nonpayment there. Across the province, those utilities gave out about $7.3 million in grants. Any unused funds in one year are rolled over to the following year.

 

Related News

View more

Wind power making gains as competitive source of electricity

Canada Wind Energy Costs are plunging as renewable energy auctions, CfD contracts, and efficient turbines drive prices to 2-4 cents/kWh across Alberta and Saskatchewan, outcompeting grid power via competitive bidding and improved capacity factors.

 

Key Points

Averaging 2-4 cents/kWh via auctions, CfD support, and bigger turbines, wind is now cost-competitive across Canada.

✅ Alberta CfD bids as low as 3.9 cents/kWh.

✅ Turbine outputs rose from 1 MW to 3.3 MW per tower.

✅ Competitive auctions cut costs ~70% over nine years.

 

It's taken a decade of technological improvement and a new competitive bidding process for electrical generation contracts, but wind may have finally come into its own as one of the cheapest ways to create power.

Ten years ago, Ontario was developing new wind power projects at a cost of 28 cents per kilowatt hour (kWh), the kind of above-market rate that the U.K., Portugal and other countries were offering to try to kick-start development of renewables. 

Now some wind companies say they've brought generation costs down to between 2 and 4 cents — something that appeals to provinces that are looking to significantly increase their renewable energy deployment plans.

The cost of electricity varies across Canada, by province and time of day, from an average of 6.5 cents per kWh in Quebec to as much as 15 cents in Halifax.

Capital Power, an Edmonton-based company, recently won a contract for the Whitla 298.8-megawatt (MW) wind project near Medicine Hat, Alta., with a bid of 3.9 cents per kWh, at a time when three new solar facilities in Alberta have been contracted at lower cost than natural gas, underscoring the trend. That price covers capital costs, transmission and connection to the grid, as well as the cost of building the project.

Jerry Bellikka, director of government relations, said Capital Power has been building wind projects for a decade, in the U.S., Alberta, B.C. and other provinces. In that time the price of wind generation equipment has been declining continually, while the efficiency of wind turbines increases.

 

Increased efficiency

"It used to be one tower was 1 MW; now each turbine generates 3.3 MW. There's more electricity generated per tower than several years ago," he said.

One wild card for Whitla may be steel prices — because of the U.S. and Canada slapping tariffs on one other's steel and aluminum products. Whitla's towers are set to come from Colorado, and many of the smaller components from China.

 

Canada introduces new surtaxes to curb flood of steel imports

"We haven't yet taken delivery of the steel. It remains to be seen if we are affected by the tariffs." Belikka said.

Another company had owned the site and had several years of meteorological data, including wind speeds at various heights on the site, which is in a part of southern Alberta known for its strong winds.

But the choice of site was also dependent on the municipality, with rural Forty Mile County eager for the development, Belikka said.

 

Alberta aims for 30% electricity from wind by 2030

Alberta wants 30 per cent of its electricity to come from renewable sources by 2030 and, as an energy powerhouse, is encouraging that with a guaranteed pricing mechanism in what is otherwise a market-bidding process.

While the cost of generating energy for the Alberta Electric System Operator (AESO) fluctuates hourly and can be a lot higher when there is high demand, the winners of the renewable energy contracts are guaranteed their fixed-bid price.

The average pool price of electricity last year in Alberta was 5 cents per kWh; in boom times it rose to closer to 8 cents. But if the price rises that high after the wind farm is operating, the renewable generator won't get it, instead rebating anything over 3.9 cents back to the government.

On the other hand, if the average or pool price is a low 2 cents kWh, the province will top up their return to 3.9 cents.

This contract-for-differences (CfD) payment mechanism has been tested in renewable contracts in the U.K. and other jurisdictions, including some U.S. states, according to AESO.

 

Competitive bidding in Saskatchewan

In Saskatchewan, the plan is to double its capacity of renewable electricity, to 50 per cent of generation capacity, by 2030, and it uses an open bidding system between the private sector generator and publicly owned SaskPower.

In bidding last year on a renewable contract, 15 renewable power developers submitted bids, with an average price of 4.2 cents per kWh.

