Charge your iPhone with wind power

By Toronto Star


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
A Dutch designer has invented a device that uses the wind to recharge cellphones.

Tjeerd Veenhoven crafted the iFan, a charger that holds various Apple devices, including the iPhone, inside a soft rubber skin. It uses fan blades to capture energy from the wind, which charges the battery.

Veenhoven had been working on larger wind-related products before coming up with the idea to create a hand-held invention.

"The thing with wind is that it is often only profitable when you scale it up to large windmills. Therefore, wind energy is a concept that is far away from us," Veenhoven said in an interview with the Star. "One of the nice things about the iFan is that it communicates the quality of wind in a very direct and personal way."

Believing that "nature is our new energy, in synergy with our technical adaptations," Veenhoven first created the iFan out of wood before building a more practical one, with one out of soft-rubber that can easily wrap around the phone.

Veenhoven estimates it takes him about six hours to charge his phone using his iFan.

Still in its design stages, iFan is not available for sale. Not yet anyway, says Veenhoven.

"I love just throwing ideas out there, and this was basically just a prototype... even so, the response is that good that we are pushing to make one for on your bike, in order to keep your phone charged if you tour along," he said.

To accomplish this, Veenhoven has to redesign the fan blades.

"It looks like we will have a working prototype somewhere in February," Veenhoven said. "From that point on it is a little bit up to the marketing people to see if it will be sold."

Related News

Ontario's five largest electricity providers join together to warn of holiday scams

Ontario Electricity Bill Scams: beware phishing, spoofed calls, fake invoices, and disconnection threats demanding prepaid cards, gift cards, or Bitcoin; verify with Hydro One, Alectra, Toronto Hydro, Elexicon, or Hydro Ottawa customer service.

 

Key Points

Fraud schemes impersonating utilities via calls, texts, emails, or fake bills to coerce instant payment with threats.

✅ Never pay by gift cards, prepaid debit, or Bitcoin.

✅ Do not call numbers in messages; use your bill or utility website.

✅ Verify IDs; report threats or door-to-door demands to police.

 

Ontario’s five largest electricity utilities have teamed up to warn the public about ongoing scams concerning fake phone calls, texts and bills connected to the utility accounts.

“We always receive these reports of scams and it gets increasingly higher during the holidays when people are busy and enjoying the season," said Whitney Brhelle, spokesperson with Hydro One.

Hydro One joined with Alectra Utilities, Elexicon Energy, Hydro Ottawa and Toronto Hydro to get the message out that scammers are targeting customers and threatening to turn off their power.

Scams involve impersonation of a local utility or its employees, threatening phone calls, texts or emails and pressure for immediate payment that come with threats to disconnect service the same day.

Criminals may demand payment in prepaid debit cards, gift cards or Bitcoin. Utilities said they would never call a customer without notice and threaten disconnection over the phone.

In a separate case, authorities in Montreal arrested suspects in an electricity theft ring that highlights broader energy-related crime.

“People have been calling customers and saying you need to pay your bill immediately and they are threatened with disconnection, often citing supposed changes to peak hydro rates to add pressure, which is something that we would ever do," said Kimberly Brathwaite, spokesperson with Elexicon Energy.

Scammers are also creating fake bills that look like the real thing.

“Scammers will actually take our Alectra logo and send out various authentic looking documents to people’s homes, so people have to be aware and check their statements very carefully” said Ashley Trgachef spokesperson with Alectra Utilities.

Customers are advised to never make a payment not listed on their recent bill and to ignore texts or emails with links promising refunds, and to verify any official relief fund information only through their utility and not to provide personal information or details about their account.

If you are given a number to call don’t call the number provided, you are better off to go to your bill or the utility’s website to makes sure it is the correct number for customer service and to review information about customer flexibility there.

Some scammers have even gone door to door demanding payment, and the utilities are advising anyone who feels threatened to call police.

They are also asking that you share the information with family and friends to be careful if they are contacted by someone claiming to be with their electricity company.

If you fall for a scam and money is sent, it's very difficult to get it back.  

