Siemens to put more into Chinese wind market

By Trading Markets


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Siemens will additionally inject over CNY 500 million (Chinese Renminbi) into its two ventures based in Tianjin, north China, Siemens Mechanical Drive Systems Co., Ltd. and Winergy Drive Systems Co., Ltd.

Some of the inputs will be used to enlarge the electric and electronic giant's production capacity of wind power equipment in China. Presently, Siemens is brewing building a wind power equipment plant in Shanghai, which will start operation in the second half of 2010.

The Siemens President and CEO Peter Loescher discloses that the production base will supply wind power equipment not only to China, but also to other Asian countries. He is bullish on the prospects of the wind power market and reiterates that his company has technology advantages.

By the end of 2008, China's wind power installed capacity had reached 12,170MW. A top executive of Siemens Northeast Asia in charge of energy operations points out that surplus production capacity only exists in the country's low-end field. Siemens will quadruple its production capacity of wind turbines within two years.

Related News

Nunavut's electricity price hike explained

Nunavut electricity rate increase sees QEC raise domestic electricity rates 6.6% over two years, affecting customer rates, base rates, subsidies, and kWh overage charges across communities, with public housing exempt and territory-wide pricing denied.

 

Key Points

A 6.6% QEC hike over 2018-2019, affecting customer rates, subsidies, and kWh overage; public housing remains exempt.

✅ 3.3% on May 1, 2018; 3.3% on Apr 1, 2019

✅ Subsidy caps: 1,000 kWh Oct-Mar; 700 kWh Apr-Sep

✅ Territory-wide base rate denied; public housing exempt

 

Ahead of the Nunavut government's approval of the general rate increase for the Qulliq Energy Corporation, many Nunavummiut wondered how the change would impact their electricity bills.

QEC's request for a 6.6-per-cent increase was approved by the government last week. The increase will be spread out over two years, a pattern similar to BC Hydro's two-year rate plan, with the first increase (3.3 per cent) effective May 1, 2018. The remaining 3.3 per cent will be applied on April 1, 2019.

Public housing units, however, are exempt from the government's increase altogether.

The power corporation also asked for a territory-wide rate, so every community would pay the same base rate (we'll go over specific terms in a minute if you're not familiar with them). But that request was denied, even as Manitoba Hydro scaled back increases next year, and QEC will now take the next two years reassessing each community's base rate.

#google#

So, what does this mean for your home's power bill? Well, there's a few things you need to know, which we'll get to in a second.

But in essence, as long as you don't go over the government-subsidized monthly electricity usage limit, you're paying an extra 3.61 cents per kilowatt hour (kWh).

To be clear, we're talking about non-government domestic rates — basically, private homeowners — and those living in a government-owned unit but pay for their own power.

 

The basics

First, some quick terminology. The "base rate" term we're going to use (and used above) in this story refers to the community rate. As in, what QEC charges customers in every community. The "customer rate" is the rate customers actually pay, after the government's subsidy.

 

The first thing you need to know is everyone in Nunavut starts off by paying the same customer rate, unlike jurisdictions using a price cap to limit spikes.

That's because the government subsidizes electricity costs, and that subsidy is different in every community, because the base rate is different.

For example, Iqaluit's new base rate after the 3.3 per cent increase (remember, the 6.6 per cent is being applied over two years) is 56.69 cents per kWh, while Kugaaruk's base rate rose to 112.34 cents per kWh. Those, by the way, are the territory's lowest and highest respective base rates.

However, customers in both Iqaluit and Kugaaruk will each now pay 28.35 cents per kWh because, remember, the government subsidizes the base rates in every community.

Now, remember earlier we mentioned a "government-subsidized monthly electricity usage limit?" That's where customers in various communities start to pay different amounts.

As simply as we can explain it, the government will only cover so much electricity usage in a month, in every household.

Between October and March, the government will subsidize the first 1,000 kilowatt hours, and only 700 kilowatt hours from April to September. QEC says the average Nunavut home will use about 500 kilowatt hours every month over the course of a year.