One low bidder was Potentia with a proposal for a 200 MW project, which should provide electricity for 90,000 homes in the province, at less than 3 cents kWh, according to Robert Hornung of the Canadian Wind Energy Association.

"The cost of wind energy has fallen 70 per cent in the last nine years," he says. "In the last decade, more wind energy has been built than any other form of electricity."

Ontario remains the leading user of wind with 4,902 MW of wind generation as of December 2017, most of that capacity built under a system that offered an above-market price for renewable power, put in place by the previous Liberal government.

In June of last year, the new Conservative government of Doug Ford halted more than 700 renewable-energy projects, one of them a wind farm that is sitting half-built, even as plans to reintroduce renewable projects continue to advance.

The feed-in tariff system that offered a higher rate to early builders of renewable generation ended in 2016, but early contracts with guaranteed prices could last up to 20 years.

Hornung says Ontario now has an excess of generating capacity, as it went on building when the 2008-9 bust cut market consumption dramatically.

But he insists wind can compete in the open market, offering low prices for generation when Ontario needs new  capacity.

"I expect there will be competitive processes put in place. I'm quite confident wind projects will continue to go ahead. We're well positioned to do that."

 

Related News

View more

Charting a path to net zero electricity emissions by the middle of the century

Clean Energy Standard charts a federal path to decarbonize the power sector, scaling renewables, wind, solar, nuclear, and carbon capture to slash emissions, create green jobs, and reach net-zero targets amid the climate crisis.

 

Key Points

A federal policy to expand clean power and cut emissions with renewables, nuclear, and carbon capture toward net-zero.

✅ Mandates annual increases in clean electricity supply

✅ Includes renewables, nuclear, hydro, and carbon capture

✅ Targets rapid emissions cuts and net-zero by mid-century

 

The world has been put on notice. Last year, both the UN Intergovernmental Panel on Climate Change and the U.S. National Climate Assessment warned that we need to slash greenhouse gas emissions to avoid disastrous impacts of global warming. Their direct language forecasting devastating effects on our health, economics, environment, and ways of life has made even more urgent the responsibility we all have to act boldly to combat the climate crisis.

This week, we’re adding one important tool for addressing the climate crisis to the national conversation.

Together, we’re taking that bold action. The Climate reports made clear that to limit the global temperature rise and stave off devastating impacts to our climate—human-caused CO2 emissions must fall rapidly by 2030 and that we, as a global community, underscored at the Katowice climate talks, must reach net-zero emissions by the middle of the century. The Clean Energy Standard is federal legislation that offers a pathway toward decarbonizing our power sector and helping our nation accomplish a goal of net-zero emissions by the 2050s.

Under this plan, any company selling retail electricity will have a mandate to increase the amount of clean energy provided to its customers. It will incentivize clean electricity investment to put the U.S. on a sustainable path.

To deal most effectively with a crisis, all tools must be on the table. Our plan focuses solely on emissions, and there is a place for all technologies that can put us on the path to net zero. That will mean drastic increases in wind and solar energy for sure, as states like California pursue a 100% carbon-free electricity mandate to accelerate deployment, but nuclear power, hydro power, and fossil fuels with carbon capture and storage all have important roles to play.

We’re doing this because the science is clear – tackling our climate crisis requires serious and rapid action to control greenhouse gas emissions, and the push for decarbonization is irreversible according to many. Inaction on the climate crisis puts our families at risk, and we’re not wasting any time. This is also an opportunity to create good-paying green jobs that can last generations and uplift the middle class.

We are doing this for the environment, but also for jobs and economic competitiveness. The green economy is the future and we’re ready to see it grow, with states like New York advancing a Green New Deal that drives innovation. The United States can lead, or we can follow, and we want our nation to lead.

And, because as a New Mexican and a Minnesotan, we know that the impacts of climate change go far beyond the headlines and political discourse. It means devastation within tamarack forests and an increase in deadly fires. It means hotter summers and shorter winters with extreme temperature swings throughout the year. It means devastating flash floods with increasingly intense rain. It’s impacting our pocketbooks when farmers and small businesses who work the land in rural communities are unable to make ends meet.