 

Related News

View more

EasyPower Webinars - August and September Schedule

EasyPower Webinars deliver expert training on electrical power systems, covering arc flash, harmonics, grounding, overcurrent coordination, NEC and IEEE 1584 updates, with on-demand videos and email certificates for continuing education credits.

 

Key Points

EasyPower Webinars are expert-led power systems trainings with CE credit details and on-demand access.

✅ Arc flash, harmonics, and grounding fundamentals with live demos

✅ NEC 2020 and IEEE 1584 updates for compliance and safety

✅ CE credits with post-webinar email documentation

 

We've ramped up webinars to help your learning while you might be working from home, and similar live online fire alarm training options are widely available. As usual, you will receive an email the day after the webinar which will include the details most states need for you to earn continuing education credit, amid a broader grid warning during the pandemic from regulators.

EasyPower's well known webinar series covers a variety of topics regarding electrical power systems. Below you will see our webinars scheduled through the next few months, reflecting ongoing sector investments in the future of work across the electricity industry.

In addition, there are more than 150 videos that were recorded from past webinars in our EasyPower Video Library. The topics of these videos include arc flash training, short circuit, protective device coordination, power flow, harmonics, DC systems, grounding, and many others.

 

AUGUST WEBINARS

 

Active & Passive Harmonic Filters in EasyPower

By Tao Yang, Ph.D, PE, at EasyPower

In this webinar, Tao Yang, Ph.D, PE, from EasyPower provides a refresher course on fundamental concepts of harmonics study and the EasyPower Harmonics module. He describes the two major harmonics filters, both active and passive, and their implementation in the EasyPower Harmonics module. As passive filters are widely used in the industry, he covers four kinds of typical passive filters: notch, first order, second order, and C-type filters, including their implementation in EasyPower and their tuning processes. He uses live examples to demonstrate the modeling and parameter tuning for both active and passive filters using simple EasyPower cases.

Date: Thursday, August 13, 2020
Time: 10:00 AM - 11:00 AM Pacific
Register: https://attendee.gotowebinar.com/register/1359680676441129997

 

Cracking the Code for Arc-Flash Mitigation

By Mark Pollock at Littelfuse

The National Electrical Code (NEC) outlines several arc-flash mitigation options, aligning with broader arc flash training insights across the industry. This presentation, given by Mark Pollock at Littelfuse, reviews the arc-flash mitigation options from the NEC 2020, and some updates to the IEEE 1584-2018 standard. In addition to understanding the codes, we’ll discuss the return on investment for the various mitigation options and the importance of arc-flash assessments in your facility. 

Date: Thursday, August 20, 2020
Time: 10:00 AM - 11:00 AM Pacific
Register: https://attendee.gotowebinar.com/register/107117029724512527

 

Ground Fault Coordination in EasyPower

By Jim Chastain, Support Engineer at EasyPower

The PowerProtector™ module in EasyPower simplifies the process of coordinating protective devices. In this refresher webinar, Jim Chastain demonstrates the procedure to coordinate ground fault protection for both resistance-grounded and hard-grounded systems.

Date: Tuesday, August 25, 2020
Time: 8:00 AM - 8:30 AM Pacific
Register: https://attendee.gotowebinar.com/register/561389055546364429

 

SEPTEMBER WEBINARS

 

Overcurrent Coordination and Protection Basics

By James Onsager and Namrata Asarpota at S&C Electric

Coordination of overcurrent protective devices is necessary to limit interruptions to the smallest portion of the power system in the event of an overload or short-circuit. This webinar, given by James Onsager and Namrata Asarpota at S&C Electric, goes over the basics of Time Current Curves (TCCs), types of overcurrent protective devices (for both low-voltage and medium-voltage systems), and how to coordinate between them. Protection of common types of equipment such as transformers, cables and motors according the National Electrical Code (NFPA 70, NEC) is also discussed, alongside related fire alarm training online resources available to practitioners. 

