Cheap uranium equity valuations could lead to acquisition

By Financial Post


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
One of the same reasons Cameco Corp. received an upgrade may be behind future acquisitions for the worldÂ’s largest publicly-traded uranium company.

RBC Capital Markets analyst H. Fraser Phillips upgraded Cameco to “outperform” from “sector perform” due to the recent correction in its share price and the stabilization of spot uranium prices. He also pointed to the expressions from the company’s management during their year-end conference call that lower uranium equity valuations were approaching good value.

“Diversification of production sources through an acquisition would be a positive, though shareholder dilution is a risk,” Mr. Phillips told clients in a note.

As for prices, his analysis shows that the uranium market remains very tight. RBC expects prices will rebound in 2008.

Meanwhile, Cameco appears to be recovering from the contaminated soil-related shutdown of its Port Hope uranium conversion plant, flooding at the giant Cigar Lake deposit, and dealings with the Canadian Nuclear Safety Commission, Mr. Phillips said.

But uncertainty remains, particularly with the expected production date of 2011 at Cigar Lake and negotiations with Russia regarding highly enriched uranium, he added.

While the analyst believes both could lead to volatility, he thinks the downside risk is already reflected in CamecoÂ’s share price. He has a $48 price target on the stock, which represents upside of 36%.

Related News

BC Hydro electricity demand down 10% amid COVID-19 pandemic

BC Hydro electricity demand decline reflects COVID-19 impacts across British Columbia, with reduced industrial load, full reservoirs, strategic spilling, and potential rate increases, as hydropower plants adjust operations at Seven Mile, Revelstoke, and Site C.

 

Key Points

A 10% COVID-19-driven drop in BC power use, prompting reservoir spilling, plant curtailment, and potential rate hikes.

✅ 10% load drop; industrial demand down 7% since mid-March

✅ Reservoirs near capacity; controlled spilling to mitigate risk

✅ Possible rate hikes; Site C construction continues

 

Elecricity demand is down 10 per cent across British Columbia, an unprecedented decline in commercial electricity consumption sparked by the COVID-19 pandemic, according to a BC Hydro report.

Power demand across hotels, offices, recreational facilities and restaurants have dwindled as British Columbians self isolate, and bill relief for residents and businesses was introduced during this period.

The shortfall means there's a surplus of water in reservoirs across the province.

"This drop in load in addition to the spring snow melt is causing our reservoirs to reach near capacity, which could lead to environmental concerns, as well as public safety risks if we don't address the challenges now," said spokesperson Tanya Fish.

Crews will have to strategically spill reservoirs to keep them from overflowing, a process that can have negative impacts on downstream ecosystems. Excessive spilling can increase fish mortality rates.

Spilling is currently underway at the Seven Mile and Revelstoke reservoirs. In addition, several small plants have been shut down.

Site C and hydro rates
According to the report, titled Demand Dilemma, the decline could continue into April 2021 and drop by another two per cent, even as a regulator report alleged BC Hydro misled oversight bodies.

Major industry — forestry, mining and oil and gas — accounts for about 30 per cent of BC Hydro's overall electricity load. Energy demand from these customers has dropped by seven per cent since mid-March, while in Manitoba a Consumers Coalition has urged rejection of proposed rate increases.

BC Hydro says a prolonged drop in demand could have an impact on future rates, which could potentially go up as the power provider looks to recoup deferred operating costs and financial losses.

In Manitoba, Manitoba Hydro's debt has grown significantly, underscoring the financial risks utilities face during demand shocks.

Fish said the crown corporation still expects there to be increased demand in the long-term. She said construction of the Site C Dam is continuing as planned to support clean-energy generation in the province. There are currently nearly 1,000 workers on-site.

 

Related News

View more

U.S. residential electricity bills increased 5% in 2022, after adjusting for inflation

U.S. Residential Electricity Bills rose on stronger demand, inflation, and fuel costs, with higher retail prices, kWh consumption, and extreme weather driving 2022 spikes; forecasts point to stable summer usage and slight price increases.

 

Key Points

They are average household power costs shaped by prices, kWh use, weather, and upstream fuel costs.