States across the country are already acting to combat the climate crisis – including Minnesota's 2050 carbon-free electricity plan and New Mexico. But in order to truly address climate change, we have to be in this together as Americans. If the problem is far-reaching, our solutions must be equally as holistic.

It's why we've worked with green groups and activists, unions, and communities across the country - from urban to rural - to create a solution that understands the different starting points communities face in reaching net zero emissions, but doesn't shrink from the absolute need to reach that standard.

There is not one solution to climate change – it will take a collective group of individuals prepared to boldly act. And we are ready to take on that fight.

In Congress, we have formed the House Select Committee on the Climate Crisis and the Senate Democrats’ Special Committee on the Climate Crisis to hear from everyday Americans how climate change is affecting them – and how we can come together to find solutions that build on the historic climate deal passed this year. We have heard the stories of young people worried about their futures. And we realize there is a sense of urgency to act.

Over the coming weeks and months, we will be building support from communities across the country to make this plan a reality. We will continue working with stakeholders to ensure every voice is heard. Most importantly, we will continue listening to you and your communities.

 

Related News

View more

Why subsidies for electric cars are a bad idea for Canada

EV Subsidies in Canada influence greenhouse-gas emissions based on electricity grid mix; in Ontario and Quebec they reduce pollution, while fossil-fuel grids blunt benefits. Compare costs per tonne with carbon tax and renewable energy policies.

 

Key Points

Government rebates for electric vehicles, whose emissions impact and cost-effectiveness depend on provincial grid mix.

✅ Impact varies by grid emissions; clean hydro-nuclear cuts CO2.

✅ MEI estimates up to $523 per tonne vs $50 carbon price.

✅ Best value: tax carbon; target renewables, efficiency, hybrids.

 

Bad ideas sometimes look better, and sell better, than good ones – as with the proclaimed electric-car revolution that policymakers tout today. Not always, or else Canada wouldn’t be the mostly well-run place that it is. But sometimes politicians embrace a less-than-best policy – because its attractive appearance may make it more likely to win the popularity contest, right now, even though it will fail in the long run.

The most seasoned political advisers know it. Pollsters too. Voters, in contrast, don’t know what they don’t know, which is why bad policy often triumphs. At first glance, the wrong sometimes looks like it must be right, while better and best give the appearance of being bad and worst.

This week, the Montreal Economic Institute put out a study on the costs and benefits of taxpayer subsidies for electric cars. They considered the logic of the huge amounts of money being offered to purchasers in the country’s two largest provinces. In Quebec, if you buy an electric vehicle, the government will give you up to $8,000; in Ontario, buying an electric car or truck entitles you to a cheque from the taxpayer of between $6,000 and $14,000. The subsidies are rich because the cars aren’t cheap.

Will putting more electric cars on the road lower greenhouse-gas emissions? Yes – in some provinces, where they can be better for the planet when the grid is clean. But it all depends on how a province generates electricity. In places like Alberta, Saskatchewan, Nova Scotia and Nunavut territory, where most electricity comes from burning fossil fuels, an electric car may actually generate more greenhouse gases than one running on traditional gasoline. The tailpipe of an electric vehicle may not have any emissions. But quite a lot of emissions may have been generated to produce the power that went to the socket that charged it.

A few years ago, University of Toronto engineering professor Christopher Kennedy estimated that electric cars are only less polluting than the gasoline vehicles they replace when the local electrical grid produces a good chunk of its power from renewable sources – thereby lowering emissions to less than roughly 600 tonnes of CO2 per gigawatt hour.

Unfortunately, the electricity-generating systems in lots of places – from India to China to many American states – are well above that threshold. In those jurisdictions, an electric car will be powered in whole or in large part by electricity created from the burning of a fossil fuel, such as coal. As a result, that car, though carrying the green monicker of “electric,” is likely to be more polluting than a less costly model with an internal combustion or hybrid engine.

