Edison too slow to respond, cities say

By Knight Ridder Tribune


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Another Oakland County town has taken on the biggest electrical utility in Michigan - to bill for its waiting time.

Madison Heights passed an ordinance calling for reimbursement from DTE Energy if the utility is slow to respond to a downed wire or other hazard. Royal Oak passed a similar ordinance a year ago. City officials say they need to recoup some of the cost when firefighters or other city workers must stand guard until utility workers arrive.

The ordinances apply to all utilities but are aimed at Detroit Edison - the electrical subsidiary of DTE Energy. The tab runs hundreds of dollars per hour to keep firefighters on duty for a downed wire and unavailable to respond to other emergencies, said Madison Heights City Manager Jon Austin.

"All of the fire departments in Oakland County have been looking for a uniform way to assess these charges," Austin said, about the unanimous city council vote for the ordinance. Madison Heights and Royal Oak officials insist that Edison has been taking longer in recent years to respond, a charge the utility denies.

"We do respond to these situations quickly, but we don't have a truck waiting a mile away like fire departments do," said DTE Energy spokesman Scott Simons. "But I can tell you flat out," he added, "if we're in a community where there's a dedicated fire millage, we're not going to pay" - because DTE Energy pays its share of property taxes and expects to be served by firefighters just like any other taxpayer.

Both Madison Heights and Royal Oak have a property-tax millage dedicated to buying fire trucks. Royal Oak finance director Don Johnson said that Edison had initially paid the invoices, "but then they quit." The tab now stands at about $45,000. Edison executives said they are waiting for their parent company to complete a company policy on the issue. Madison Heights plans to begin charging Edison after an hour of waiting.

The state agency that regulates utilities has a longer time frame. The Michigan Public Service Commission has a rule requiring that utilities respond to a downed wire within four hours, "at least 90% of the time under all conditions," said Judy Palnau, a spokeswoman for the agency in Lansing.

Related News

Analysis: Why is Ontario’s electricity about to get dirtier?

Ontario electricity emissions forecast highlights rising grid CO2 as nuclear refurbishments and the Pickering closure drive more natural gas, limited renewables, and delayed Quebec hydro imports, pending advances in storage and transmission upgrades.

 

Key Points

A projection that Ontario's grid CO2 will rise as nuclear units refurbish or retire, increasing natural gas use.

✅ Nuclear refurbs and Pickering shutdown cut zero-carbon baseload

✅ Gas plants fill capacity gaps, boosting GHG emissions

✅ Quebec hydro imports face cost, transmission, and timing limits

 

Ontario's energy grid is among the cleanest in North America — but the province’s nuclear plans mean that some of our progress will be reversed over the next decade.

What was once Canada’s largest single source of greenhouse-gas emissions is now a solar-power plant. The Nanticoke Generating Station, a coal-fired power plant in Haldimand County, was decommissioned in stages from 2010 to 2013 — and even before the last remaining structures were demolished earlier this year, Ontario Power Generation had replaced its nearly 4,000 megawatts with a 44-megawatt solar project in partnership with the Six Nations of the Grand River Development Corporation and the Mississaugas of the Credit First Nation.

But neither wind nor solar has done much to replace coal in Ontario’s hydro sector, a sign of how slowly Ontario is embracing clean power in practice across the province. At Nanticoke, the solar panels make up less than 2 per cent of the capacity that once flowed out to southern Ontario over high-voltage transmission lines. In cleaning up its electricity system, the province relied primarily on nuclear power — but the need to extend the nuclear system’s lifespan will end up making our electricity dirtier again.

“We’ve made some pretty great strides since 2005 with the fuel mix,” says Terry Young, vice-president of corporate communications at the Independent Electricity System Operator, the provincial agency whose job it is to balance supply and demand in Ontario’s electricity sector. “There have been big changes since 2005, but, yes, we will see an increase because of the closure of Pickering and the refurbs coming.”

“The refurbs” is industry-speak for the major rebuilds of both the Darlington and Bruce nuclear-power stations. The two are both in the early stages of major overhauls intended to extend their operating lives into the 2060s: in the coming years, they’ll be taken offline and rebuilt. (The Pickering nuclear plant will not be refurbished and will shut down in 2024.)

The catch is that, as the province loses its nuclear capacity in increments, Ontario will be short of electricity in the coming years and the IESO will need to find capacity elsewhere to make sure the lights stay on. And that could mean burning a lot more natural gas — and creating more greenhouse-gas emissions.

According to the IESO’s planning assumptions, electricity will be responsible for 11 megatonnes of greenhouse-gas emissions annually by 2035 (last year, it was three megatonnes). That’s the “reference case” scenario: if conservation and efficiency policies shave off some electricity demand, we could get it down to something like nine megatonnes. But if demand is higher than expected, it could be as high as 13 megatonnes — more than quadruple Ontario’s 2018 emissions.

Even in the worst-case scenario, the province’s emissions from electricity would still be less than half of what they were in 2005, before the province began phasing out its coal generation. But it’s still a reversal of a trend that both Liberals and Progressive Conservatives have boasted about — the Liberals to justify their energy policies, the PCs to justify their hostility to a federal carbon tax.

Young emphasized that technology can change and that the IESO’s planning assumptions are just that: projections based on the information available today. A revolution in electricity storage could make it possible to store the province’s cleaner power sources overnight for use during the day, but that’s still only in the realm of speculation — and the natural-gas infrastructure exists in the real world, today.

Ontario Power Generation — the Crown corporation that operates many of the province’s power plants, including Pickering and Darlington — recently bought four gas plants, two of them outright (two it already owned in part). All were nearly complete or already operational, so the purchase itself won’t change the province’s emissions prospects. Rather, OPG is simply looking to maintain its share of the electricity market after the Pickering shutdown.

“It will allow us to maintain our scale, with the upcoming end of Pickering’s commercial operations, so that we can continue our role as the driver of Ontario’s lower carbon future,” Neal Kelly, OPG’s director of media, issues, and management, told TVO.org via email. “Further, there is a growing need for flexible gas fired generation to support intermittent wind and solar generation.”

The shift to more gas-fired generation has been coming for a while, and critics say that Ontario has missed an opportunity to replace the lost Pickering capacity with something cleaner. MPP Mike Schreiner, leader of the Green party, has argued for years that Ontario should have pursued an agreement with Quebec to import clean hydroelectricity.

“To me, it’s a cost-effective solution, and it’s a zero-emissions solution,” Schreiner says. “Regardless of your position on sources of electricity, I think everyone could agree that waterpower from Quebec is going to be less expensive.”

Quebec is eager to sell Ontario its surplus hydro power, but not everyone agrees that importing power would be cheaper. A study published by the Ontario Chamber of Commerce (and commissioned by Ontario Power Generation) calls the claim a “myth” and states that upgrading electric-transmission wires between Ontario and Quebec would cost $1.2 billion and take 10 years, while some estimates suggest fully greening Ontario's grid would cost far more overall.

With Quebec imports seemingly a non-starter and major changes to Ontario’s nuclear fleet already underway, there’s only one path left for this province’s greenhouse-gas emissions: upwards.

 

Related News

View more

India to Ration Coal Supplies as Electricity Demand Surges

India Coal Supply Rationing redirects shipments from high-inventory power plants to stations facing shortages as electricity demand surges, inventories fall, and outages persist; Coal India, NTPC imports, and smaller mines bolster domestic supply.

 

Key Points

A temporary policy redirecting coal from high-stock plants to shortage-hit plants amid rising demand

✅ Shipments halted 1 week to plants with >14 days coal stock

✅ Smaller mines asked to raise output; NTPC to import 270,000 tons

✅ Outages at Adani and Tata Mundra units pressure domestic supply

 

India will ration coal supplies to power plants with high inventories to direct more shipments to stations battling shortages, even as shortages ease in some regions, as surging demand outstrips production.

Supplies to plants with more than two weeks’ coal inventory will be halted for a week, a team headed by federal Coal Secretary Alok Kumar decided on Saturday, the Power Ministry said in a statement. The government has also requested smaller mines to raise output to supplement shipments from state miner Coal India Ltd., and is taking steps to get nuclear back on track to diversify the energy mix.

A jump in electricity consumption spurred by a reviving economy and an extended summer, after an earlier steep demand decline in India, is driving demand for coal, which helps produce about 70% of the nation’s electricity. The surge in demand complicates India’s clean-energy transition efforts amid solar supply headwinds that cloud near-term alternatives, and may bolster arguments favoring the country’s dependence on coal to fuel economic growth.

“There’s no doubt India will continue to need coal for stable power for years,” said Rupesh Sankhe, vice president at Elara Capital India Pvt. in Mumbai. “Plants that meet environmental standards and are able to produce power efficiently will see utilization rising, but I doubt we’re going to have many new coal plants.”  

Coal stockpiles at the country’s power plants had fallen to 14.7 million tons as of Aug. 24, tumbling 62% from a year earlier, according to the latest data from the Central Electricity Authority. More than 88 gigawatts of generation plants, about half the capacity monitored by the power ministry, had inventories of six days or less as of that date, the data show. Power demand jumped 10.5% in July from a year earlier, even as global electricity use dipped 15% during the pandemic, according to the government.
Outages at some large plants that run on imported coal have increased the burden on those that burn domestic supplies, aiding shortfalls.

Adani Power Ltd. had almost 2 gigawatts of capacity in outage at its Mundra plant in Gujarat at the start of the week, while Tata Power Co. Ltd. had shut 80% of its 4-gigawatt plant in the same town for maintenance, power ministry data show.

NTPC Ltd., the largest power generator, will import the 270,000 tons of coal it left out from contracts placed earlier to mitigate the fuel shortage, reflecting higher imported coal volumes this fiscal, the power ministry said in a separate statement.

 

Related News

View more

Europe's largest shore power plant opens

AIDAsol shore power Rostock-Warnemfcnde delivers cold ironing for cruise ships, up to 20 MVA at berths P7 and P8, cutting port emissions during berthing and advancing AIDA's green cruising strategy across European ports.

 

Key Points

Rostock-Warnemfcnde shore power supplies two cruise ships up to 20 MVA, enabling cold ironing and cutting emissions.

✅ Up to 20 MVA; powers two cruise ships at berths P7 and P8

✅ Enables cold ironing for AIDA fleet to reduce berth emissions

✅ Part of AIDA green cruising with fuel cells and batteries

 

In a ceremony held in Rostock-Warnemünde yesterday during Germany’s 12th National Maritime Conference, the 2,174-passenger cruise ship AIDAsol inaugurated Europe’s largest shore power plants for ships.

The power plant has been established under a joint agreement between AIDA Cruises, a unit of Carnival Corporation & plc (NYSE/LSE: CCL; NYSE: CUK), the state government of Mecklenburg-Western Pomerania, the city of Rostock and the Port of Rostock.

“With our green cruising strategy, we have been investing in a sustainable cruise market for many years,” said AIDA Cruises President Felix Eichhorn. “The shore power plant in Rostock-Warnemünde is another important step — after the facility in Hamburg — on our way to an emission-neutral cruise that we want to achieve with our fleet. I would like to thank the state government of Mecklenburg-Western Pomerania and all partners involved for the good and trusting cooperation. Together, we are sending out an important signal, not just in Germany, but throughout Europe.”

CAN POWER TWO CRUISE SHIPS AT A TIME
The shore power plant, which was completed in summer 2020, is currently the largest in Europe and aligns with port electrification efforts such as the all-electric berth at London Gateway in the UK. With an output of up to 20 megavolt amperes (MVA), two cruise ships can be supplied with electricity at the same time at berths P7 and P8 in Warnemünde.

In regular passenger operation AIDAsol needs up to 4.5 megawatts per hour (MWh) of electricity.

The use of shore power to supply ships with energy is a decisive step in AIDA Cruises’ plans to reduce local emissions to zero during berthing, complementing recent progress with electric ships on the B.C. coast, as a cruise ship typically stays in port around 40% of its operating time.

As early as 2004, when the order for the construction of AIDAdiva was placed, and for all other ships put into service in subsequent years, the company has considered the use of shore power as an option for environmentally friendly ship operation.

Since 2017, AIDA Cruises has been using Europe’s first shore power plant in Hamburg-Altona, where AIDAsol is in regular operation, while operators like BC Ferries add hybrid ferries to expand low-emission service in Canada. Currently, 10 ships in the AIDA fleet can either use shore power where available or are technically prepared for it.

The aim is to convert all ships built from 2000 onwards, supporting future solutions like offshore charging with wind power.

With AIDA Cruises starting a cruise season from Kiel, Germany, on May 22, AIDAsol will also be the first cruise ship to complete the final tests on a newly built shore power plant there, as innovations such as Berlin’s electric flying ferry highlight the broader shift toward electrified waterways. Construction of that plant is the result of a joint initiative by the state government of Schleswig-Holstein, the city and the port of Kiel and AIDA Cruises. AIDAsol is scheduled to arrive in Kiel on the afternoon of May 13.

As part of its green cruising strategy, AIDA Cruises has been investing in a sustainable cruise operation for many years, paralleling urban shifts toward zero-emission bus fleets in Berlin. Other steps on the path to the zero emission ship of the future are already in preparation. This year, AIDAnova will receive the first fuel cell to be used on an ocean-going cruise ship. In 2022, the largest battery storage system to date in cruise shipping will go into operation on board an AIDA ship, similar to advances in battery-electric ferries in the U.S. In addition, the company is already addressing the question of how renewable fuels can be used on board cruise ships in the future.

 

Related News

View more

Electricity prices spike in Alberta

Alberta electricity price spike drives 25% CPI surge amid heatwave demand, coal-to-gas conversions, hydro shortfalls, and outages; consumers weigh fixed-rate plans, solar panels, home retrofits, and variable rates to manage bills and grid volatility.

 

Key Points

A recent 25% monthly rise in Alberta power prices driven by heatwave demand, constraints, outages, and fuel shifts.

✅ Heatwave pushed summer peak demand near record

✅ Coal-to-gas conversions and outages tightened supply

✅ Fixed-rate plans, solar, retrofits can reduce bill risk

 

Albertans might notice they are paying more when the next electricity bill comes in as bills on the rise in Calgary alongside provincial trends.

According to the consumer price index, Alberta saw its largest monthly increase since July 2015 as the price of electricity in Alberta rose 25 per cent amid rising electricity prices across the province.

“So I paid negative $70 last month. I actually made money. To supply power to the grid,” said Conrad Nobert, with Climate Action Edmonton.

Norbert is an environmental activist who favours solar power and is warning that prices will continue to go up along with the rising effects from climate change.

“My thoughts are that we can mitigate the price of power going up by taking climate action.”

Alberta experienced one of the hottest summers on record and many people were left scrambling to buy air conditioners.

That demand, along with a number of other factors, drove up prices, prompting some households to lock in rates for protection, says an assistant professor at the University of Calgary who teaches electricity systems.

“At the end of June, during the heatwave, we were a couple megawatts shy of setting an all-time record demand for electricity in the province. That would have been the first time that record for demand in the summer. Traditionally Alberta is a winter peaking province, as shown by an electricity usage record during a deep freeze not long ago,” explained Sara Hastings Simon, an assistant professor at the University of Calgary.

Other reasons for the spike: Alberta’s continuing shift from coal to natural-gas-fired power and changes to electricity production and pricing across the market.

