Indiana lawmakers hopeful about renewable bill

By Associated Press


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Legislation that could bring more wind turbines and solar power projects to Indiana has a good chance of passing in the upcoming legislative session after failing in the last session's closing hours, two state lawmakers say.

While the General Assembly seems unlikely to require Indiana utilities to generate a specific amount of electricity from renewable energy sources, it may expand the state's so-called net-metering policy.

That rule allows some customers of investor-owned utilities to send excess electricity produced by wind turbines, solar panels and other renewable sources back into the electric grid and to be charged only for the net amount of power they actually use.

Because those customers get credit on future bills for excess power they produce, it can help offset the cost of installing renewable energy systems and make doing so more attractive.

State Sen. James Merritt, R-Indianapolis, said he's optimistic lawmakers will increase the amount of power that can be sent back into the grid and extend that option to businesses, industries and municipalities.

The state's current net-metering policy applies only to homeowners and schools and sets a limit of 10 kilowatts per customer.

Indiana lags well behind neighboring states in its net-metering policy, according to "Freeing the Grid," a report released in November by the renewable energy advocacy group Network for New Energy Choices.

Illinois, Michigan, Ohio and Kentucky received grades of "B" in that report, but Indiana got an "F."

"They've been making changes and they've improved, but we've remained the same," said Laura Arnold, president of the Indiana Renewable Energy Association's board of the directors.

An expansion of Indiana's metering rules would make investing in wind turbines, solar panels, hydroelectric systems or biomass energy generators more attractive, she said.

Merritt, who chairs the Senate Utilities and Technology Committee, said net metering should be his panel's main issue during the legislative session that starts January 5.

The sticking point in negotiations is expected to be what power limit to set under a revised policy.

That issue scuttled an agreement last session, when Merritt sponsored a bill that would have boosted the net-metering limit to 100 kilowatts and expanded the policy to include businesses and municipalities.

State Rep. Ryan Dvorak, D-South Bend, sponsored a House bill that would have raised the limit to 1,000 kilowatts — about the amount produced by a large wind turbine.

Although those bills passed both chambers, the legislation died in conference committee.

"It really just came down to the numbers," Dvorak said. "The Senate didn't want to budge up from 100 kilowatt and we hit an impasse."

He hasn't decided what power level he will propose this season, but Dvorak said he's optimistic about passage because power utilities that once fought net-metering now seem willing to accept its expansion and at least a 100-kilowatt cutoff.

"We're a lot closer and that's why I'm hopeful this year we're going to get an actual meaningful bill through that's comparable to the rest of the country," Dvorak said.

The Indianapolis-based Hoosier Environmental Council favors boosting the state's net-metering limit to 1,000 kilowatts, a level that Jesse Kharbanda, the group's executive director, said would help bring new jobs and development to the state.

A 1,000 kilowatt level also would help the state respond to federal climate change legislation expected to lead to higher energy costs in states like Indiana that get most of their power from coal-fired power plants, he said.

"Net metering helps lay the foundation for a different energy economy for Indiana," Kharbanda said. "It helps Indiana better prepare for climate legislation and can provide new income for struggling corporations."

While moving it the policy's power limit to 100 kilowatts might help individual homeowners and small retail stores install small-scale wind or solar power systems, he said that's well below the level needed to help industries and large businesses with far larger energy demands.

Related News

Medicine Hat Grant Winners to Upgrade Grid and Use AI for Energy Savings

Medicine Hat Smart Grid AI modernizes electricity distribution with automation, sensors, and demand response, enhancing energy efficiency and renewable integration while using predictive analytics and real-time data to reduce consumption and optimize grid operations.

 

Key Points

An initiative using smart grid tech and AI to optimize energy use, cut waste, and improve renewable integration.

✅ Predictive analytics forecast demand to balance load and prevent outages.

✅ Automation, sensors, and meters enable dynamic, resilient distribution.

✅ Integrates solar and wind with demand response to cut emissions.