But if your household goes over that limit, you're at the mercy of your community's base rate for any extra electricity you use. Homes in Kugaaruk in December, for instance, will have to pay that 122.34 cents for every extra kilowatt hour it uses, while homes in Iqaluit only have to pay 56.69 cents per kWh for its extra electricity.

That's where many Nunavummiut have criticized the current rate structure, because smaller communities are paying more for their extra costs than larger communities.

QEC had hoped — as it had asked for — to change the structure so every community pays the same base rate. So regardless of if people go over their electricity usage limits for the government subsidy, everyone would pay the same overage rates.

But the government denied that request.

 

New rate is actually lower

The one thing we should highlight, however, is the new rate after the increase is actually lower than what customers were paying in 2014.

For the past seven months, customers have been getting power from QEC at a discount, whereas Newfoundland customers began paying for Muskrat Falls during the same period, to different effect.

That's because when QEC sets its rates, it does so based on global oil price forecasts. Since 2014, the price of oil worldwide has slumped, and so QEC was able to purchase it at less than it had anticipated.

When that happens, and QEC makes more than $1 million within a six month period thanks to the lower oil prices, it refunds the excess profits back to customers through a discount on electricity base rates — a mechanism similar to a lump-sum credit used elsewhere — the government subsidy, however, doesn't change so the savings are passed on directly to customers.

Now, the 6.6 per cent increase to electricity rates, is actually being applied to the discounted base rate from the last seven months.

So again, while customers are paying more than they have been for the last seven months, it's lower than what they were paying in 2014.

Lastly, to be clear, all the figures used in this story are only for domestic non-government rates. Commercial rates and changes have not been explored in this story, given the differences in subsidy and rate application.

 

Related News

View more

Wind and Solar Energy Surpass Coal in U.S. Electricity Generation

Wind and Solar Surpass Coal in U.S. power generation, as EIA data cites falling LCOE, clean energy incentives, grid upgrades, and battery storage driving renewables growth, lower emissions, jobs, and less fossil fuel reliance.

 

Key Points

An EIA-noted milestone where U.S. renewables outproduce coal, driven by lower LCOE, policy credits, and grid upgrades.

✅ EIA data shows wind and solar exceed coal generation

✅ Falling LCOE boosts project viability across the grid

✅ Policies and storage advances strengthen reliability

 

In a landmark shift for the energy sector, wind and solar power have recently surpassed coal in electricity generation in the United States. This milestone, reported by Warp News, marks a significant turning point in the country’s energy landscape and underscores the growing dominance of renewable energy sources.

A Landmark Achievement

The achievement of wind and solar energy generating more electricity than coal is a landmark moment in the U.S. energy sector. Historically, coal has been a cornerstone of electricity production, providing a substantial portion of the nation's power needs. However, recent data reveals a transformative shift, with renewables surpassing coal for the first time in 130 years, as renewable energy sources, particularly wind and solar, have begun to outpace coal in terms of electricity generation.

The U.S. Energy Information Administration (EIA) reported that in recent months, wind and solar combined produced more electricity than coal, including a record 28% share in April, reflecting a broader trend towards cleaner energy sources. This development is driven by several factors, including advancements in renewable technology, decreasing costs, and a growing commitment to reducing greenhouse gas emissions.

Technological Advancements and Cost Reductions

One of the key drivers behind this shift is the rapid advancement in wind and solar technologies, as wind power surges in the U.S. electricity mix across regions. Improvements in turbine and panel efficiency have significantly increased the amount of electricity that can be generated from these sources. Additionally, technological innovations have led to lower production costs, making wind and solar energy more competitive with traditional fossil fuels.

The cost of solar panels and wind turbines has decreased dramatically over the past decade, making renewable energy projects more economically viable. According to Warp News, the levelized cost of electricity (LCOE) from solar and wind has fallen to levels that are now comparable to or lower than coal-fired power. This trend has been pivotal in accelerating the transition to renewable energy sources.

Policy Support and Investment

Government policies and incentives have also played a crucial role in supporting the growth of wind and solar energy, with wind now the most-used renewable electricity source in the U.S. helping drive deployment. Federal and state-level initiatives, such as tax credits, subsidies, and renewable energy mandates, have encouraged investment in clean energy technologies. These policies have provided the financial and regulatory support necessary for the expansion of renewable energy infrastructure.