The same goes for the Canadian juridictions mentioned above. Their electricity is dirtier, so operating an electric car there won’t be very green. Alberta, for example, is aiming to generate 30 per cent of its electricity from renewable sources by 2030 – which means that the other 70 per cent of its electricity will still come from fossil fuels. (Today, the figure is even higher.) An Albertan trading in a gasoline car for an electric vehicle is making a statement – just not the one he or she likely has in mind.

In Ontario and Quebec, however, most electricity is generated from non-polluting sources, even though Canada still produced 18% from fossil fuels in 2019 overall. Nearly all of Quebec’s power comes from hydro, and more than 90 per cent of Ontario’s electricity is from zero-emission generation, mainly hydro and nuclear. British Columbia, Manitoba and Newfoundland and Labrador also produce the bulk of their electricity from hydro. Electric cars in those provinces, powered as they are by mostly clean electricity, should reduce emissions, relative to gas-powered cars.

But here’s the rub: Electric cars are currently expensive, and, as a recent survey shows, consequently not all that popular. Ontario and Quebec introduced those big subsidies in an attempt to get people to buy them. Those subsidies will surely put more electric cars on the road and in the driveways of (mostly wealthy) people. It will be a very visible policy – hey, look at all those electrics on the highway and at the mall!

However, that result will be achieved at great cost. According to the MEI, for Ontario to reach its goal of electrics constituting 5 per cent of new vehicles sold, the province will have to dish out up to $8.6-billion in subsidies over the next 13 years.

And the environmental benefits achieved? Again, according to the MEI estimate, that huge sum will lower the province’s greenhouse-gas emissions by just 2.4 per cent. If the MEI’s estimate is right, that’s far too many bucks for far too small an environmental bang.

Here’s another way to look at it: How much does it cost to reduce greenhouse-gas emissions by other means? Well, B.C.’s current carbon tax is $30 a tonne, or a little less than 7 cents on a litre of gasoline. It has caused GHG emissions per unit of GDP to fall in small but meaningful ways, thanks to consumers and businesses making millions of little, unspectacular decisions to reduce their energy costs. The federal government wants all provinces to impose a cost equivalent to $50 a tonne – and every economic model says that extra cost will make a dent in greenhouse-gas emissions, though in ways that will not involve politicians getting to cut any ribbons or hold parades.

What’s the effective cost of Ontario’s subsidy for electric cars? The MEI pegs it at $523 per tonne. Yes, that subsidy will lower emissions. It just does so in what appears to be the most expensive and inefficient way possible, rather than the cheapest way, namely a simple, boring and mildly painful carbon tax.

Electric vehicles are an amazing technology. But they’ve also become a way of expressing something that’s come to be known as “virtue signalling.” A government that wants to look green sees logic in throwing money at such an obvious, on-brand symbol, or touting a 2035 EV mandate as evidence of ambition. But the result is an off-target policy – and a signal that is mostly noise.

 

Related News

View more

Doug Ford's New Stance on Wind Power in Ontario

Ontario Wind Power Policy Shift signals renewed investment in renewable energy, wind farms, and grid resilience, aligning with climate goals, lower electricity costs, job creation, and turbine technology for cleaner, diversified power.

 

Key Points

A provincial pivot to expand wind energy, meet climate goals, lower costs, and boost jobs across Ontario’s power system.

✅ Diversifies Ontario's grid with scalable renewable capacity.

✅ Targets emissions cuts while stabilizing electricity prices.

✅ Spurs rural investment, supply chains, and skilled jobs.

 

Ontario’s energy landscape is undergoing a significant transformation as Premier Doug Ford makes a notable shift in his approach to wind power. This change represents a strategic pivot in the province’s energy policy, potentially altering the future of Ontario’s power generation, environmental goals, and economic prospects.

The Backdrop: Ford’s Initial Stance on Wind Power

When Doug Ford first assumed the role of Premier in 2018, his administration was marked by a strong stance against renewable energy projects, including wind power, with Ford later saying he was proud of tearing up contracts as part of this shift. Ford’s government inherited a legacy of ambitious renewable energy commitments from the previous Liberal administration under Kathleen Wynne, which had invested heavily in wind and solar energy. The Ford government, however, was critical of these initiatives, arguing that they resulted in high energy costs and a surplus of power that was not always needed.