✅ 2022 bills up 13% nominal, 5% real vs. 2021

✅ Retail price rose 11%; consumption up 2% to 907 kWh

✅ Fuel costs to plants up 34%, pressuring rates

 

In nominal terms, the average monthly electricity bill for residential customers in the United States increased 13% from 2021 to 2022, rising from $121 a month to $137 a month. After adjusting for inflation—which reached 8% in 2022, a 40-year high—electricity bills increased 5%. Last year had the largest annual increase in average residential electricity spending since we began calculating it in 1984. The increase was driven by a combination of more extreme temperatures, which increased U.S. consumption of electricity for both heating and cooling, and higher fuel costs for power plants, which drove up retail electricity prices nationwide.

Residential electricity customers’ monthly electricity bills are based on the amount of electricity consumed and the retail electricity price. Average U.S. monthly electricity consumption per residential customer increased from 886 kilowatthours (kWh) in 2021 to 907 kWh in 2022, even as U.S. electricity sales have declined over the past seven years. Both a colder winter and a hotter summer contributed to the 2% increase in average monthly electricity consumption per residential customer in 2022 because customers used more space heating during the winter and more air conditioning during the summer, with some states, such as Pennsylvania, facing sharp winter rate increases.

Although we don’t directly collect retail electricity prices, we do collect revenues from electricity providers that allow us to determine prices by dividing by consumption, and industry reports show major utilities spending more on electricity delivery than on power production. In 2022, the average U.S. residential retail electricity price was 15.12 cents/kWh, an 11% increase from 13.66 cents/kWh in 2021. After adjusting for inflation, U.S. residential electricity prices went up by 2.5%.

Higher fuel costs for power plants drove the increase in residential retail electricity prices. The cost of fossil fuels—including natural gas prices, coal, and petroleum—delivered to U.S. power plants increased 34%, from $3.82 per million British thermal units (MMBtu) in 2021 to $5.13/MMBtu in 2022. The higher fuel costs were passed along to residential customers and contributed to higher retail electricity prices, and Germany power prices nearly doubled over a year in a related trend.

In the first three months of 2023, the average U.S. residential monthly electricity bill was $133, or 5% higher than for the same time last year, according to data from our Electric Power Monthly. The increase was driven by a 13% increase in the average U.S. residential retail electricity price, which was partly offset by a 7% decrease in average monthly electricity consumption per residential customer, and industry outlooks also see U.S. power demand sliding 1% on milder weather. This summer, we expect that typical household electricity bills will be similar to last year’s, with customers paying about 2% more on average. The slight increase in electricity costs forecast for this summer stems from higher retail electricity prices but similar consumption levels as last summer.
 

 

Related News

View more

Fuel Cell Electric Buses Coming to Mississauga

Mississauga Fuel Cell Electric Buses advance zero-emission public transit, leveraging hydrogen fuel cells, green hydrogen supply, rapid refueling, and extended range to cut GHGs, improve air quality, and modernize sustainable urban mobility.

 

Key Points

Hydrogen fuel cell buses power electric drivetrains for zero-emission service, long range, and quick refueling.

✅ Zero tailpipe emissions improve urban air quality

✅ Longer route range than battery-electric buses

✅ Hydrogen fueling is rapid, enabling high uptime

 

Mississauga, Ontario, is gearing up for a significant shift in its public transportation landscape with the introduction of fuel cell electric buses (FCEBs). This initiative marks a pivotal step toward reducing greenhouse gas emissions and enhancing the sustainability of public transport in the region. The city, known for its vibrant urban environment and bustling economy, is making strides to ensure that its transit system evolves in harmony with environmental goals.

The recent announcement highlights the commitment of Mississauga to embrace clean energy solutions. The integration of FCEBs is part of a broader strategy to modernize the transit fleet while tackling climate change. As cities around the world seek to reduce their carbon footprints, Mississauga’s initiative aligns with global trends toward greener urban transport, where projects like the TTC battery-electric buses demonstrate practical pathways.

What are Fuel Cell Electric Buses?

Fuel cell electric buses utilize hydrogen fuel cells to generate electricity, which powers the vehicle's electric motor. Unlike traditional buses that run on diesel or gasoline, FCEBs produce zero tailpipe emissions, making them an environmentally friendly alternative. The only byproducts of their operation are water and heat, significantly reducing air pollution in urban areas.

The technology behind FCEBs is becoming increasingly viable as hydrogen production becomes more sustainable. With the advancement of green hydrogen production methods, which use renewable energy sources to create hydrogen, and because some electricity in Canada still comes from fossil fuels, the environmental benefits of fuel cell technology are further amplified. Mississauga’s investment in these buses is not only a commitment to cleaner air but also a boost for innovative technology in the transportation sector.