Date: Thursday, September 3, 2020
Time: 10:00 AM -11:00 AM Pacific
Register: https://attendee.gotowebinar.com/register/6345420550218629133

 

Static Discharge Awareness and Explosion Protection

By Christopher Coughlan at Newson Gale, a Hoerbiger Safety Solutions Company

For any person responsible for the safety of employees, colleagues, plant equipment and plant property, one of the most potentially confusing aspects of providing a safe operating environment is understanding and safeguarding again static discharge, with industry leadership in worker safety highlighting best practices. In this webinar given by Christopher Coughlan at Newson Gale, a Hoerbiger Safety Solutions Company, he discusses how to determine if your site’s manufacturing or handling processes have the potential to discharge static sparks into flammable or combustible atmospheres. 

Date: Thursday, September 17, 2020
Time: 10:00 AM -11:00 AM Pacific
Register: https://attendee.gotowebinar.com/register/7225333317600833296

 

XGSLab New Feature - Seasonal Analysis For Grounding Systems

By David Lewis, P.E, Electrical Engineer, Grounding and Power Systems at EasyPower

In regions where the frost depth meets or exceeds the depth of a grounding system, the grounding system’s performance may be dramatically reduced, possibly creating hazardous conditions. The latest XGSLab release 9.5 provides a powerful new tool to analyze grounding system performance that considers the seasonal variation in soil characteristics. In this webinar, given by David Lewis, an electrical engineer at EasyPower, we describe the effect that seasonal variation can have on a grounding system and we step you through the use of the Seasonal Analysis tool. 

Date: Tuesday, September 25, 2020
Time: 8:00 AM -8:30 AM Pacific
Register: https://attendee.gotowebinar.com/register/6805488101896212751

 

Related News

View more

Duke Energy seeks changes in how solar owners are paid for electricity

Duke Energy Net Metering Proposal updates rooftop solar compensation with time-of-use rates, lower grid credits, and a minimum charge, aligning payments with electricity demand in North Carolina pending regulators' approval.

 

Key Points

A plan to swap flat credits for time-of-use rates and a minimum charge for rooftop solar customers in North Carolina.

✅ Time-of-use credits vary by grid demand

✅ $10 minimum use charge plus $14 basic fee

✅ Aims to align solar payouts with actual electricity value

 

Duke Energy has proposed new rules for how owners of rooftop solar panels are paid for electricity they send to the electric grid. It could mean more complexity and lower payments, but the utility says rates would be fairer.

State legislators have called for changes in the payment rules — known as "net metering" policies that allow households to sell power back to energy firms.

Right now, solar panel owners who produce more electricity than they need get credits on their bills, equal to whatever they pay for electricity. Under the proposed changes, the credit would be lower and would vary according to electricity demand, said Duke spokesperson Randy Wheeless.

"So in a cold winter morning, like now, you would get more, but maybe in a mild spring day, you would get less," Wheeless said Tuesday. "So, it better reflects what the price of electricity is."

Besides setting rates by time of use, solar owners also would have to pay a minimum of $10 a month for electricity, even if they don't use any from the grid. That's on top of Duke's $14 basic charge. Duke said it needs the extra revenue to pay for grid infrastructure to serve solar customers.

The proposal is the result of an agreement between Duke and solar industry groups — the North Carolina Sustainable Energy Association; the Southern Environmental Law Center, which represented Vote Solar and the Southern Alliance for Clean Energy; solar panel maker Sunrun Inc.; and the Solar Energy Industries Association.

The deal is similar to one approved by regulators in South Carolina last year, while in Nova Scotia a solar charge was delayed after controversy.

Daniel Brookshire of the North Carolina Sustainable Energy Association said he hopes the agreement will help the solar industry.

"We reached an agreement here that we think will provide certainty over the next decade, at least, for those interested in pursuing solar for their homes, and for our members who are solar installers," Brookshire said.

But other environmental and consumer groups oppose the changes, amid debates over who pays for grid upgrades elsewhere. Jim Warren with NC WARN said the rules would slow the expansion of rooftop solar in North Carolina.