 

The city of Medicine Hat, Alberta, is taking bold steps toward enhancing its energy infrastructure and reducing electricity consumption with the help of innovative technology. Recently, several grant winners have been selected to improve the city's electricity grid distribution and leverage artificial intelligence (AI) to adapt to electricity demands while optimizing energy use. These projects promise to not only streamline energy delivery but also contribute to more sustainable practices by reducing energy waste.

Advancing the Electricity Grid

Medicine Hat’s electricity grid is undergoing a significant transformation, thanks to a new set of initiatives funded by government grants that advance a smarter electricity infrastructure vision for the region. The city has long been known for its commitment to sustainable energy practices, and these new projects are part of that legacy. The winners of the grants aim to modernize the city’s electricity grid to make it more resilient, efficient, and adaptable to the changing demands of the future, aligning with macrogrid strategies adopted nationally.

At the core of these upgrades is the integration of smart grid technologies. A smart grid is a more advanced version of the traditional power grid, incorporating digital communications and real-time data to optimize the delivery and use of electricity. By connecting sensors, meters, and control systems across the grid, along with the integration of AI data centers where appropriate, the grid can detect and respond to changes in demand, adjust to faults or outages, and even integrate renewable energy sources more efficiently.

One of the key aspects of the grant-funded projects involves automating the grid. Automation allows for the dynamic adjustment of power distribution in response to changes in demand or supply, reducing the risk of blackouts or inefficiencies. For instance, if an area of the city experiences a surge in energy use, the grid can automatically reroute power from less-used areas or adjust the distribution to avoid overloading circuits. This kind of dynamic response is crucial for maintaining a stable and reliable electricity supply.

Moreover, the enhanced grid will be able to better incorporate renewable energy sources such as solar and wind power, reflecting British Columbia's clean-energy shift as well, which are increasingly important in Alberta’s energy mix. By utilizing a more flexible and responsive grid, Medicine Hat can make the most of renewable energy when it is available, reducing reliance on non-renewable sources.

Using AI to Reduce Energy Consumption

While improving the grid infrastructure is an essential first step, the real innovation comes in the form of using artificial intelligence (AI) to reduce energy consumption. Several of the grant winners are focused on developing AI-driven solutions that can predict energy demand patterns, optimize energy use in real-time, and encourage consumers to reduce unnecessary energy consumption.

AI can be used to analyze vast amounts of data from across the electricity grid, such as weather forecasts, historical energy usage, and real-time consumption data. This analysis can then be used to make predictions about future energy needs. For example, AI can predict when the demand for electricity will peak, allowing the grid operators to adjust supply ahead of time, ensuring a more efficient distribution of power. By predicting high-demand periods, AI can also assist in optimizing the use of renewable energy sources, ensuring that solar and wind power are utilized when they are most abundant.

In addition to grid management, AI can help consumers save energy by making smarter decisions about how and when to use electricity. For instance, AI-powered smart home devices can learn household routines and adjust heating, cooling, and appliance usage to reduce energy consumption without compromising comfort. By using data to optimize energy use, these technologies not only reduce costs for consumers but also decrease overall demand on the grid, leading to a more sustainable energy system.

The AI initiatives are also expected to assist businesses in reducing their carbon footprints. By using AI to monitor and optimize energy use, industrial and commercial enterprises can cut down on waste and reduce energy-related operational costs, while anticipating digital load growth signaled by an Alberta data centre agreement in the province. This has the potential to make Medicine Hat a more energy-efficient city, benefiting both residents and businesses alike.

A Sustainable Future

The integration of smart grid technology and AI-driven solutions is positioning Medicine Hat as a leader in sustainable energy practices. The city’s approach is focused not only on improving energy efficiency and reducing waste but also on making electricity consumption more manageable and adaptable in a rapidly changing world. These innovations are a crucial part of Medicine Hat's long-term strategy to reduce carbon emissions and meet climate goals while ensuring reliable and affordable energy for its residents.

In addition to the immediate benefits of these projects, the broader impact is likely to influence other municipalities across Canada, including insights from Toronto's electricity planning for rapid growth, and beyond. As the technology matures and proves successful, it could set a benchmark for other cities looking to modernize their energy grids and adopt sustainable, AI-driven solutions.

By investing in these forward-thinking technologies, Medicine Hat is not only future-proofing its energy infrastructure but also taking decisive steps toward a greener, more energy-efficient future. The collaboration between local government, technology providers, and the community marks a significant milestone in the city’s commitment to innovation and sustainability.

 

Related News

View more

Maryland’s renewable energy facilities break pollution rules, say groups calling for enforcement

Maryland Renewable Energy Violations highlight RPS compliance gaps as facilities selling renewable energy certificates, including waste-to-energy, biomass, and paper mills, face emissions and permit issues, prompting PSC and Attorney General scrutiny of environmental standards.

 

Key Points

Alleged RPS noncompliance by REC-eligible plants, prompting PSC review and potential decertification under Maryland law.

✅ Complaint targets waste-to-energy, biomass plants, and paper mills

✅ Facilities risk loss of REC certification for environmental violations

✅ PSC may investigate nonreporting; AG reviewing evidence

 

Many facilities that supply Maryland with renewable energy have exceeded pollution limits or otherwise broken environmental rules, violating a state law, according to a complaint sent by environmental groups to state energy and law enforcement officials.

Maryland law says that any company that contributes to a state renewable energy goal — half the state’s energy portfolio must come from renewable sources by 2030 — must “substantially comply” with rules on air and water quality and waste management. The complaint says more than two dozen power generators, including paper mills and trash incinerators, have records of formal or informal enforcement actions by environmental authorities.

For years, environmental groups have criticized Maryland policy that counts power plants that produce planet-warming carbon dioxide and health-threatening pollution as “renewable” energy generation, and similar tensions have emerged in California’s reliance on fossil fuels despite ambitious targets, but lawmakers concerned about protecting industrial jobs have resisted reforms. The renewable label qualifies the companies for subsidies drawn from energy bills across the state.

In a complaint filed this week, the groups asked the attorney general and Public Service Commission to step in.

“We’re subsidizing companies to produce dirty energy, but we’re also using ratepayer money to support companies that in many instances are paying environmental fines or just flouting the law,” said Timothy Whitehouse, executive director of Public Employees for Environmental Responsibility. “There’s no one to hold them to account in Maryland.”

A spokeswoman for Attorney General Brian Frosh said his office would review the complaint, which was signed by Whitehouse and Mike Ewall, executive director of the Energy Justice Network.

Public Service Commission officials said the facilities must notify them if found out of compliance with environmental rules, while at the federal level FERC action on aggregated DERs is shaping market participation, and the commission can then revoke certification under the state renewable energy program. In a statement, commission officials said they would launch an investigation if any facility had failed to notify them of any environmental violations, and encouraged anyone with evidence of such a transgression to file a complaint.

Companies named in the document accused the groups of painting an inaccurate picture.

“This complaint is based on misleading arguments designed to halt waste-to-energy practices that have clear environmental benefits recognized by the global scientific community,” said Jim Connolly, vice president of environment, health and safety for Wheelabrator, which owns a Baltimore trash incinerator.

Maryland launched its renewable energy program in 2004, diversifying the state’s energy portfolio with more environmentally friendly sources of power, even as regional debates over a Maine-Québec transmission line highlight cross-border impacts. Under the program, separate from the electricity they generate and sell to the grid, renewable power facilities can sell what are known as renewable energy certificates. Utilities such as Baltimore Gas and Electric Co. are required to buy a growing number of the certificates each year, essentially subsidizing the renewable energy facilities with money from ratepayer bills.

A dozen types of power generation qualify to sell the certificates: Solar, wind, geothermal and hydroelectric plants, as well as “biomass” facilities that burn wood and other organic matter, waste-to-energy plants that burn household trash and paper mills that burn a byproduct known as black liquor.

The complaint focuses on waste incinerators, biomass plants and paper mills, all of which environmental groups have cast as counter to the renewable energy program’s environmental goals, even as ACORE criticized a coal and nuclear subsidy proposal in federal proceedings.

“By subsidizing these corporations, Maryland is diverting the hard-earned income of Maryland ratepayers to wealthy corporations with poor environmental compliance records and undermining the state’s transition to clean renewable energy,” Whitehouse and Ewall wrote.