The Biden administration’s focus on addressing climate change and promoting clean energy has further bolstered the transition. The Infrastructure Investment and Jobs Act and the Inflation Reduction Act, among other legislative efforts, have allocated significant funding for renewable energy projects, grid modernization, and research into advanced technologies.

Environmental and Economic Implications

The surpassing of coal by wind and solar energy has significant environmental and economic implications, building on the milestone when renewables became the second-most prevalent U.S. electricity source in 2020 and set the stage for further gains. Environmentally, it represents a major step forward in reducing carbon emissions and mitigating climate change. Coal-fired power plants are among the largest sources of greenhouse gases, and transitioning to cleaner energy sources is essential for meeting climate targets and improving air quality.

Economically, the shift towards wind and solar energy is creating new opportunities and industries. The growth of the renewable energy sector is generating jobs in manufacturing, installation, and maintenance. Additionally, the decreased reliance on imported fossil fuels enhances energy security and stabilizes energy prices.

Challenges and Future Outlook

Despite the progress, there are still challenges to address. The intermittency of wind and solar power requires advancements in energy storage and grid management to ensure a reliable electricity supply. Investments in battery storage technologies and smart grid infrastructure are crucial for overcoming these challenges and integrating higher shares of renewable energy into the grid.

Looking ahead, the trend towards renewable energy is expected to continue, with renewables projected to soon provide about one-fourth of U.S. electricity as deployment accelerates, driven by ongoing technological advancements, supportive policies, and a growing commitment to sustainability. As wind and solar power become increasingly cost-competitive and efficient, their role in the U.S. energy mix will likely expand, further displacing coal and other fossil fuels.

Conclusion

The surpassing of coal by wind and solar energy in U.S. electricity generation is a significant milestone in the transition to a cleaner, more sustainable energy future. This achievement highlights the growing importance of renewable energy sources and the success of technological advancements and supportive policies in driving this transition. As the U.S. continues to invest in and develop renewable energy infrastructure, the move away from coal represents a crucial step towards achieving environmental goals and fostering economic growth in the clean energy sector.

 

Related News

View more

Britain breaks record for coal-free power generation - but what does this mean for your energy bills?

UK Coal-Free Electricity Record highlights rapid growth in renewables as National Grid phases out coal; wind, solar, and offshore projects surge, green tariffs expand, and energy comparison helps consumers switch to cheaper, cleaner deals.

 

Key Points

Britain's longest coal-free run, enabled by renewables, lower demand, and grid shifts for cheaper, greener tariffs.

✅ Record set after two months without coal-fired generation

✅ Renewables outpace fossil fuels; wind and solar dominate

✅ Green tariffs expand; prices at three-year lows

 

On Wednesday 10 June, Britain hit a significant landmark: the UK went for two full months without burning coal to generate power – that's the longest period since the 1880s, following earlier milestones such as a full week without coal power in the recent past.

According to the National Grid, Britain has now run its electricity network without burning coal since midnight on the 9 April. This coal-free period has beaten the country’s previous record of 18 days, six hours and 10 minutes, which was set in June 2019, even though low-carbon generation stalled in 2019 according to analyses.

With such a shift in Britain’s drive for renewables and lower electricity demand following the coronavirus lockdown, as Britain recorded its cleanest electricity during lockdown to date, now may be the perfect time to do an online energy comparison and switch to a cheaper, greener deal.

Only a decade ago, around 40 per cent of Britain’s electricity came from coal generation, but since then the country has gradually shifted towards renewable energy, with the coal share at record lows in the system today. When Britain was forced into lockdown in response to the coronavirus pandemic, electricity demand dropped sharply, and the National Grid took the four remaining coal-fired plants off the network.

Over the past 10 years, Britain has invested heavily in renewable energy. Back in 2010, only 3 per cent of the country's electricity came from wind and solar, and many people remained sceptical. However, now, the UK has the biggest offshore wind industry in the world. Plus, last year, construction of the world’s single largest wind farm was completed off the coast of Yorkshire.