"It would make it even harder for ordinary people to go solar," Warren said. "This would make it more complicated and more expensive, even for wealthier homeowners."

State regulators still must approve the proposal, even as courts weigh aspects of the electricity monopoly in related solar cases. If state regulators approve it, rates for new net metering customers would take effect Jan. 1, 2023.

 

Related News

View more

Indian government takes steps to get nuclear back on track

India Nuclear Generation Shortfall highlights missed five-year plan targets due to uranium fuel scarcity, commissioning delays at Kudankulam, PFBR slippage, and PHWR equipment bottlenecks under IAEA safeguards and domestic supply constraints.

 

Key Points

A gap between planned and actual nuclear output due to fuel shortages, reactor delays, and first-of-a-kind hurdles.

✅ Fuel scarcity pre-2009-10 constrained unsafeguarded reactors.

✅ Kudankulam delays from protests, litigation, and remobilisation.

✅ FOAK PHWR equipment bottlenecks and PFBR slippage.

 

A lack of available domestically produced nuclear fuel and delays in constructing and commissioning nuclear power plants, including first-of-a-kind plants and the Prototype Fast Breeder Reactor (PFBR), meant that India failed to meet its nuclear generation targets under the governmental plans over the decade to 2017, even as global project milestones were being recorded elsewhere.

India's nuclear generation target under its 11th five-year plan, covering the period 2007-2012, was 163,395 million units (MUs) and the 12th five-year Plan (2012-17) was 241,748 MUs, Minister of state for the Department of Atomic Energy and the Prime Minister's Office Jitendra Singh told parliament on 6 February. Actual nuclear generation in those periods was 109,642 MUs and 183,488 MUs respectively, Singh said in a written answer to questions in the Lok Sabah.

Singh attributed the shortfall in generation to a lack of availability of the necessary quantities of domestically produced fuel during the three years before 2009-2010; delays to the commissioning of two 1000 MWe nuclear power plants at Kudankulam due to local protests and legal challenges; and delays in the completion of two indigenously designed pressurised heavy water reactors and the PFBR.

Kudankulam 1 and 2 are VVER-1000 pressurised water reactors (PWRs) supplied by Russia's Atomstroyexport under a Russian-financed contract. The units were built by Nuclear Power Corporation of India Ltd (NPCIL) and were commissioned and are operated by NPCIL under International Atomic Energy Agency (IAEA) safeguards, with supervision from Russian specialists, while China's nuclear program advanced on a steady development track in the same period. Construction of the units - the first PWRs to enter operation in India - began in 2002.

Singh said local protests resulted in the halt of commissioning work at Kudankulam for nine months from September 2011 to March 2012, when he said project commissioning had been at its peak. As a consequence, additional time was needed to remobilise the workforce and contractors, he said. Litigation by anti-nuclear groups, and compliance with supreme court directives, impacted commissioning in 2013, he said. Unit 1 entered commercial operation in December 2014 and unit 2 in April 2017.

Delays in the manufacture and supply by domestic industry of critical equipment for first-of-a-kind 700 MWe pressurised heavy water reactors -  Kakrapar units 3 and 4, and Rajasthan units 7 and 8 - has led to delays in the completion of those units, the minister said, as well as noting the delay in completion of the PFBR, which is being built at Kalpakkam by Bhavini. In answer to a separate question, Singh said the PFBR is in an "advance stage of integrated commissioning" and is "expected to approach first criticality by the year 2020."

Eight of India's operating nuclear power plants are not under IAEA safeguards and can therefore only use indigenously-sourced uranium. The other 14 units operate under IAEA safeguards and can use imported uranium. The Indian government has taken several measures to secure fuel supplies for reactors in operation and under construction, amid coal supply rationing pressures elsewhere in the power sector, concluding fuel supply contracts with several countries for existing and future reactors under IAEA Safeguards and by "augmentation" of fuel supplies from domestic sources, Singh said.

Kakrapar 3 and 4, with Kakrapar 3 criticality already reported, and Rajasthan 7 and 8 are all currently expected to enter service in 2022, according to World Nuclear Association information.