For example, they note that the Wheelabrator plant in Southwest Baltimore has been fined for exceeding mercury limits in the past. That occurred in 2011, when the plant settled with state regulators for violations in 2010 and 2009.

Connolly said there is “no question” the facility complies with Maryland’s renewable energy law.

Incinerators in Montgomery County and in Fairfax County, Virginia, that are owned by Covanta and sell the energy certificates in Maryland have been cited for accidental fires inside both facilities. The Maryland incinerator violated emissions rules in 2014, the same year that New Jersey forbade the Virginia facility from selling energy certificates into that state’s renewable energy program over concerns it wasn’t following ash testing regulations.

James Regan, a spokesman for Covanta, said both facilities “have excellent compliance records and they operate well below their permitted limits.” He said the Virginia facility is complying with ash testing requirements, and that both facilities emit far lower levels of pollutants such as particulate matter than vehicles do.

“It’s clear to us there’s a lot of misleading and wrong information in this document," Regan said.

The Environmental Protection Agency endorsed waste-to-energy facilities under former President Barack Obama because, while burning household trash emits carbon dioxide, scientists said that still had a smaller impact on global warming than sending trash to landfills, even as industry groups have backed the EPA in a legal challenge to the ACE rule as regulatory approaches shifted.

Environmentalists and community groups say the facilities still are harmful because they emit high levels of pollutants such as mercury, nitrogen oxides and lead. The concerns prompted Baltimore City Council to pass an ordinance in February that tightened emissions limits on the Wheelabrator facility, even as the new EPA pollution limits for coal and gas plants are being proposed, so dramatically that the company said it would no longer be able to operate once the rules go into effect in 2022.

The complaint does not mention the century-old Luke paper mill in Western Maryland that long faced criticism for its participation in the renewable energy program, but which owner Verso Co. closed this year.

It does say several of paper company WestRock’s mills in North Carolina and Virginia have faced both formal and informal EPA enforcement actions for violation of the Clean Water Act, including evolving EPA wastewater limits for power plants and other facilities, and the Clean Air Act. A WestRock spokesperson could not be reached for comment.

The complaint also says a large biomass facility in South Boston, Virginia, owned by the Northern Virginia Electric Cooperative has a record of noncompliance with the Clean Air Act over three years.

John Rainey, the plant’s operations director, said it “experienced some small exceedances to its permit limits,” but that it addressed the issues with Virginia environmental officials and has installed new technology.

All those plants have sold credits in Maryland.

Whitehouse said the environmental groups’ goal is to clean up Maryland’s renewable energy program. They did not file a lawsuit because he said there was no clear cause of action to take the state to court, but said he hopes the complaint nonetheless spurs action.

“It’s not acceptable in a clean energy program that we’re subsidizing some of the most dirty sources of energy,” he said. “Those sources aren’t even in compliance with the law, and no one seems to care.”

 

Related News

View more

Nunavut's electricity price hike explained

Nunavut electricity rate increase sees QEC raise domestic electricity rates 6.6% over two years, affecting customer rates, base rates, subsidies, and kWh overage charges across communities, with public housing exempt and territory-wide pricing denied.

 

Key Points

A 6.6% QEC hike over 2018-2019, affecting customer rates, subsidies, and kWh overage; public housing remains exempt.

✅ 3.3% on May 1, 2018; 3.3% on Apr 1, 2019

✅ Subsidy caps: 1,000 kWh Oct-Mar; 700 kWh Apr-Sep

✅ Territory-wide base rate denied; public housing exempt

 

Ahead of the Nunavut government's approval of the general rate increase for the Qulliq Energy Corporation, many Nunavummiut wondered how the change would impact their electricity bills.

QEC's request for a 6.6-per-cent increase was approved by the government last week. The increase will be spread out over two years, a pattern similar to BC Hydro's two-year rate plan, with the first increase (3.3 per cent) effective May 1, 2018. The remaining 3.3 per cent will be applied on April 1, 2019.

Public housing units, however, are exempt from the government's increase altogether.

The power corporation also asked for a territory-wide rate, so every community would pay the same base rate (we'll go over specific terms in a minute if you're not familiar with them). But that request was denied, even as Manitoba Hydro scaled back increases next year, and QEC will now take the next two years reassessing each community's base rate.

#google#

So, what does this mean for your home's power bill? Well, there's a few things you need to know, which we'll get to in a second.

But in essence, as long as you don't go over the government-subsidized monthly electricity usage limit, you're paying an extra 3.61 cents per kilowatt hour (kWh).

To be clear, we're talking about non-government domestic rates — basically, private homeowners — and those living in a government-owned unit but pay for their own power.

 

The basics

First, some quick terminology. The "base rate" term we're going to use (and used above) in this story refers to the community rate. As in, what QEC charges customers in every community. The "customer rate" is the rate customers actually pay, after the government's subsidy.

 

The first thing you need to know is everyone in Nunavut starts off by paying the same customer rate, unlike jurisdictions using a price cap to limit spikes.

That's because the government subsidizes electricity costs, and that subsidy is different in every community, because the base rate is different.

For example, Iqaluit's new base rate after the 3.3 per cent increase (remember, the 6.6 per cent is being applied over two years) is 56.69 cents per kWh, while Kugaaruk's base rate rose to 112.34 cents per kWh. Those, by the way, are the territory's lowest and highest respective base rates.

However, customers in both Iqaluit and Kugaaruk will each now pay 28.35 cents per kWh because, remember, the government subsidizes the base rates in every community.

Now, remember earlier we mentioned a "government-subsidized monthly electricity usage limit?" That's where customers in various communities start to pay different amounts.

As simply as we can explain it, the government will only cover so much electricity usage in a month, in every household.

Between October and March, the government will subsidize the first 1,000 kilowatt hours, and only 700 kilowatt hours from April to September. QEC says the average Nunavut home will use about 500 kilowatt hours every month over the course of a year.

But if your household goes over that limit, you're at the mercy of your community's base rate for any extra electricity you use. Homes in Kugaaruk in December, for instance, will have to pay that 122.34 cents for every extra kilowatt hour it uses, while homes in Iqaluit only have to pay 56.69 cents per kWh for its extra electricity.

That's where many Nunavummiut have criticized the current rate structure, because smaller communities are paying more for their extra costs than larger communities.

QEC had hoped — as it had asked for — to change the structure so every community pays the same base rate. So regardless of if people go over their electricity usage limits for the government subsidy, everyone would pay the same overage rates.

But the government denied that request.

 

New rate is actually lower

The one thing we should highlight, however, is the new rate after the increase is actually lower than what customers were paying in 2014.

For the past seven months, customers have been getting power from QEC at a discount, whereas Newfoundland customers began paying for Muskrat Falls during the same period, to different effect.

That's because when QEC sets its rates, it does so based on global oil price forecasts. Since 2014, the price of oil worldwide has slumped, and so QEC was able to purchase it at less than it had anticipated.

When that happens, and QEC makes more than $1 million within a six month period thanks to the lower oil prices, it refunds the excess profits back to customers through a discount on electricity base rates — a mechanism similar to a lump-sum credit used elsewhere — the government subsidy, however, doesn't change so the savings are passed on directly to customers.

Now, the 6.6 per cent increase to electricity rates, is actually being applied to the discounted base rate from the last seven months.

So again, while customers are paying more than they have been for the last seven months, it's lower than what they were paying in 2014.

Lastly, to be clear, all the figures used in this story are only for domestic non-government rates. Commercial rates and changes have not been explored in this story, given the differences in subsidy and rate application.

 

Related News

View more

Ukrainians Find New Energy Solutions to Overcome Winter Blackouts

Ukraine Winter Energy Crisis highlights blackouts, damaged grid, and resilient solutions: solar panels, generators, wood stoves, district heating, batteries, and energy efficiency campaigns backed by EU and US aid to support communities through harsh winters.

 

Key Points

A wartime surge of blackouts driving resilient, off-grid and efficiency solutions to keep heat and power flowing.

✅ Solar panels, batteries, and generators stabilize essential loads

✅ Wood stoves and district heating maintain winter warmth

✅ Efficiency upgrades and aid bolster grid resilience

 

As winter sets in across Ukraine, the country faces not only the bitter cold but also the ongoing energy crisis exacerbated by Russia’s invasion. Over the past year, Ukraine has experienced widespread blackouts due to targeted strikes on its power infrastructure. With the harsh winter conditions ahead, Ukrainians are finding innovative ways to adapt to these energy challenges and to keep the lights on this winter despite shortages. From relying on alternative power sources to implementing energy-saving measures, the Ukrainian population is demonstrating resilience in the face of adversity.

The Energy Crisis in Ukraine

Since the onset of the war in February 2022, Ukraine’s energy infrastructure has become a prime target for Russian missile strikes. Power plants, electrical grids, and transmission lines have all been hit, causing significant damage to the nation’s energy systems, as Ukraine fights to keep the lights on amid repeated attacks. As a result, millions of Ukrainians have faced regular power outages, especially in the winter months when energy demand surges due to heating needs.

The situation has been compounded by the difficulty of repairing damaged infrastructure while the war continues. Many areas, particularly in eastern and southern Ukraine, still suffer from limited access to electricity, heating, and water, with strikes in western Ukraine occasionally causing further disruptions. With no end in sight to the conflict, the Ukrainian government and its citizens are being forced to think outside the box to ensure they can survive the harsh winter months.

Alternative Energy Sources: Solar Power and Generators

In response to these energy shortages, many Ukrainians are turning to alternative energy sources, particularly solar power and generators. Solar energy, which has been growing in popularity over the past decade, is seen as a promising solution. Solar panels can be installed on homes, schools, and businesses, providing a renewable source of electricity. During the day, the sun provides much-needed energy to power lights, appliances, and even heating systems in homes. While solar power may not fully replace the energy lost during blackouts, it can significantly reduce dependency on the grid, and recent electricity reserve updates suggest fewer planned outages if attacks abate.

To make solar power more accessible, many local and international organizations are providing solar panels and batteries to Ukrainians. These efforts have been critical, especially in rural areas where access to the national grid may be sporadic or unreliable. Additionally, solar-powered streetlights and community energy hubs are being set up in various cities to provide essential services during prolonged outages.

Generators, too, have become a vital tool for many households. Portable generators allow people to maintain some level of comfort during blackouts, powering essential appliances like refrigerators, stoves, and even small heaters. While generators are not a permanent solution, they offer a crucial lifeline when the grid is down for extended periods.

Wood and Coal Stoves: A Return to the Past

In addition to modern energy solutions, many Ukrainians are returning to more traditional sources of energy, such as wood and coal stoves. These methods of heating, while old-fashioned, are still widely available and effective. With gas shortages affecting the country and electricity supplies often unreliable, wood and coal stoves have become an essential part of daily life for many households.

Firewood is being sourced locally, and many Ukrainians are collecting and stockpiling it in preparation for the colder months. While this reliance on solid fuels presents environmental concerns, it remains one of the most feasible options for families living in rural areas or in homes without access to reliable electricity.

Moreover, some urban areas have seen a revival of district heating systems, where heat is generated centrally and distributed throughout a network of buildings. This system, although not without its challenges, is helping to provide warmth to thousands of people in larger cities like Kyiv and Lviv.

Energy Conservation and Efficiency

Beyond alternative energy sources, many Ukrainians are taking measures to reduce their energy consumption. Energy conservation has become a key strategy in dealing with blackouts, as individuals and families aim to minimize their reliance on the national grid. Simple steps like using energy-efficient appliances, sealing windows and doors to prevent heat loss, and limiting the use of electric heating have all become commonplace.

The Ukrainian government, in collaboration with international partners, has also launched campaigns to encourage energy-saving behaviors. These include public information campaigns on how to reduce energy consumption and initiatives to improve the insulation of homes and buildings. By promoting energy efficiency, Ukraine is not only making the most of its limited resources but also preparing for long-term sustainability.

The Role of the International Community

The international community has played a crucial role in helping Ukraine navigate the energy crisis. Several countries and organizations have provided funding, technology, and expertise to assist Ukraine in repairing its power infrastructure and implementing alternative energy solutions. For example, the United States and the European Union have supplied Ukraine with generators, solar panels, and other renewable energy technologies, though U.S. support for grid restoration has recently ended in some areas of assistance. This support has been vital in ensuring that Ukrainians can meet their energy needs despite the ongoing conflict.

In addition, humanitarian organizations have been working to provide emergency relief, including distributing winter clothing, heaters, and fuel to the most vulnerable populations, and Ukraine helped Spain amid blackouts earlier this year, underscoring reciprocal resilience. The global response has been a testament to the solidarity that exists for Ukraine in its time of need.

As winter arrives, Ukrainians are finding creative and resourceful ways to deal with the ongoing energy crisis caused by the war, reflecting the notion that electricity is civilization on the front lines. While the situation remains difficult, the country's reliance on alternative energy sources, traditional heating methods, and energy conservation measures demonstrates a remarkable level of resilience. With continued support from the international community and a commitment to innovation, Ukraine is determined to overcome the challenges of blackouts and ensure that its people can survive the harsh winter months ahead.

 

Related News

View more

Advocates call for change after $2.9 million surplus revealed for BC Hydro fund

BC Hydro Customer Crisis Fund Surplus highlights unused grants, pilot program imbalance, and calls to reduce fees or expand eligibility. Ratepayers, regulators, and social agencies urge awareness, rebates, and aid for overdue electricity bills.

 

Key Points

A funding carryover from BC Hydro's crisis grants, sparking debate over fee reductions or more aid eligibility.

✅ $2.9M surplus from 25-cent monthly customer fee

✅ Only 2,250 grants issued; awareness and eligibility questioned

✅ Regulator may refund balance or adjust program design

 

BC Hydro is sitting on a surplus of about $2.9 million in its customer crisis fund, even as BC Hydro rates rise 3% across the province, leading to calls for the utility to reduce its take from the average customer or provide more money to those in need.

B.C. Liberal Energy Critic Greg Kyllo said if the imbalance continues in the year-old pilot program, amid a provincial rate freeze announced by the province, it’s time to cut the monthly 25 cent fee in half.

"If the grant requirement or the need in the province is going to remain where it is, they should look at rolling back the contribution level in the fund," he told CTV News Vancouver from Salmon Arm.

But social agencies who were part of the consultation around the fund in the beginning said it’s more likely that people in need don’t know about the fund and more time is necessary to get the word out.

"If they collect the money, then the program’s got to change to make sure more people are able to be helped," said Gudrun Langolf of the Council of Senior Citizens Organizations of BC.

The customer crisis fund was started in spring 2018 to give people short-term relief when they can’t pay their electricity bills, especially as a $2 monthly hike pressures household budgets. Customers can apply to get a grant of up to $500 to keep the lights on, and up to $600 if electricity heats their homes.

The public utility took in about 25 cents per customer per month which added up to a revenue of $4.5 million in the year since the program started, BC Hydro confirmed to CTV News.

But the agency only gave out 2,250 grants totalling $850,000.

Administration costs added up around $750,000 – leaving the $2.9 million remaining.

The news will come as a welcome relief to those who suddenly struggle to pay their hydro bills, particularly as Alberta ratepayers are on the hook under a utility deferral program elsewhere in Canada.

Some people who come into Disability Alliance B.C. are often anxious and emotional when they’re suddenly unable to pay their bills, said Shar Saremi, an advocate there.

"I’ve had people crying. I’ve had people who have experienced a loss in the family," she said. "A lot of the time people are stressed out, anxious, really upset. They are looking for assistance, and they aren’t sure what is available for them."

She said people are only eligible if their bills are under $1,000, which could be cutting out the people who are most in need. And because the program is in its first year, it could be undersubscribed, she said.

"A lot of people don’t know about the program, don’t know how to apply, or what kind of assistance is out there," Saremi said.

The fund was established thanks to an order from the B.C. Utilities Commission, the utilities regulator in the province.

The pilot program is going to be examined by the regulator at the end of its first year.

"Any remaining balance in the account at the end of the pilot would be returned to residential ratepayers," says a BCUC fact sheet, as BC Hydro rates are set to rise 3.75% over two years. The decision on exactly what to do with the money hasn’t yet been made.

In Manitoba, a similar program is by donation, and in Newfoundland and Labrador a lump-sum credit was offered to bill payers in a separate initiative. That program raised about $200,000 from customers and $60,000 in other income. It spent $199,000 on grants to applicants, but lost about $20,000 a year.

In Ontario, private utilities are expected to raise 0.12 per cent of their revenue, and Hydro One reconnections have highlighted the stakes for nonpayment there. Across the province, those utilities gave out about $7.3 million in grants. Any unused funds in one year are rolled over to the following year.

 

Related News

View more

India's electricity demand falls at the fastest pace in at least 12 years

India Industrial Output Slowdown deepens as power demand slumps, IIP contracts, and electricity, manufacturing, and mining weaken; capital goods plunge while RBI rate cuts struggle to lift GDP growth, infrastructure, and fuel demand.

 

Key Points

A downturn where IIP contracts as power demand, manufacturing, mining, and capital goods fall despite RBI rate cuts.

✅ IIP fell 4.3% in Sep, worst since Feb 2013.

✅ Power demand dropped for a third month, signaling weak industry.

✅ Capital goods output plunged 20.7%, highlighting weak investment.

 

India's power demand fell at the fastest pace in at least 12 years in October, signalling a continued decline in the industrial output, mirroring how China's power demand dropped when plants were shuttered, according to government data. Electricity has about 8% weighting in the country's index for industrial production.

India needs electricity to fuel its expanding economy and has at times rationed coal supplies when demand surged, but a third decline in power consumption in as many months points to tapering industrial activity in a nation that aims to become a $5 trillion economy by 2024.

India's industrial output fell at the fastest pace in over six years in September, adding to a series of weak indicators that suggests that the country’s economic slowdown is deep-rooted and interest rate cuts alone may not be enough to revive growth.

Annual industrial output contracted 4.3% in September, government data showed on Monday. It was the worst performance since a 4.4% contraction in February 2013, according to Refinitiv data.

Analysts polled by Reuters had forecast industrial output to fall 2% for the month.

“A contraction of industrial production by 4.3% in September is serious and indicative of a significant slowdown as both investment and consumption demand have collapsed,” said Rupa Rege Nitsure, chief economist of L&T Finance Holdings.

The industrial output figure is the latest in a series of worrying economic data in Asia's third largest economy, which is also the world's third-largest electricity producer as well.

Economists say that weak series of data could mean economic growth for July-September period will remain near April-June quarter levels of 5%, which was a six-year low, and some analysts argue for rewiring India's electricity to bolster productivity. The Indian government is likely to release April-September economic growth figures by the end of this month.

Subdued inflation and an economic slowdown have prompted the Reserve Bank of India (RBI) to cut interest rates by a total of 135 basis points this year, while coal and electricity shortages eased in recent months.

“These are tough times for the RBI, as it cannot do much about it but there will be pressures on it to act ...Blunt tools like monetary policy may not be effective anymore,” Nitsure said.

Data showed in September mining sector fell 8.5%, while manufacturing and electricity fell 3.9% and 2.6% respectively, even as imported coal volumes rose during April-October. Capital goods output during the month fell 20.7%, indicating sluggish demand.

“IIP (Index of Industrial Production) growth in October 2019 is also likely to be in negative territory and only since November 2019 one can expect mild IIP expansion, said Devendra Kumar Pant, Chief Economist and Senior Director, Public Finance, India Ratings & Research (Fitch Group).

Infrastructure output, which comprises eight main sectors, in September showed a contraction of 5.2%, the worst in 14 years, even as global daily electricity demand fell about 15% during pandemic lockdowns.

India's fuel demand fell to its lowest in more than two years in September, with consumption of diesel to its lowest levels since January 2017. Diesel and gasoline together make up over 7.4% of the IIP weightage.

In 2019/20 India's fuel demand — also seen as an indicator of economic and industrial activity — is expected to post the slowest growth in about six years.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.