At the same time, Drax – Britain’s biggest power plant – has started to switch from burning coal to burning compressed wooden pellets instead, reflecting the UK's progress as it keeps breaking its coal-free energy record again across the grid. By this time next year, the plant hopes to have phased out coal entirely.

So far this year, renewables have generated more power than all fossil fuels put together, the BBC reports, and the energy dashboard shows the current mix in real time. Renewables have been responsible for 37 per cent of electricity supplied to the network, with wind and solar surpassing nuclear for the first time, while fossil fuels have accounted for 35 per cent. During the same period, nuclear accounted for 18 per cent and imports made up the remaining 10 per cent.

What does this mean for consumers?

As the country’s electricity supply moves more towards renewables, customers have more choice than ever before. Most of the ‘Big Six’ energy companies now have tariffs that offer 100 per cent green electricity. On top of this, specialist green energy suppliers such as Bulb, Octopus and Green Energy UK make it easier than ever to find a green energy tariff.

The good news is that our energy comparison research suggests that green energy doesn’t have to cost you more than a traditional fixed-price energy contract would. In fact, some of the cheapest energy suppliers are actually green companies.

At present, energy bills are at three-year lows, which means that now is the perfect time to switch supplier. As prices remain low and renewables begin to dominate the marketplace, more switchers will be drawn to green energy deals than ever before.

However, if you’re interested in choosing a green energy supplier, make sure that you look at the company's fuel mix. This way, you’ll be able to see whether they are guaranteeing the usage of green energy, or whether they’re just offsetting your usage. All suppliers must report how their energy is generated to Ofgem, so you’ll easily be able to compare providers.

You may find that you pay more for a supplier that generates its own energy from renewables, or pay less if the supplier simply matches your usage by buying green energy. You can decide which option is right for you after comparing the prices.

 

Related News

View more

Nelson, B.C. Gets Charged Up on a New EV Fast-Charging Station

Nelson DC Fast-Charging EV Station delivers 50-kilowatt DCFC service at the community complex, expanding EV infrastructure in British Columbia with FortisBC, faster than Level 2 chargers, supporting clean transportation, range confidence, and highway corridor travel.

 

Key Points

A 50 kW public DC fast charger in Nelson, BC, run by FortisBC, providing rapid EV charging at the community complex.

✅ 50 kW DCFC cuts charge time to about 30 minutes

✅ $9 per half hour session; convenient downtown location

✅ Funded by NRCan, BC government, and FortisBC

 

FortisBC and the City of Nelson celebrated the opening of Nelson's first publicly available direct current fast-charging (DCFC) electric vehicle (EV) station on Friday.

"Adopting EV's is one of many ways for individuals to reduce carbon emissions," said Mayor John Dooley, City of Nelson. "We hope that the added convenience of this fast-charging station helps grow EV adoption among our community, and we appreciate the support from FortisBC, the province and the federal government."

The new station, located at the Nelson and District Community Complex, provides a convenient and faster charge option right in the heart of the commercial district and makes Nelson more accessible for both local and out-of-town EV drivers. The 50-kilowatt station is expected to bring a compact EV from zero to 80 per cent charged in about a half an hour, as compared to the four Level-2 charging stations located in downtown Nelson that require from three to four hours. The cost for a half hour charge at the new DC fast-charging station is $9 per half hour.

This fast-charging station was made possible through a partnership between FortisBC, the City of Nelson, Nelson Hydro, the Province of British Columbia and Natural Resources Canada. As part of the partnership, the City of Nelson is providing the location and FortisBC will own and manage the station.

This is the latest of 12 fast-charging stations FortisBC has built over the last year with support from municipalities and all levels of government, and adds to the five FortisBC-owned Kootenay stations that were opened as part of the accelerate Kootenays initiative in 2018.

All 12 stations were 50 per cent funded by Natural Resources Canada, 25 per cent by BC Ministry of Energy, Mines and Petroleum Resources and the remaining 25 per cent by FortisBC. The funding is provided by Natural Resources Canada's Electric Vehicle and Alternative Fuel Infrastructure Deployment Initiative, which aims to establish a coast-to-coast network of fast-chargers along the national highway system, natural gas refueling stations along key freight corridors and hydrogen refueling stations in major metropolitan areas. It is part of the Government of Canada's more than $180-billion Investing in Canada infrastructure plan. The Government of British Columbia is also contributing $300,000 towards the fast-chargers through its Clean Energy Vehicle Public Fast Charging Program.