 

Joint venture discussions

In February 2016 the government amended the Atomic Energy Act to allow NPCIL to form joint venture companies with other public sector undertakings (PSUs) for involvement in nuclear power generation and possibly other aspects of the fuel cycle, reflecting green industrial strategies shaping future reactor waves globally. In answer to another question, Singh confirmed that NPCIL has entered into joint ventures with NTPC Limited (National Thermal Power Corporation, India's largest power company) and Indian Oil Corporation Limited. Two joint venture companies - Anushakti Vidhyut Nigam Limited and NPCIL-Indian Oil Nuclear Energy Corporation Limited - have been incorporated, and discussions on possible projects to be set up by the joint venture companies are in progress.

An exploratory discussion had also been held with Oil & Natural Gas Corporation, Singh said. Indian Railways - which has in the past been identified as a potential joint venture partner for NPCIL - had "conveyed that they were not contemplating entering into an MoU for setting up of nuclear power plants," Singh said.

 

Related News

View more

Manitoba Hydro scales back rate increase next year

Manitoba Hydro 3.5 Percent Rate Increase proposes a smaller electricity rate hike under Public Utilities Board oversight to bolster financial reserves, address debt and Bipole III costs, amid shifting export sales and water flow conditions.

 

Key Points

It is Manitoba Hydro's proposed 3.5% electricity rate hike for 2019-20 to shore up finances under PUB oversight.

✅ PUB review sought without lengthy hearing

✅ Revenue boost forecast at 59 million dollars

✅ Natural gas rates flat; class shifts adjust bills

 

Manitoba Hydro is scaling back its rate hike request for next year, instead of the annual 7.9 per cent hikes the Crown corporation previously said it would need until 2023-24 to address debt. 

Hydro is asking the Public Utilities Board for a 3.5 per cent rate increase next year, which would take effect on April 1.

In last week's application, Hydro said its new board is reviewing the corporation's financial picture. Once that is complete, the utility expects to submit a new multi-year rate plan in late 2019 that addresses the organization's long-term future.

"It's too speculative at this point to discuss any possible future rate increases," spokesperson Bruce Owen said in an email.

The proposed increase next year is similar to other jurisdictions and nearly in line with the Public Utilities Board's decision to allow an average 3.6 per cent jump in electricity rates in 2018-19, which began this summer.

"The requested 3.5 per cent rate increase … generates a modest level of net income under average water flow conditions that will assist in gradually building the revenue base and reduce the risk of the corporation incurring a loss" in 2019-20, the rate application said.

If approved, consumers would face their second rate increase from Hydro in under a year.

Crown Services Minister Colleen Mayer said she's sympathetic to customers bracing for another rate increase amid NL rate hike concerns that far exceeds the rate of inflation.

"I hear that, very clearly," she said. "The NDP left us with an insurmountable problem — we're trying to fix that."

Hydro goes to court over special rate class for First Nations residents in Manitoba

National Energy Board OK's Manitoba-Minnesota Transmission Project

Next year's rate increase is projected to bring in $59 million of revenue, boosting the Crown corporation's financial reserves by $31 million.

Without it, the utility would deal with a net loss, it said.

This time, Hydro officials are asking PUB to forgo a rate hearing, suggesting neither itself nor the board has the resources for a lengthy six- to nine-month process to review an application where not much has changed financially and would generate a "minimum level of net income," Hydro said in a letter to the board.

The short-term rate relief, the letter recommends, should be "awarded in a timely and cost-effective manner, recognizing that the corporation's long-term financial forecasts will be finalized and available for review" in late 2019.

Hydro's net income next year will be lower than projected, the rate application said, due to a reduction in export sales and increases in depreciation and financing costs from Bipole III.

"Even though they had a total implosion of their previous board, on this very issue, they haven't learned lessons and they continue to be cheerleaders for these rapid rate increases," Kinew said, referring to the exodus of every board member but one earlier this year.

