Before buying a wind turbine, a homeowner should learn how much electricity he uses (utility companies can provide a usage history), and assess local wind speeds.
For most states, wind speed information can be found at www.eere.energy.gov/windandhydro/windpoweringamerica/wind_maps.asp.
The maps donÂ’t account for variations due to altitude, tree lines and ground-level brush. While itÂ’s possible to measure a propertyÂ’s winds more precisely with an anemometer, most wind-turbine dealers donÂ’t require that level of precision to recommend a turbine size.
At awea.org/smallwind, the American Wind Energy Association has guides to selecting and installing turbines, and lists of manufacturers and state incentives. The New York State Energy Research and Development Authority lists rebate amounts and eligible wind installers at www.powernaturally.org. Information for New Jersey residents is available at njcleanenergy.com.
Hydro-Qubec Electricity Theft Ring exposed after a utility investigation into identity theft, rental property fraud, and conspiracies using stolen customer data; arrests, charges, and a tip line highlight ongoing enforcement.
Key Points
A five-year identity-theft scheme defrauding Hydro-Qubec through utility accounts leading to arrests and fraud charges.
✅ Five arrests; 25 counts: fraud, conspiracy, identity theft
✅ Losses up to $300,000 in electricity, 2014-2019
✅ Tip line: 1-877-816-1212 for suspected Hydro-Qubec fraud
Five people have been arrested in connection with an electricity theft ring alleged to have operated for five years, a pattern seen in India electricity theft arrests as well.
The thefts were allegedly committed by the owners of rental properties who used stolen personal information to create accounts with Hydro-Québec, which also recently dealt with a manhole fire outage affecting thousands.
The utility alleges that between 2014 and 2019, Mario Brousseau, Simon Brousseau-Ouellette and their accomplices defrauded Hydro-Québec of up to $300,000 worth of electricity, highlighting concerns about consumption trends as residential electricity use rose during the pandemic. It was impossible for Hydro-Québec’s customer service section to detect the fraud because the information on the accounts, while stolen, was also genuine, even as the utility reported pandemic-related losses later on.
The suspects are expected to face 25 counts of fraud, conspiracy and identity theft, issues that Ontario utilities warn about regularly.
Hydro-Québec noted the thefts were detected through an investigation by the utility into 10 fraud cases, a process that can lead to retroactive charges for affected accounts.
Anyone concerned that a fraud is being committed against Hydro-Québec, or wary of scammers threatening shutoffs, is urged to call 1-877-816-1212.
Nighttime Thermoelectric Generator converts radiative cooling into renewable energy, leveraging outer space cold; a Stanford-UCLA prototype complements solar, serving off-grid loads with low-power output during peak evening demand, using simple materials on a rooftop.
Key Points
A device converting nighttime radiative cooling into electricity, complementing solar for low-power evening needs.
✅ Uses thermocouples to convert temperature gradients to voltage.
✅ Exploits radiative cooling to outer space for night power.
✅ Complements solar; low-cost parts suit off-grid applications.
Two years ago, one freezing December night on a California rooftop, a tiny light shone weakly with a little help from the freezing night air. It wasn't a very bright glow. But it was enough to demonstrate the possibility of generating renewable power after the Sun goes down.
Working with Stanford University engineers Wei Li and Shanhui Fan, University of California Los Angeles materials scientist Aaswath Raman put together a device that produces a voltage by channelling the day's residual warmth into cooling air, effectively generating electricity from thin air with passive heat exchange.
"Our work highlights the many remaining opportunities for energy by taking advantage of the cold of outer space as a renewable energy resource," says Raman.
"We think this forms the basis of a complementary technology to solar. While the power output will always be substantially lower, it can operate at hours when solar cells cannot."
For all the merits of solar energy, it's just not a 24-7 source of power, although research into nighttime solar cells suggests new possibilities for after-dark generation. Sure, we can store it in a giant battery or use it to pump water up into a reservoir for later, but until we have more economical solutions, nighttime is going to be a quiet time for renewable solar power.