There are a few ways consumers can save money on their power bill; installing solar panels and retrofitting your home to opting for a fixed-rate plan, or considering protections like a consumer price cap where applicable.

“So by default, people are put into a variable rate plan, that changes month to month and that helps to manage prices so you don’t get that big surprise at where prices might be. I think we will get a lot more people looking at that option.”

A statement provided by Dale Nally, Alberta’s Associate Minister of natural gas and electricity, noted recent policy changes including the carbon tax repeal and price cap now in place that affect consumers, says in part:

“This period of high market prices is driven by low supplies of hydro-generated electricity from British Columbia and the pacific northwest, scheduled outages for coal-gas-conversions, unplanned infrastructure outages and unprecedented, and record-breaking high demand due to hot weather. We expect some of the factors that have caused recent increases in prices will be short-term.”

 

Related News

View more

Geothermal Power Plant In Hawaii Nearing Dangerous Meltdown?

Geothermal Power Plant Risks include hydrogen sulfide leaks, toxic gases, lava flow hazards, well blowouts, and earthquake-induced releases at sites like PGV and the Geysers, threatening public health, grid reliability, and environmental safety.

 

Key Points

Geothermal Power Plant Risks include toxic gases, lava impacts, well failures, and induced quakes that threaten health.

✅ Hydrogen sulfide exposure can cause rapid pulmonary edema.

✅ Lava can breach wells, venting toxic gases into communities.

✅ Induced seismicity may disrupt grids near PGV and the Geysers.

 

If lava reaches Hawaii’s PGV geothermal power plant, it could release of deadly hydrogen sulfide gas. That’s the latest potential danger from the Kilauea volcanic eruption in Hawaii. Residents now fear that lava flow will trigger a meltdown at the Puna Geothermal Venture (PGV) power plant that would release even more toxic gases into the air.

Nobody knows what will happen if lava engulfs the PGV because magma has never engulfed a geothermal power plant, Reuters reported. A geothermal power plant uses steam and gas heated by lava deep in the earth to run turbines that make electricity.

The PGV power plant produces 25% of the power used on Hawaii’s “Big Island.” The plant is considered a source of clean energy because geothermal plants burn no fossil fuels and produce little pollution under normal circumstances, even as nuclear retirements like Three Mile Island reshape low-carbon options.

 

The Potential Danger from Geothermal Energy

The fear is that the lava would release chemicals used to make electricity at the plant. The PGV has been shut down and authorities moved an estimated 60,000 gallons of flammable liquids away from the facility. They also shut down wells that extract steam and gas used to run the turbines.

Another potential danger is that lava would open the wells and release clouds of toxic gases from them. The wells are typically sealed to prevent the gas from entering the atmosphere.

The most significant threat is hydrogen sulfide, a highly toxic and flammable gas that is colorless. Hydrogen sulfide normally has a rotten egg smell which people might not detect when the air is full of smoke. That means people can breathe hydrogen sulfide in without realizing they have been exposed.

The greatest danger from hydrogen sulfide is pulmonary edema; the accumulation of fluid in the lungs, which causes a person to stop breathing. People have died of pulmonary edema after just a few minutes of exposure to hydrogen sulfide gas. Many victims become unconscious before the gas kills them. Long-term dangers that survivors of pulmonary edema face include brain damage.

Hydrogen sulfide can also cause burns to the skin that are similar to frostbite. Persons exposed to hydrogen sulfide can also suffer from nausea, headaches, severe eye burns, and delirium. Children are more vulnerable to hydrogen sulfide because it is a heavy gas that stays close to the ground.

 

Geothermal Danger Extends Far Beyond Hawaii

The danger from geothermal energy extends far beyond Hawaii. The world’s largest collection of geothermal power plants is located at the Geysers in California’s Wine Country, and regulatory timelines such as the postponed closure of three Southern California plants can affect planning.

The Geysers field contains 350 steam production wells and 22 power plants in Sonoma, Lake, and Mendocino counties. Disturbingly, the Geysers are located just north of the heavily-populated San Francisco Bay Area and just west of Sacramento, where preemptive electricity shutdowns have been used during extreme fire weather. Problems at the Geysers might lead to significant blackouts because the field supplies around 20% of the green energy used in California.

Another danger from geothermal power is earthquakes because many geothermal power plants inject wastewater into hot rock deep below to produce steam to run turbines, a factor under review as SaskPower explores geothermal in new settings. A geothermal project in Switzerland created Earthquakes by injecting water into the Earth, Zero Hedge reported. A theoretical threat is that quakes caused by injection would cause the release of deadly gases at a geothermal power plant.

The dangers from geothermal power might be much greater than its advocates admit, potentially increasing reliance on natural-gas-based electricity during supply shortfalls.

 

Related News

View more

More people are climbing dangerous hydro dams and towers in search of 'social media glory,' utility says

BC Hydro Trespassing Surge highlights risky social media stunts at dams and power stations, with restricted areas breached for selfies, electrocution hazards ignored, and safety signage violated across Buntzen Lake, Jones Lake, and Jordan River.

 

Key Points

A spike in illegal entries at BC Hydro sites for social media, increasing electrocution and drowning risks.

✅ 200% rise in trespassing over five years

✅ Risks: electrocution, drowning, deadly falls

✅ Obey signage; avoid restricted dam and substation areas

 

More and more daredevils are climbing onto dangerous dams and power stations to gain likes and social media followers, according to a new report from BC Hydro.

The power provider says it's seen a 200 per cent uptick in trespassing into restricted areas over the past five years, with many of the incidents posted onto sites like YouTube, Facebook and Instagram.

"It's concerning for us because our infrastructure has risk with it," said David Conway, a community relations manager for BC Hydro.

"There's a risk of electrocution in regards to our transmission towers and our substations ... and people can be severely injured, as seen in serious injuries cases, or killed," he said.

The company released a report Tuesday, noting specific incidents of users trespassing onto sites at Buntzen Lake in Anmore, Jones Lake in the Fraser Valley and Jordan River near Victoria; it has also been issuing Site C updates during the pandemic. The incidents ranged from climbing transmission towers to swimming in restricted areas at dam sites.

In a separate matter, an external investigation at Manitoba Hydro has examined alleged assaults by workers.

Conway says annual incidents climbed from a handful to about one dozen, but BC Hydro expects the figures to be even higher. He says many more events likely go unreported.

The report ties the increase in incidents to the pursuit of "social media glory." Between 2011 and 2017, at least 259 people were killed worldwide in selfie-related incidents, according to the Journal of Family Medicine and Primary Care, and a knowledge gap in electrical safety remains a factor. Many of the incidents involved water, electrical equipment or dangerous heights.

In 2018, three social media personalities died after falling off a cliff at Shannon Falls near Squamish, B.C.

North Shore Rescue attributes about 30 per cent of its calls to outdoor users attempting to capture content for social media.

Survey results highlighted in the BC Hydro report show that 15 per cent of British Columbians admit to putting themselves in a dangerous position "to achieve the 'perfect' shot."

Awareness also influences careers, as many young Canadians say they would work in electricity if they knew more.

The survey was conducted online by 800 B.C. residents. For comparison purposes, a probability sample of the same size would yield a margin of error of plus or minus 3.5 per cent, 19 times out of 20.

During the pandemic, the U.S. grid overseer issued a coronavirus warning to highlight operational risks.

Risky activities include standing at the edge of a cliff, knowingly disobeying safety signage or trespassing, or taking a selfie from a dangerous height.

Two per cent of British Columbians admit to injuring themselves in the name of a selfie.

"We want people to stay safe. We want to remind the public to stay a safe distance away from our infrastructure, and follow safety guidance near downed lines, as electricity and generating facilities can be dangerous," said Conway.

BC Hydro is urging all visitors to obey signage, steer clear of power-generating equipment and to stay on designated trails.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.