Manitoba Hydro's burgeoning debt surpasses $19 billion

On natural gas, Manitoba Hydro is asking PUB for no rate increase for the next two years.

There will, however, be some changes in rates in different customer classes, Owen said, resulting in modest rate reductions for mainly residential customers and increases for customers who use a lot of natural gas.

The corporation also wants to stop collecting fees to support the furnace replacement program. The initiative will continue with existing fees.

 

Related News

View more

Why the promise of nuclear fusion is no longer a pipe dream

ITER Nuclear Fusion advances tokamak magnetic confinement, heating deuterium-tritium plasma with superconducting magnets, targeting net energy gain, tritium breeding, and steam-turbine power, while complementing laser inertial confinement milestones for grid-scale electricity and 2025 startup goals.

 

Key Points

ITER Nuclear Fusion is a tokamak project confining D-T plasma with magnets to achieve net energy gain and clean power.

✅ Tokamak magnetic confinement with high-temp superconducting coils

✅ Deuterium-tritium fuel cycle with on-site tritium breeding

✅ Targets net energy gain and grid-scale, low-carbon electricity

 

It sounds like the stuff of dreams: a virtually limitless source of energy that doesn’t produce greenhouse gases or radioactive waste. That’s the promise of nuclear fusion, often described as the holy grail of clean energy by proponents, which for decades has been nothing more than a fantasy due to insurmountable technical challenges. But things are heating up in what has turned into a race to create what amounts to an artificial sun here on Earth, one that can provide power for our kettles, cars and light bulbs.

Today’s nuclear power plants create electricity through nuclear fission, in which atoms are split, with next-gen nuclear power exploring smaller, cheaper, safer designs that remain distinct from fusion. Nuclear fusion however, involves combining atomic nuclei to release energy. It’s the same reaction that’s taking place at the Sun’s core. But overcoming the natural repulsion between atomic nuclei and maintaining the right conditions for fusion to occur isn’t straightforward. And doing so in a way that produces more energy than the reaction consumes has been beyond the grasp of the finest minds in physics for decades.

But perhaps not for much longer. Some major technical challenges have been overcome in the past few years and governments around the world have been pouring money into fusion power research as part of a broader green industrial revolution under way in several regions. There are also over 20 private ventures in the UK, US, Europe, China and Australia vying to be the first to make fusion energy production a reality.

“People are saying, ‘If it really is the ultimate solution, let’s find out whether it works or not,’” says Dr Tim Luce, head of science and operation at the International Thermonuclear Experimental Reactor (ITER), being built in southeast France. ITER is the biggest throw of the fusion dice yet.

Its $22bn (£15.9bn) build cost is being met by the governments of two-thirds of the world’s population, including the EU, the US, China and Russia, at a time when Europe is losing nuclear power and needs energy, and when it’s fired up in 2025 it’ll be the world’s largest fusion reactor. If it works, ITER will transform fusion power from being the stuff of dreams into a viable energy source.


Constructing a nuclear fusion reactor
ITER will be a tokamak reactor – thought to be the best hope for fusion power. Inside a tokamak, a gas, often a hydrogen isotope called deuterium, is subjected to intense heat and pressure, forcing electrons out of the atoms. This creates a plasma – a superheated, ionised gas – that has to be contained by intense magnetic fields.

The containment is vital, as no material on Earth could withstand the intense heat (100,000,000°C and above) that the plasma has to reach so that fusion can begin. It’s close to 10 times the heat at the Sun’s core, and temperatures like that are needed in a tokamak because the gravitational pressure within the Sun can’t be recreated.

When atomic nuclei do start to fuse, vast amounts of energy are released. While the experimental reactors currently in operation release that energy as heat, in a fusion reactor power plant, the heat would be used to produce steam that would drive turbines to generate electricity, even as some envision nuclear beyond electricity for industrial heat and fuels.