In 2019, Ford’s government began rolling back several renewable energy projects, including wind farms, and was soon tested by the Cornwall wind farm ruling that scrutinized a cancellation. This move was driven by a promise to reduce electricity bills and cut what was perceived as wasteful spending on green energy. The cancellation of several wind projects led to frustration among environmental advocates and the renewable energy sector, who viewed the decision as a setback for Ontario’s climate goals.

The Shift: Embracing Wind Power

Fast forward to 2024, and Premier Ford’s administration is taking a markedly different approach. The recent policy shift, which moves to reintroduce renewable projects, indicates a newfound openness to wind power, reflecting a broader acknowledgment of the changing dynamics in energy needs and environmental priorities.

Several factors appear to have influenced this shift:

  1. Rising Energy Demands and Climate Goals: Ontario’s growing energy demands, coupled with the pressing need to address climate change, have necessitated a reevaluation of the province’s energy strategy. As Canada commits to reducing greenhouse gas emissions and transitioning to cleaner energy sources, wind power is increasingly seen as a crucial component of this strategy. Ford’s change in direction aligns with these national and global goals.

  2. Economic Considerations: The economic landscape has also evolved since Ford’s initial opposition to wind power. The cost of wind energy has decreased significantly over the past few years, making it a more competitive and viable option compared to traditional energy sources, as competitive wind power gains momentum in markets worldwide. Additionally, the wind energy sector promises substantial job creation and economic benefits, which are appealing in the context of post-pandemic recovery and economic growth.

  3. Public Opinion and Pressure: Public opinion and advocacy groups have played a role in shaping policy. There has been a growing demand from Ontarians for more sustainable and environmentally friendly energy solutions. The Ford administration has been responsive to these concerns, recognizing the importance of addressing public and environmental pressures.

  4. Technological Advancements: Advances in wind turbine technology have improved efficiency and reduced the impact on wildlife and local communities. Modern wind farms are less intrusive and more effective, addressing some of the concerns that were previously associated with wind power.

Implications of the Policy Shift

The implications of Ford’s shift towards wind power are far-reaching. Here are some key areas affected by this change:

  1. Energy Portfolio Diversification: By reembracing wind power, Ontario will diversify its energy portfolio, reducing its reliance on fossil fuels and increasing the proportion of renewable energy in the mix. This shift will contribute to a more resilient and sustainable energy system.

  2. Environmental Impact: Increased investment in wind power will contribute to Ontario’s efforts to combat climate change. Wind energy is a clean, renewable source that produces no greenhouse gas emissions during operation. This aligns with broader environmental goals and helps mitigate the impact of climate change.

  3. Economic Growth and Job Creation: The wind power sector has the potential to drive significant economic growth and create jobs. Investments in wind farms and associated infrastructure can stimulate local economies, particularly in rural areas where many wind farms are located.

  4. Energy Prices: While the initial shift away from wind power was partly motivated by concerns about high energy costs, including exposure to costly cancellation fees in some cases, the decreasing cost of wind energy could help stabilize or even lower electricity prices in the long term. As wind power becomes a larger component of Ontario’s energy supply, it could contribute to a more stable and affordable energy market.

Moving Forward: Challenges and Opportunities

Despite the positive aspects of this policy shift, there are challenges to consider, and other provinces have faced setbacks such as the Alberta wind farm scrapped by TransAlta that illustrate potential hurdles. Integrating wind power into the existing grid requires careful planning and investment in grid infrastructure. Additionally, addressing local concerns about wind farms, such as their impact on landscapes and wildlife, will be crucial to gaining broader acceptance.

Overall, Doug Ford’s shift towards wind power represents a significant and strategic change in Ontario’s energy policy. It reflects a broader understanding of the evolving energy landscape and the need for a sustainable and economically viable energy future. As the province navigates this new direction, the success of this policy will depend on effective implementation, ongoing stakeholder engagement, and a commitment to balancing environmental, economic, and social considerations, even as the electricity future debate continues among party leaders.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.