Most of us return home from work as the Sun is setting, and that's when energy demands spike to meet our needs for heating, cooking, entertaining, and lighting.
Unfortunately, we often turn to fossil fuels to make up the shortfall. For those living off the grid, it could require limiting options and going without a few luxuries.
Shanhui Fan understands the need for a night time renewable power source well. He's worked on a number of similar devices, including carbon nanotube generators that scavenge ambient energy, and a recent piece of technology that flipped photovoltaics on its head by squeezing electricity from the glow of heat radiating out of the planet's Sun-warmed surface.
While that clever item relied on the optical qualities of a warm object, this alternative device makes use of the good old thermoelectric effect, similar to thin-film waste-heat harvesting approaches now explored.
Using a material called a thermocouple, engineers can convert a change in temperature into a difference in voltage, effectively turning thermal energy into electricity with a measurable voltage. This demands something relatively toasty on one side and a place for that heat energy to escape to on the other.
The theory is the easy part – the real challenge is in arranging the right thermoelectric materials in such a way that they'll generate a voltage from our cooling surrounds that makes it worthwhile.
To keep costs down, the team used simple, off-the-shelf items that pretty much any of us could easily get our hands on.
They put together a cheap thermoelectric generator and linked it with a black aluminium disk to shed heat in the night air as it faced the sky. The generator was placed inside a polystyrene enclosure sealed with a window transparent to infrared light, and linked to a single tiny LED.
For six hours one evening, the box was left to cool on a roof-top in Stanford as the temperature fell just below freezing. As the heat flowed from the ground into the sky, the small generator produced just enough current to make the light flicker to life.
At its best, the device generated around 0.8 milliwatts of power, corresponding to 25 milliwatts of power per square metre.
That might just be enough to keep a hearing aid working. String several together and you might just be able to keep your cat amused with a simple laser pointer. So we're not talking massive amounts of power.
But as far as prototypes go, it's a fantastic starting point. The team suggests that with the right tweaks and the right conditions, 500 milliwatts per square metre isn't out of the question.
"Beyond lighting, we believe this could be a broadly enabling approach to power generation suitable for remote locations, and anywhere where power generation at night is needed," says Raman.
While we search for big, bright ideas to drive the revolution for renewables, it's important to make sure we don't let the smaller, simpler solutions like these slip away quietly into the night.
Australia-PNG Infrastructure Rollout delivers electricity and broadband expansion across PNG, backed by New Zealand, the US, Japan, and South Korea, enhancing telecom capacity, digital connectivity, and regional development ahead of the APEC summit.
Key Points
A multi-billion-dollar plan to expand power and broadband in PNG, covering 70% of users with allied support.
✅ Delivers internet to 70% of PNG households and communities
✅ Expands electricity grid, boosting reliability and access
✅ Backed by NZ, US, Japan, and S. Korea; complements APEC investments
Australia will lead a new multi-billion-dollar electricity and internet rollout in Papua New Guinea, with the PM rules out taxpayer-funded power plants stance underscoring its approach to energy policy.
The Australian newspaper reported New Zealand, the US, Japan, whose utilities' offshore wind deal in the UK signaled expanding energy interests, and South Korea are supporting the project, which will be PNG's largest ever development investment.
The project will deliver internet to 70 percent of PNG and improve access to power, even as clean energy investment in developing nations has slipped sharply, according to a recent report.
Both China and the US are also expected to announce new investments in the region at the APEC summit this week, and recent China-Cambodia nuclear energy cooperation underscores those energy ties.
Beijing will announce new mining and energy investments in PNG, echoing projects such as the Chinese-built electricity poles plant in South Sudan, and two Confucius Insitutes to be housed at PNG universities.
Quebec Large-Scale Power Connections allocate 956 MW via Hydro-Québec to battery, bioenergy, and green hydrogen projects, including Northvolt and data centers, advancing grid capacity, industrial electrification, and Quebec's energy transition.