Benefits for Mississauga

The introduction of FCEBs is poised to offer numerous benefits to the residents of Mississauga. Firstly, the reduction in greenhouse gas emissions aligns with the city’s climate action goals and complements Canada’s EV goals at the national level. By investing in cleaner public transit options, Mississauga is taking significant steps to improve air quality and combat climate change.

Moreover, FCEBs are known for their efficiency and longer range compared to battery electric buses, such as the Metro Vancouver fleet now operating across the region, commonly used in Canadian cities. This means they can operate longer routes without the need for frequent recharging, making them ideal for busy transit systems. The use of hydrogen fuel can also result in shorter fueling times compared to electric charging, enhancing operational efficiency.

In addition to environmental and operational advantages, the introduction of these buses presents economic opportunities. The deployment of FCEBs can create jobs in the local economy, from maintenance to hydrogen production facilities, similar to how St. Albert’s electric buses supported local capabilities. This aligns with broader trends of sustainable economic development that prioritize green jobs.

Challenges Ahead

While the potential benefits of FCEBs are clear, the transition to this technology is not without its challenges. One of the main hurdles is the establishment of a robust hydrogen infrastructure. To support the operation of fuel cell buses, Mississauga will need to invest in hydrogen production, storage, and fueling stations, much as Edmonton’s first electric bus required dedicated charging infrastructure. Collaboration with regional and provincial partners will be crucial to develop this infrastructure effectively.

Additionally, public acceptance and awareness of hydrogen technology will be essential. As with any new technology, there may be skepticism regarding safety and efficiency. Educational campaigns will be necessary to inform the public about the advantages of FCEBs and how they contribute to a more sustainable future, and recent TTC’s battery-electric rollout offers a useful reference for outreach efforts.

Looking Forward

As Mississauga embarks on this innovative journey, the introduction of fuel cell electric buses signifies a forward-thinking approach to public transportation. The city’s commitment to sustainability not only enhances its transit system but also sets a precedent for other municipalities to follow.

In conclusion, the shift towards fuel cell electric buses in Mississauga exemplifies a significant leap toward greener public transport. With ongoing efforts to tackle climate change and improve urban air quality, Mississauga is positioning itself as a leader in sustainable transit solutions. The future looks promising for both the city and its residents as they embrace cleaner, more efficient transportation options. As this initiative unfolds, it will be closely watched by other cities looking to implement similar sustainable practices in their own transit systems.

 

Related News

View more

Is Ontario embracing clean power?

Ontario Clean Energy Expansion signals IESO-backed renewables, energy storage, and low-CO2 power to meet EV-driven demand, offset Pickering nuclear retirement, and balance interim gas-fired generation while advancing grid reliability, decarbonization, and net-zero targets.

 

Key Points

Ontario Clean Energy Expansion plans to grow renewables and storage, manage short-term gas, and meet rising demand.

✅ IESO long-term procurements for renewables and storage

✅ Interim reliance on gas to replace Pickering capacity

✅ Targets align with net-zero grid reliability goals

 

After cancelling hundreds of renewable power projects four years ago, the Doug Ford government appears set to expand clean energy to meet a looming electricity shortfall across the province.

Recent announcements from Ontario Energy Minister Todd Smith and the province’s electric grid management agency suggest the province plans to expand low-CO2 electricity with new wind and solar plans in the long-term, even as it ramps up gas-fired power over the next five years.

The moves are in response to an impending electricity shortfall as climate-conscious drivers switch to electric vehicles, farmers replace field crops with greenhouses and companies like ArcelorMittal Dofasco in Hamilton switch from CO2-heavy manufacturing to electricity-based production. Forecasters predict Canada will need to double its power supply by 2050.

While Ontario has a relatively low-CO2 power system, the province’s electricity supply will be reduced in 2025 when Ontario Power Generation closes the 50-year-old Pickering nuclear station, now near the end of its operating life. This will remove 3,100 megawatts of low-CO2 generation, about eight per cent of the province’s 40,000-megawatt total.

The impending closure has created a difficult situation for the Independent Electricity System Operator (IESO), the provincial agency managing Ontario’s grid. Last year, it forecasted it would need to sharply increase CO2-polluting natural gas-fired power to avoid widespread blackouts.