This station brings the total DCFC chargers FortisBC owns and operates to 17 stations across 14 communities in the southern interior. FortisBC continues to look for opportunities to expand this network as part of its 30BY30 goal of reducing emissions from its customers by 30 per cent by 2030. For more information about the FortisBC electric vehicle fast-charging network, visit: fortisbc.com/electricvehicle.

"Electric vehicles play a key role in building a cleaner future. We are pleased to work with partners like FortisBC and the City of Nelson to give Canadians greener options to drive where they need to go, " said The Honourable Seamus O'Regan, Canada's Minister of Natural Resources.

"Nelson's first public fast-charging EV station increases EV infrastructure in the city, making it easier than ever to make the switch to cleaner transportation. Along with a range of rebates and financial incentives available to EV drivers, it is now more convenient and affordable to go electric and this station is a welcome addition to our EV charging infrastructure," said Michelle Mungall, BC's Minister of Jobs, Economic Development and Competitiveness, and MLA for Nelson Creston.

"Building the necessary DC fast-charging infrastructure, such as the Lillooet fast-charging site in British Columbia, close to highways and local amenities where drivers need them most is a critical step in growing electric vehicle adoption. Collaborations like this are proving to be an effective way to achieve this, and I'd like to thank all the program partners for their commitment in opening this important station, " said Mark Warren, Director of Business Innovation, FortisBC.

 

Related News

View more

Canadian Gov't and PEI invest in new transmission line to support wind energy production

Skinners Pond Transmission Line expands PEI's renewable energy grid, enabling wind power integration, grid reliability, and capacity for the planned 40 MW windfarm, funded through the Green Infrastructure Stream to support sustainable economic growth.

 

Key Points

A 106-km grid project enabling PEI wind power, increasing capacity and reliability, linking Skinners Pond to Sherbrooke.

✅ 106-km line connects Skinners Pond to Sherbrooke substation

✅ Integrates 40 MW windfarm capacity by 2025

✅ Funded by Canada and PEI via Green Infrastructure Stream

 

The health and well-being of Canadians are the top priorities of the Governments of Canada and Prince Edward Island. But the COVID-19 pandemic has affected more than Canadians' personal health. It is having a profound effect on the economy.

That is why governments have been taking decisive action together to support families, businesses and communities, and continue to look ahead to planning for our electricity future and see what more can be done.

Today, Bobby Morrissey, Member of Parliament for Egmont, on behalf of the Honourable Catherine McKenna, Minister of Infrastructure and Communities, the Honourable Dennis King, Premier of Prince Edward Island, the Honourable Dennis King, Premier of Prince Edward Island, and the Honourable Steven Myers, Prince Edward Island Minister of Transportation, Infrastructure and Energy, announced funding to build a new transmission line from Sherbrooke to Skinners Pond, as part of broader Canadian collaboration on clean energy, with several premiers nuclear reactor technology to support future needs as well.

The new 106-kilometre transmission line and its related equipment will support future wind energy generation projects in western Prince Edward Island, complementing the Eastern Kings wind farm expansion already advancing. Once completed, the transmission line will increase the province's capacity to manage the anticipated 40 megawatts from the future Skinner's Pond Windfarm planned for 2025 and provide connectivity to the Sherbrooke substation to the northeast of Summerside.

The Government of Canada is investing $21.25 million and the Government of Prince Edward Island is providing $22.75 million in this project, reflecting broader investments in new turbines across Canada, through the Green Infrastructure Stream (GIS) of the Investing in Canada infrastructure program.

This projects is one in a series of important project announcements that will be made across the province over the coming weeks. The Governments of Canada and Prince Edward Island are working cooperatively to support jobs, improve communities and build confidence, while safely and sustainably restoring economic growth, as Nova Scotia increases wind and solar projects across the region.

"Investing in renewable energy infrastructure is essential to building healthy, inclusive, and resilient communities. The new Skinners Pond transmission line will support Prince Edward Island's production of green energy, focusing on wind resources rather than expanded biomass use in the mix. Projects like this also support economic growth and help us build a greener future for the next generation of Islanders."

Bobby Morrissey, Member of Parliament for Egmont, on behalf of the Honourable Catherine McKenna, Minister of Infrastructure and Communities

"We live on an Island that has tremendous potential in further developing renewable energy. We have an opportunity to become more sustainable and be innovative in our approach, and learn from regions where provinces like Manitoba have clean energy to help neighbouring provinces through interties. The strategic investment we are making today in the Skinner's Pond transmission line will allow Prince Edward Island to further harness the natural power of wind to create clean, locally produced and locally used energy that will benefit of all Islanders."

 

Related News

View more

How vehicle-to-building charging can save costs, reduce GHGs and help balance the grid: study

Ontario EV Battery Storage ROI leverages V2B, V2G, two-way charging, demand response, and second-life batteries to monetize peak pricing, cut GHG emissions, and unlock up to $38,000 in lifetime value for commuters and buildings.

 

Key Points

The economic return from V2B/V2G two-way charging and second-life storage using EV batteries within Ontario's grid.

✅ Monetize peak pricing via workplace V2B discharging

✅ Earn up to $8,400 per EV over vehicle life

✅ Reduce gas generation and GHGs with demand response

 

The payback that usually comes to mind when people buy an electric vehicle is to drive an emissions-free, low-maintenance, better-performing mode of transportation.

On top of that, you can now add $38,000.

That, according to a new report from Ontario electric vehicle education and advocacy nonprofit, Plug‘n Drive, is the potential lifetime return for an electric car driven as a commuter vehicle while also being used as an electricity storage option amid an energy storage crunch in Ontario’s electricity system.

“EVs contain large batteries that store electric energy,” says the report. “Besides driving the car, [those] batteries have two other potentially useful applications: mobile storage via vehicle-to-grid while they are installed in the vehicle, and second-life storage after the vehicle batteries are retired.”

Pricing and demand differentials
The study, prepared by the research firm Strategic Policy Economics, modeled a two-stage scenario calculating the total benefits from both mobile and second-life storage when taking advantage of differences in daytime and nighttime electricity pricing and demand.


If done systematically and at scale, the combined benefits to EV owners, building operators and the electricity system in Ontario could reach $129 million per year by 2035, according to the report. Along with the financial gains, the province would also cut GHG emissions by up to 67.2 kilotons annually.

The math might sound complicated, but the concepts are simple. All it requires is for drivers to charge their batteries with low-cost electricity overnight at home, then plug them into two-way EV charging stations at work and discharge their stored electricity for use by the building by day when buying power from the grid is more expensive.

“Workplace buildings could avoid high daytime prices by purchasing electricity from EVs parked onsite and enjoy savings as a result,” says the report.

Based on average commuting distances, EVs in this scenario could make half their storage capacity available for discharge. Drivers would be paid out of the building’s savings, effectively selling electricity back to the grid and earning up to $8,400 over the life of their vehicle.

According to the report, Ontario could have as many as 18,555 vehicles participating in mobile storage by 2030. At this level, the daily electricity demand would be reduced by 565 MWh. This, in turn, would reduce demand for natural gas-fired electricity generation, a fossil-fuel electricity source, avoiding the expense of gas purchases while reducing GHG emissions.

The second-life storage opportunity begins when the vehicle lifespan ends. “EV batteries will still have over 80% of their storage capacity after being driven for 13 years and providing mobile storage,” the report states. “Those-second life batteries could provide a low-cost energy storage solution for the electricity grid and enhance grid stability over time.”

Some of the savings could be shared with EV owners in the form of a rebate worth up to 20 per cent of the batteries’ initial cost.

Call to action
The report concludes with a call to action for EV advocates to press policy makers and other stakeholders to take actions on building codes, the federal Clean Fuel Standard and other business models in order to maximize the benefits of using EV batteries for the electricity system in this way, even as growing adoption could challenge power grids in some regions.

“EVs are often approached as an environmental solution to climate change,” says Cara Clairman, Plug’n Drive president and CEO. “While this is true, there are significant economic opportunities that are often overlooked.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.