Key Points
Allocations of 956 MW via Hydro-Québec to projects in batteries, bioenergy, and green hydrogen across Quebec.
✅ 11 projects approved, totaling 956 MW across Quebec
✅ Focus: batteries, bioenergy, green hydrogen, data centers
The Quebec government has unveiled the list of 11 companies whose projects were given the go-ahead for large-scale power connections of 5 megawatts or more, for a total of 956 MW, even as planned exports to New York continue to factor into supply.
Five of the selected projects relate to the battery sector, reflecting EV battery investments by Canada and Quebec, and two to the bioenergy sector.
TES Canada's plan to build a green hydrogen production plant in Shawinigan, announced on Friday, is on the list.
Hydro-Québec will also supply 5 MW or more to the future Northvolt battery plant at its facilities in Saint-Basile-le-Grand and McMasterville.
Other industrial projects selected are those of Air Liquide Canada, Ford-Ecopro CAM Canada S.E.C, Nouveau monde Graphite and Volta Energy Solutions Canada.
Bioenergy projects include Greenfield Global Québec, in Varennes, and WM Québec, in Sainte-Sophie.
There's also Duravit Canada's manufacturing project in Matane, Quebec Iron Ore's green steel project in Fermont, Côte-Nord, and Vantage Data Centers CanadaQC4's data center project in Pointe-Claire.
All projects were selected las August "according to defined analysis criteria, such as technical connection capacities and impact on the Quebec power grid operations, economic and regional development spinoffs, environmental and social impact, as well as consistency with government orientations," states the press release from the office of Pierre Fitzgibbon, Quebec's Economy, Innovation and Energy Minister.
"With energy balances tightening and the electrification of our economy on the rise, we need to choose the most promising projects and allocate available electricity wisely," said Fitzgibbon.
Cross-border capacity expansions, including the Maine transmission corridor now approved, are also shaping regional power flows.
"These 11 projects will accelerate the energy transition, while creating significant economic spinoffs throughout Quebec."
The government is continuing its analysis of other energy-intensive industrial projects to help make the transition to a greener economy, even as experts question Quebec's EV strategy in policy circles, until March 31.
NDC Renewable Energy Ambition drives COP25 calls to align with the Paris Agreement, as IRENA urges 2030 targets toward 7.7 TW, accelerating decarbonization, energy transition, socio-economic benefits, and scalable renewables in Nationally Determined Contributions.
Key Points
Raised 2030 renewable targets in NDCs to meet Paris goals, reaching 7.7 TW efficiently and speeding decarbonization.
✅ Double current NDC renewables to align with 7.7 TW by 2030
✅ Cost effective pathway with jobs, growth, welfare gains
✅ Accelerates decarbonization and energy access per UN goals
We need an oracle to get us out of this debacle. The UN climate group has met for the 25th time. Will anything ever change?
Countries are being urged to significantly raise renewable energy ambition and adopt targets to transform the global energy system in the next round of Nationally Determined Contributions (NDCs), according to a new IRENA report by the International Renewable Energy Agency (IRENA) that will be released at the UN Climate Change Conference (COP25) in Madrid.
The report will show that renewable energy ambition within NDCs would have to more than double by 2030 to put the world in line with the Paris Agreement goals, cost-effectively reaching 7.7 terawatts (TW) of globally installed capacity by then. Today’s renewable energy pledges under the NDCs are falling short of this, targeting only 3.2 TW, even as over 30% of global electricity is already generated from renewables.
The reportNDCs in 2020: Advancing Renewables in the Power Sector and Beyondwill be released at IRENA’s official side event on enhancing NDCs and raising ambition on 11 December 2019.It will state that with over 2.3 TW installed renewable capacity today, following a record year for renewables in 2016, almost half of the additional renewable energy capacity foreseen by current NDCs has already been installed.
The analysis will also highlight that delivering on increased renewable energy ambition can be achieved in a cost-effective way and with considerable socio-economic benefits across the world.
“Increasing renewable energy targets is absolutely necessary,” said IRENA’s Director-General Francesco La Camera. “Much more is possible. There is a decisive opportunity for policy makers to step up climate action, including a fossil fuel lockdown, by raising ambition on renewables, which are the only immediate solution to meet rising energy demand whilst decarbonizing the economy and building resilience.
“IRENA’s analysis shows that a pathway to a decarbonised economy is technologically possible and socially and economically beneficial,” continued Mr. La Camera.
“Renewables are good for growth, good for job creation and deliver significant welfare benefits. With renewables, we can also expand energy access and help eradicate energy poverty by ensuring clean, affordable and sustainable electricity for all in line with the UN Sustainable Development Agenda 2030.
IRENA will promote knowledge exchange, strengthen partnerships and work with all stakeholders to catalyse action on the ground. We are engaging with countries and regions worldwide, from Ireland's green electricity push to other markets, to facilitate renewable energy projects and raise their ambitions”.
NDCs must become a driving force for an accelerated global energy transformation toward 100% renewable energy globally. The current pledges reflect neither the past decade’s rapid growth nor the ongoing market trends for renewables. Through a higher renewable energy ambition, NDCs could serve to advance multiple climate and development objectives.
5G Energy Costs highlight base station power consumption, carrier electricity bills, and carbon emissions in China, while advances in energy efficiency, sleep modes, and cooling systems aim to optimize low-latency networks and reduce operational expenses.
Key Points
5G energy costs rise with power-hungry base stations, yet per-bit efficiency and sleep modes help cut bills.
✅ 5G base stations use ~4x 4G electricity
✅ Per-bit 5G energy efficiency is ~4x better than 4G
✅ Sleep modes and advanced cooling reduce OPEX and emissions
As 5G developers look desperately for a "killer app" to prove the usefulness of the superfast wireless technology, mobile carriers in China are complaining about the high energy cost of 5G signal towers.
And the situation is, according to experts, more complicated than many have thought.
The costly 5G
5G technology can be 10 or more times faster than 4G and significantly more responsive to users' input, but the speed comes at a cost.
A 5G base station consumes "four times more electricity" than its 4G counterpart, said Ding Haiyu, head of wireless and terminals at the China Mobile Research Institute, during a symposium on 5G and carbon neutrality in Beijing, a key focus for countries pursuing a net-zero grid by 2050 worldwide.
But concerning each bit of data transmitted, 5G is four times more energy-efficient than 4G, according to Ding.
This means that mobile carriers should fully occupy their 5G network for as long time as possible, but that can be hard at this moment, as many people are still holding 4G smartphones.
"When the 5G stations are running without people using them, they are really electricity guzzlers," said Zhu Qingfeng, head of power supply design at China Information Technology Designing and Consulting Institute Co., Ltd., who represents China Unicom at the symposium. "Each of the three telecom carrier giants are emitting about ten million tonnes of carbon in the air."
"We have to shut down some 5G base stations at night to reduce emission," he added.
Some utilities are testing fuel cell solutions to keep backup batteries charged much longer, supporting network resilience at lower emissions.
A representative from China Telecom said electricity bills of the nationwide carrier reached a new high of 100 billion yuan (about $15 billion) a year, mirroring the power challenges for utilities as data center demand booms elsewhere.
Getting better
While admitting the excessive cost of 5G, experts at the symposium also agreed that the situation is improving, even as climate pressures on the grid continue to mount.
Ding listed a series of recent technologies that is helping reduce the energy use of 5G, including chips of better process, automatic sleeping and wake-up of base stations and liquid nitrogen-based cooling system, and superconducting cables as part of ongoing upgrades.
"We are aiming at halving the 5G electricity cost to only two times of 4G in two years," Ding said.
Experts also discussed the possibility of making use of 5G's low latency features to help monitoring the electricity grid, thus making the digital grid smarter and more cost effective.
G's energy cost is seen as a hot topic for the incoming World 5G Convention in Beijing in early August, alongside smart grid transformation themes. Stay tuned to CGTN Digital as we bring you the latest news about the convention and 5G technology.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.