This would mean drivers switching to electric vehicles or companies like Dofasco cutting CO2 through electrification would end up causing higher power system emissions.

It would also fly in the face of the federal government’s ambition to create a net-zero national electricity system by 2035, a critical part of Canada’s pledge to reduce CO2 emissions to zero by 2050.

Yet the Ford government has appeared reluctant to expand clean energy. In the 2018 election, clean electricity was a key issue as it appealed to anti-turbine voters in rural Ontario and cancelled more than 700 renewable energy contracts shortly after taking office, taking 400 megawatts out of the system.

But there are signs the government is having a change of heart. IESO recently released a list of 55 companies approved to submit bids for 3,500 megawatts of long-term electricity contracts starting between 2025 and 2027, and the energy minister has outlined a plan to address growing energy needs as well.

The companies include a variety of potential producers, ranging from Canadian and global renewable companies to local utilities and small startups. Most are renewable power or energy storage companies specializing in low- or zero-emission power. IESO plans additional long-term bid offerings in the future.

This doesn’t mean gas generation will be turned off. IESO will contract yearly production from existing gas plants until 2028 (the annual contract in 2023 will be for about 2,000 megawatts). As well, IESO has issued contracts to four gas-fired producers, a small wind company and a storage company to begin production of about 700 megawatts to boost gas plant output starting between 2024 and 2026.

While this represents an expansion of existing gas-fired generation, Smith has asked IESO to report on a gas moratorium, saying he doesn’t believe new gas plants will be needed over the long term.

The NDP and Greens criticized the government for relying on gas in the near term. But clean energy advocates greeted the long-term plans positively.

The IESO process “will contribute to a clean, reliable and affordable grid,” said the Canadian Renewable Energy Association.

Rachel Doran, director of policy and strategy at Clean Energy Canada, said in an email the potential gas generation moratorium “is an encouraging step forward,” although she criticized the “unfortunate decision to replace near-term nuclear power capacity with climate-change-causing natural gas.”

There will have to be a massive clean energy expansion to green Ontario’s grid well beyond what has been announced in recent days for Ontario to meet its future energy needs (think a doubling of Ontario’s current 40,000-megawatt capacity by 2050).

But these first steps hold promise that Ontario is at least starting on the path to that goal, rather than scrambling to keep the lights on with CO2-polluting natural gas.

 

Related News

View more

Abengoa, Acciona to start work on 110MW Cerro Dominador CSP plant in Chile

Cerro Dominador CSP Plant delivers 110MW concentrated solar power in Chile's Atacama Desert, with 10,600 heliostats, 17.5-hour molten salt storage, and 24/7 dispatchable energy; built by Acciona and Abengoa within a 210MW complex.

 

Key Points

A 110MW CSP solar-thermal plant in Chile with heliostats and 17.5h molten salt storage, delivering 24/7 dispatchable clean power.

✅ 110MW CSP with 17.5h molten salt for 24/7 dispatch

✅ 10,600 heliostats; part of a 210MW hybrid CSP+PV complex

✅ Built by Acciona and Abengoa; first of its kind in LatAm

 

A consortium formed by Spanish groups Abengoa and Acciona, as Spain's renewable sector expands with Enel's 90MW wind build activity, has signed a contract to complete the construction of the 110MW Cerro Dominador concentrated solar power (CSP) plant in Chile.

The consortium received notice to proceed to build the solar-thermal plant, which is part of the 210MW Cerro Dominador solar complex.

Under the contract, Acciona, which has 51% stake in the consortium and recently launched a 280 MW Alberta wind farm, will be responsible for building the plant while Abengoa will act as the technological partner.

Expected to be the first of its kind in Latin America upon completion, the plant is owned by Cerro Dominador, which in turn is owned by funds managed by EIG Global Energy Partners.

The project will add to a Abengoa-built 100MW PV plant, comparable to California solar projects in scope, which was commissioned in February 2018, to form a 210MW combined CSP and PV complex.

Spread across an area of 146 hectares, the project will feature 10,600 heliostats and will have capacity to generate clean and dispatachable energy for 24 hours a day using its 17.5 hours of molten salt storage technology, a field complemented by battery storage advances.

Expected to prevent 640,000 tons of CO2 emission, the plant is located in the commune of María Elena, in the Atacama Desert, in the Antofagasta Region.

“In total, the complex will avoid 870,000 tons of carbon dioxide emissions into the atmosphere every year and, in parallel with Enel's 450 MW U.S. wind operations, will deliver clean energy through 15-year energy purchase agreements with distribution companies, signed in 2014.

“The construction of the solarthermal plant of Cerro Dominador will have an important impact on local development, with the creation of more than 1,000 jobs in the area during its construction peak, and that will be priority for the neighbors of the communes of the region,” Acciona said in a statement.

The Cerro Dominador plant represents Acciona’s fifth solar thermal plant being built outside of Spain. The firm has constructed 10 solarthermal plants with total installed capacity of 624MW.

Acciona has been operating in Chile since 1993. The company, through its Infrastructure division, executed various construction projects for highways, hospitals, hydroelectric plants and infrastructures for the mining sector.

 

Related News

View more

B.C.'s Green Energy Ambitions Face Power Supply Challenges

British Columbia Green Grid Constraints underscore BC Hydro's rising imports, peak demand, electrification, hydroelectric variability, and transmission bottlenecks, challenging renewable energy expansion, energy security, and CleanBC targets across industry and zero-emission transportation.

 

Key Points

They are capacity and supply limits straining B.C.'s clean electrification, driving imports and risking reliability.

✅ Record 25% imports in FY2024 raise emissions and costs

✅ Peak demand and transmission limits delay new connections

✅ Drought reduces hydro output; diversified generation needed

 

British Columbia's ambitious green energy initiatives are encountering significant hurdles due to a strained electrical grid and increasing demand, with a EV demand bottleneck adding pressure. The province's commitment to reducing carbon emissions and transitioning to renewable energy sources is being tested by the limitations of its current power infrastructure.

Rising Demand and Dwindling Supply

In recent years, B.C. has experienced a surge in electricity demand, driven by factors such as population growth, increased use of electric vehicles, and the electrification of industrial processes. However, the province's power supply has struggled to keep pace, and one study projects B.C. would need to at least double its power output to electrify all road vehicles. In fiscal year 2024, BC Hydro imported a record 13,600 gigawatt hours of electricity, accounting for 25% of the province's total consumption. This reliance on external sources, particularly from fossil-fuel-generated power in the U.S. and Alberta, raises concerns about energy security and sustainability.

Infrastructure Limitations

The current electrical grid is facing capacity constraints, especially during peak demand periods, and regional interties such as a proposed Yukon connection are being discussed to improve reliability. A report from the North American Electric Reliability Corporation highlighted that B.C. could be classified as an "at-risk" area for power generation as early as 2026. This assessment underscores the urgency of addressing infrastructure deficiencies to ensure a reliable and resilient energy supply.

Government Initiatives and Investments

In response to these challenges, the provincial government has outlined plans to expand the electrical system. Premier David Eby announced a 10-year, $36-billion investment to enhance the grid's capacity, including grid development and job creation measures to support local economies. The initiative focuses on increasing electrification, upgrading high-voltage transmission lines, refurbishing existing generating facilities, and expanding substations. These efforts aim to meet the growing demand and support the transition to clean energy sources.

The Role of Renewable Energy

Renewable energy sources, particularly hydroelectric power, play a central role in B.C.'s energy strategy. However, the province's reliance on hydroelectricity has its challenges. Drought conditions in recent years have led to reduced water levels in reservoirs, impacting the generation capacity of hydroelectric plants. This variability underscores the need for a diversified energy mix, with options like a hydrogen project complementing hydro, to ensure a stable and reliable power supply.

Balancing Environmental Goals and Energy Needs

B.C.'s commitment to environmental sustainability is evident in its policies, such as the CleanBC initiative, which aims to phase out natural gas heating in new homes by 2030 and achieve 100% zero-emission vehicle sales by 2035, supported by networks like B.C.'s Electric Highway that expand charging access. While these goals are commendable, they place additional pressure on the electrical grid. The increased demand from electric vehicles and electrified heating systems necessitates a corresponding expansion in power generation and distribution infrastructure.

British Columbia's green energy ambitions are commendable and align with global efforts to combat climate change. However, achieving these goals requires a robust and resilient electrical grid capable of meeting the increasing demand for power. The province's reliance on external power sources and the challenges posed by climate variability highlight the need for strategic investments in infrastructure and a diversified energy portfolio, guided by BC Hydro review recommendations to keep electricity affordable. By addressing these challenges proactively, B.C. can pave the way for a sustainable and secure energy future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.