Tokamaks aren’t the only fusion reactors being tried. Another type of reactor uses lasers to heat and compress a hydrogen fuel to initiate fusion. In August 2021, one such device at the National Ignition Facility, at the Lawrence Livermore National Laboratory in California, generated 1.35 megajoules of energy. This record-breaking figure brings fusion power a step closer to net energy gain, but most hopes are still pinned on tokamak reactors rather than lasers.

In June 2021, China’s Experimental Advanced Superconducting Tokamak (EAST) reactor maintained a plasma for 101 seconds at 120,000,000°C. Before that, the record was 20 seconds. Ultimately, a fusion reactor would need to sustain the plasma indefinitely – or at least for eight-hour ‘pulses’ during periods of peak electricity demand.

A real game-changer for tokamaks has been the magnets used to produce the magnetic field. “We know how to make magnets that generate a very high magnetic field from copper or other kinds of metal, but you would pay a fortune for the electricity. It wouldn’t be a net energy gain from the plant,” says Luce.


One route for nuclear fusion is to use atoms of deuterium and tritium, both isotopes of hydrogen. They fuse under incredible heat and pressure, and the resulting products release energy as heat


The solution is to use high-temperature, superconducting magnets made from superconducting wire, or ‘tape’, that has no electrical resistance. These magnets can create intense magnetic fields and don’t lose energy as heat.

“High temperature superconductivity has been known about for 35 years. But the manufacturing capability to make tape in the lengths that would be required to make a reasonable fusion coil has just recently been developed,” says Luce. One of ITER’s magnets, the central solenoid, will produce a field of 13 tesla – 280,000 times Earth’s magnetic field.

The inner walls of ITER’s vacuum vessel, where the fusion will occur, will be lined with beryllium, a metal that won’t contaminate the plasma much if they touch. At the bottom is the divertor that will keep the temperature inside the reactor under control.

“The heat load on the divertor can be as large as in a rocket nozzle,” says Luce. “Rocket nozzles work because you can get into orbit within minutes and in space it’s really cold.” In a fusion reactor, a divertor would need to withstand this heat indefinitely and at ITER they’ll be testing one made out of tungsten.

Meanwhile, in the US, the National Spherical Torus Experiment – Upgrade (NSTX-U) fusion reactor will be fired up in the autumn of 2022, while efforts in advanced fission such as a mini-reactor design are also progressing. One of its priorities will be to see whether lining the reactor with lithium helps to keep the plasma stable.


Choosing a fuel
Instead of just using deuterium as the fusion fuel, ITER will use deuterium mixed with tritium, another hydrogen isotope. The deuterium-tritium blend offers the best chance of getting significantly more power out than is put in. Proponents of fusion power say one reason the technology is safe is that the fuel needs to be constantly fed into the reactor to keep fusion happening, making a runaway reaction impossible.

Deuterium can be extracted from seawater, so there’s a virtually limitless supply of it. But only 20kg of tritium are thought to exist worldwide, so fusion power plants will have to produce it (ITER will develop technology to ‘breed’ tritium). While some radioactive waste will be produced in a fusion plant, it’ll have a lifetime of around 100 years, rather than the thousands of years from fission.

At the time of writing in September, researchers at the Joint European Torus (JET) fusion reactor in Oxfordshire were due to start their deuterium-tritium fusion reactions. “JET will help ITER prepare a choice of machine parameters to optimise the fusion power,” says Dr Joelle Mailloux, one of the scientific programme leaders at JET. These parameters will include finding the best combination of deuterium and tritium, and establishing how the current is increased in the magnets before fusion starts.

The groundwork laid down at JET should accelerate ITER’s efforts to accomplish net energy gain. ITER will produce ‘first plasma’ in December 2025 and be cranked up to full power over the following decade. Its plasma temperature will reach 150,000,000°C and its target is to produce 500 megawatts of fusion power for every 50 megawatts of input heating power.

“If ITER is successful, it’ll eliminate most, if not all, doubts about the science and liberate money for technology development,” says Luce. That technology development will be demonstration fusion power plants that actually produce electricity, where advanced reactors can build on decades of expertise. “ITER is opening the door and saying, yeah, this works – the science is there.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified