Regulatory obstacles to smart grids prevent reliable power

By Electricity Forum


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
To meet future power demand and provide quality, reliable electricity to American homes and businesses, policymakers and state regulators need to change the way electric power utilities do business now, Kurt Yeager, executive director of the Galvin Electricity Initiative, said recently.

Speaking before an audience of federal and state regulators, utilities and other industry players as part of a keynote panel during the National Electricity Delivery Forum in Washington, D.C., Yeager said that the future of the U.S. electric power system rests upon our ability to take advantage of the technology available today and prioritizing the modernization of our unreliable, inefficient and insecure grid infrastructure.

“Our electric power system has been in a sub-prime mortgage-like era for decades,” Yeager said. “There are no technological or economical obstacles to modernizing the U.S. electric grid, only policy and regulatory barriers that must be eliminated,” said Yeager. “If states open up the electricity market and offer utilities incentives for integrating smart grid technology and giving consumers control of their own energy use, everyone will win. Consumers gain better service and a smaller carbon footprint while utilities gain much-needed upgrades and a system that is less vulnerable to cyber-attack.”

During the panel discussion, Yeager shared some of the InitiativeÂ’s key proposals that will pave the way for a more intelligent electricity grid:

The technology exists today to transform the 1950s-era grid into a smarter, reliable and efficient power system. To secure this future, state leadership is needed to remove the regulatory policy obstacles to smart grid development and implementation.

Utilities need incentives to drive grid modernization efforts. Utilities are compensated for selling more electricity, not for providing quality service or efficiency programs. States need to support “decoupling,” or separating utilities’ profits from their energy sales. Only then will utilities become motivated to offer consumers tools such as time-of-use pricing and smart meters that can reduce the escalating demand that is taxing our aging grid infrastructure, increasing emissions of dangerous pollutants. Consumers should be treated as individuals with individual needs. As with other industries that have been opened to competition and choice, given the option, most consumers will take control and reduce their energy use.

Renewable resources are an important part of our electricity generation mix, but they will not eliminate coal-generated or nuclear power. States should examine their available renewable resources for electricity generation — solar, wind, geothermal, biomass, etc. — and add them to their electricity generation portfolio. While the industry is addressing their greenhouse gas, waste and security issues, in order to meet our huge demand for electricity economically, coal and nuclear sources of electricity will remain the primary part of the generation mix. Carbon capture and sequestration has promise for yielding cleaner electricity from coal, but as a long-term goal, not a short-term solution. Since the volume of CO2 emitted by coal-fired plants that could be captured equals the amount of oil that is consumed in the United States yearly, finding a practical way to transport and store it is a complicated undertaking which is not receiving enough attention.

New transmission lines should be the last option. Technology currently exists to increase the capacity of the wires we have today. With the addition of “smart” electronic controls, transmission lines can run closer to their limits without risking overload. This will also minimize the major security and vulnerability risks that these extensive transmission networks pose to the nation today.

Related News

Electric Ferries Power Up B.C. with CIB Help

BC Ferries Electrification accelerates zero-emission vessels, Canada Infrastructure Bank financing, and fast charging infrastructure to cut greenhouse gas emissions, lower operating costs, and reduce noise across British Columbia's Island-class routes.

 

Key Points

BC Ferries Electrification is the plan to deploy zero-emission ferries and charging, funded by CIB, to reduce emissions.

✅ $75M CIB loan funds four electric ferries and chargers

✅ Cuts 9,000 tonnes CO2e annually on short Island-class routes

✅ Quieter service, lower operating costs, and redeployed hybrids

 

British Columbia is taking a significant step towards a cleaner transportation future with the electrification of its ferry fleet. BC Ferries, the province's ferry operator, has secured a $75 million loan from the Canada Infrastructure Bank (CIB) to fund the purchase of four zero-emission ferries and the necessary charging infrastructure to support them.

This marks a turning point for BC Ferries, which currently operates a fleet reliant on diesel fuel. The new Island-class electric ferries will be deployed on shorter routes, replacing existing hybrid ships on those routes. These hybrid ferries will then be redeployed on routes that haven't yet been converted to electric, maximizing their lifespan and efficiency.

Environmental Benefits

The transition to electric ferries is expected to deliver significant environmental benefits. The new vessels are projected to eliminate an estimated 9,000 tonnes of greenhouse gas emissions annually, and electric ships on the B.C. coast already demonstrate similar gains, contributing to British Columbia's ambitious climate goals. Additionally, the quieter operation of electric ferries will create a more pleasant experience for passengers and reduce noise pollution for nearby communities.

Economic Considerations

The CIB loan plays a crucial role in making this project financially viable. The low-interest rate offered by the CIB will help to keep ferry fares more affordable for passengers. Additionally, the long-term operational costs of electric ferries are expected to be lower than those of diesel-powered vessels, providing economic benefits in the long run.

Challenges and Opportunities

While the electrification of BC Ferries is a positive development, there are some challenges to consider. The upfront costs of electric ferries and charging infrastructure are typically higher than those of traditional options, though projects such as the Kootenay Lake ferry show growing readiness. However, advancements in battery technology are constantly lowering costs, making electric ferries a more cost-effective choice over time.

Moreover, the transition presents opportunities for job creation in the clean energy sector, with complementary initiatives like the hydrogen project broadening demand. The development, construction, and maintenance of electric ferries and charging infrastructure will require skilled workers, potentially creating a new avenue for economic growth in British Columbia.

A Pioneering Example

BC Ferries' electrification initiative sets a strong precedent for other ferry operators worldwide, including Washington State Ferries pursuing hybrid-electric upgrades. This project demonstrates the feasibility and economic viability of transitioning to cleaner marine transportation solutions. As battery technology and charging infrastructure continue to develop, we can expect to see more widespread adoption of electric ferries across the globe.

The collaboration between BC Ferries and the CIB paves the way for a greener future for BC's transportation sector, where efforts like Harbour Air's electric aircraft complement marine electrification. With cleaner air, quieter operation, and a positive impact on climate change, this project is a win for the environment, the economy, and British Columbia as a whole.

 

Related News

View more

Here are 3 ways to find out where your electricity comes from

US energy mix shows how the electric grid blends renewables, fossil fuels, nuclear, and hydro, varying by ISO/RTO markets, utilities, and state policies, affecting carbon emissions, pricing, reliability, and access.

 

Key Points

The US energy mix is the grid's source breakdown by region: fossil fuels, renewables, nuclear, and hydro.

✅ Check ISO or RTO dashboards for real-time generation by fuel source.

✅ Utilities may offer green power plans or RECs at modest premiums.

✅ Energy mix shifts with policy, pricing, and grid reliability needs.

 

There are few resources more important than energy. Sure, you may die if you don't eat for days. But your phone will die if you go too long without charging it. Energy feeds tech, the internet, city infrastructure, refrigerators, lights, and has evolved throughout U.S. history in profound ways. You get the idea. Yet unlike our other common needs, such as food, energy sources aren't exactly front of mind for most people. 

"I think a lot of people don't put a lot of bandwidth into thinking about this part of their lives," said Richard McMahon, the SVP of energy supply and finance at Edison Electric Institute, a trade group that represents investor-owned electric companies in the US. 

It makes sense. For most Americans, electricity is always there, and in many locations, there's not much of a choice involved, even as electricity demand is flat across the U.S. today. You sign up with a utility when you move into a new residence and pay your bills when they're due. 

But there's an important reality that indifference eschews: In 2018, a third of the energy-related carbon-dioxide emissions in the US came from the electric power sector, according to the US Energy Information Administration (EIA). 

A good chunk of that is from the residential sector, which consistently uses more energy than commercial customers, per EIA data.

Just as many people exercise choice when they eat, you typically also have a choice when it comes to your energy supply. That's not to say your current offering isn't what you want, or that switching will be easy or affordable, but "if you're a customer and want power with a certain attribute," McMahon said, "you can pretty much get it wherever you are." 

But first, you need to know the energy mix you have right now. As it turns out, it's not so straightforward. At all.

This brief guide may help. 

For some utility providers, you can find out if it publishes the energy mix online. Dominion Energy, which serves Idaho, North Carolina, Ohio, South Carolina, Utah, Virginia, West Virginia, and Wyoming, provides this information in a colored graphic. 

"Once you figure out who your utility is you can figure out what mix of resources they use," said Heidi Ratz, an electricity markets researcher at the World Resources Institute.

But not all utilities publish this information.

It has to do with their role in the grid and reflects utility industry trends in structure and markets. Some utility companies are vertically integrated; they generate power through nuclear plants or wind farms and distribute those electrons directly to their customers. Other utilities just distribute the power that different companies produce. 

Consider Consolidated Edison, or Con Ed, which distributes energy to parts of New York City. While reporting this story, Business Insider could not find information about the utility's energy mix online. When reached for comment, a spokesperson said, "we're indifferent to where it comes from."

That's because, in New York, distribution utilities like Con Ed often buy energy through a wholesale marketplace.

Take a look at this map. If you live in one of the colored regions, your electricity is sold on a wholesale market regulated by an organization called a regional transmission organization (RTO) or independent system operator (ISO). Distribution utilities like Con Ed often buy their energy through these markets, based on availability and cost, while raising questions about future utility revenue models as prices shift. 

Still, it's pretty easy to figure out where your energy comes from. Just look up the ISO or RTO website (such as NYISO or CAISO). Usually, these organizations will provide energy supply information in near-real time. 

That's exactly what Con Edison (which buys energy on the NYISO marketplace) suggested. As of Friday morning, roughly 40% of the energy on the market place was natural gas or other fossil fuels, 34% was nuclear, and about 22% was hydro. 

If you live in another region governed by an ISO or RTO, such as in most of California, you can do the same thing. Like NYISO, CAISO has a dashboard that shows (again, as of Friday morning) about 36% of the energy on the market comes from natural gas and more than 20% comes from renewables. 

In the map linked above, you'll notice that some of the ISOs and RTOs like MISO encompass enormous regions. That means that even if you figure out where the energy in your market comes from, it's not going to be geographically specific. But there are a couple of ways to drill down even further. 

The Environmental Protection Agency has a straightforward tool called Power Profiler. You can enter your zip code to see the fuel mix in your area. But it's not perfect. The data are from 2016 and, in some regions of the country like the upper Midwest, they aren't much more localized, and some import dirty electricity due to regional trading. 

The World Resources Institute also has a tool that allows you to see the electricity mix by state, based on 2017 data from EIA. These numbers represent power generation, not the electricity actually flowing into your sockets, but they offer a rough idea of what energy resources are operating in your state. 

One option is to check with your utility to see if it has a "green power" offering. Over 600 utilities across the country have one, according to the Climate Reality Project, though they often come at a slightly higher cost. It's typically on the scale of just a few more cents per kilowatt-hour. 

There are also independent, consumer-facing companies like Arcadia and Green Mountain Energy that allow you to source renewable energy, by virtually connecting you to community solar projects or purchasing Renewable Energy Certificates, or RECs, on your behalf, as America goes electric and more options emerge. 

"RECs measure an investment in a clean energy resource," Ratz said, in an email. "The goal of putting that resource on the grid is to push out the need for dirtier resources."

The good news: Even if you do nothing, your energy mix will get cleaner. Coal production has fallen to lows not seen since the 1980s, amid disruptions in coal and nuclear sectors that affect reliability and costs, while renewable electricity generation has doubled since 2008. So whether you like it or not, you'll be roped into the clean energy boom one way or another. 

 

Related News

View more

DP Energy Sells 325MW Solar Park to Medicine Hat

Saamis Solar Park advances Medicine Hat's renewable energy strategy, as DP Energy secures AUC approval for North America's largest urban solar, repurposing contaminated land; capacity phased from 325 MW toward an initial 75 MW.

 

Key Points

A 325 MW solar project in Medicine Hat, Alberta, repurposing contaminated land; phased to 75 MW under city ownership.

✅ City acquisition scales capacity to 75 MW in phased build

✅ AUC approval enables construction and grid integration

✅ Reuses phosphogypsum-impacted land near fertilizer plant

 

DP Energy, an Irish renewable energy developer, has finalized the sale of the Saamis Solar Park—a 325 megawatt (MW) solar project—to the City of Medicine Hat in Alberta, Canada. This transaction marks the development of North America's largest urban solar initiative, while mirroring other Canadian clean-energy deals such as Canadian Solar project sales that signal market depth.

Project Development and Approval

DP Energy secured development rights for the Saamis Solar Park in 2017 and obtained a development permit in 2021. In 2024, the Alberta Utilities Commission (AUC) granted approval for construction and operation, reflecting Alberta's solar growth trends in recent years, paving the way for the project's advancement.

Strategic Acquisition by Medicine Hat

The City of Medicine Hat's acquisition of the Saamis Solar Park aligns with its commitment to enhancing renewable energy infrastructure. Initially, the project was slated for a 325 MW capacity, which would significantly bolster the city's energy supply. However, the city has proposed scaling the project to a 75 MW capacity, focusing on a phased development approach, and doing so amid challenges with solar expansion in Alberta that influence siting and timing. This adjustment aims to align the project's scale with the city's current energy needs and strategic objectives.

Utilization of Contaminated Land

An innovative aspect of the Saamis Solar Park is its location on a 1,600-acre site previously affected by industrial activity. The land, near Medicine Hat's fertilizer plant, was previously compromised by phosphogypsum—a byproduct of fertilizer production. DP Energy's decision to develop the solar park on this site exemplifies a productive reuse of contaminated land, transforming it into a source of clean energy.

Benefits to Medicine Hat

The development of the Saamis Solar Park is poised to deliver multiple benefits to Medicine Hat:

  • Energy Supply Enhancement: The project will augment the city's energy grid, much like municipal solar projects that provide local power, providing a substantial portion of its electricity needs.

  • Economic Advantages: The city anticipates financial savings by reducing carbon tax liabilities, as lower-cost solar contracts have shown competitiveness, through the generation of renewable energy.

  • Environmental Impact: By investing in renewable energy, Medicine Hat aims to reduce its carbon footprint and contribute to global sustainability efforts.

DP Energy's Ongoing Commitment

Despite the sale, DP Energy maintains a strong presence in Canada, where Indigenous-led generation is expanding, with a diverse portfolio of renewable energy projects, including solar, onshore wind, storage, and offshore wind initiatives. The company continues to focus on sustainable development practices, striving to minimize environmental impact while maximizing energy production efficiency.

The transfer of the Saamis Solar Park to the City of Medicine Hat represents a significant milestone in renewable energy development. It showcases effective land reutilization, strategic urban planning, and a shared commitment to sustainable energy solutions, aligning with federal green electricity procurement that reinforces market demand. This project not only enhances the city's energy infrastructure but also sets a precedent for integrating large-scale renewable energy projects within urban environments.

 

Related News

View more

Residential electricity use -- and bills -- on the rise thanks to more working from home

Work From Home Energy Consumption is driving higher electricity bills as residential usage rises. Smart meter data, ISO-New-England trends, and COVID-19 telecommuting show stronger power demand and sensitivity to utility rates across regions.

 

Key Points

Higher household electricity use from telecommuting, shifting load to residences and raising utility bills.

✅ Smart meters show 5-22 percent residential usage increases.

✅ Commercial demand fell as home cooling and IT loads rose.

✅ Utility rates and AC use drive bill spikes during summer.

 

Don't be surprised if your electric bills are looking higher than usual, with a sizable increase in the amount of power that you have used.

Summer traditionally is a peak period for electricity usage because of folks' need to run fans and air-conditioners to cool their homes or run that pool pump. But the arrival of the coronavirus and people working from home is adding to amount of power people are using.

Under normal conditions, those who work in their employer's offices might not be cooling their homes as much during the middle of the day or using as much electricity for lights and running computers.

For many, that's changed.

Estimates on how much of an increase residential electric customers are seeing as result of working from home vary widely.

ISO-New England, the regional electric grid operator, has seen a 3 percent to 5 percent decrease in commercial and industrial power demand, even as the grid overseer issued pandemic warnings nationally. The expectation is that much of that decrease translates into a corresponding increase in residential electricity usage.

But other estimates put the increase in residential electricity usage much higher. A Washington state company that makes smart electric meters, Itron, estimates that American households are using 5 percent to 10 percent more electricity per month since March, when many people began working from home as part of an effort to prevent the spread of the coronavirus.

Another smart metering company, Cambridge, Mass.-based Sense, found that average home electricity usage increased 22 percent in April compared to the same period in 2019, a reflection of people using more electricity while they stayed home. Based on its analysis of data from 5,000 homes across 30 states, Sense officials said a typical customer's monthly electric bill increased by between $22 and $25, with a larger increase for consumers in states with higher electricity rates.

Connecticut-specfic data is harder to come by.

Officials with Orange-based United Illuminating declined to provide any customer usage data, though, like others in the power industry, they did acknowledge that residential customers are using more electricity. And the state's other large electric distribution utility, Eversource, was unable to provide any recent data on residential electric usage. The company did tell Connecticut utility regulators there was a 3 percent increase in residential power usage for the week of March 21 compared to the week before.

Over the same time period, Eversource officials saw a 3 percent decrease in power usage by commercial and industrial customers.

Separately, nuclear plant workers raised concerns about pandemic precautions at some facilities, reflecting operational strains.

Alan Behm of Cheshire said he normally uses 597 kilowatt hours of electricity during an average month. But in April of this year, the amount of electricity he used rose by nearly 51 percent.

With many offices closed, the expense of heating, cooking and lighting is being shifted from employer to employee, and some utilities such as Manitoba Hydro have pursued unpaid days off to trim costs during the pandemic. And one remote work expert believes some companies are recognizing the burden those added costs are placing on workers -- and are trying to do something about it.

Technology giant Google announced in late May that it was giving employees who work from home $1,000 allowances to cover equipment costs and other expenses associated with establishing a home office.

Moe Vela, chief transparency officer for the New York City-based computer software company TransparentBusiness, said the move by Google executives is a savvy one.

"Google is very smart to have figured this out," Vela said. "This is what employees want, especially millenials. People are so much happier to be working remotely, getting those two to three hours back per day that some people spend getting to and from work is so much more important than a stipend."

Vela predicted that even after a vaccine is found for the corona virus, one of the key worklife changes is likely to be a broader acceptance of telework and working from home.

Beyond the immediate shifts, more young Canadians would work in electricity if awareness improved, pointing to future talent pipelines.

"I think that's where we're headed," he said. "I think it will make an employer more attractive as they try to attract talent from around the world."

Vela said employers save an average of $11,000 per year for each employee they have working from home.

"It would be a brilliant move if a company were to share some of that amount with employees," he said. "I wouldn't do it if it's going to cause a company to not be there (in business) though."

The idea of a company sharing whatever savings it achieves by having employees work from home wasn't well received by many Connecticut residents who responded to questions posed via social media by Hearst Connecticut Media. More than 100 people responded and an overwhelming number of people spoke out against the idea.

"You are saving on gas and other travel related expenses, so the small increase in your electric bill shouldn't really be a concern," said Kathleen Bennett Charest of Wallingford.

Jim Krupp, also of Wallingford, said, "to suggest that the employers compensate the employees makes as much sense as suggesting that the employees should take a pay cut due to their reduced expenses for travel, day care, and eating lunch at work."

"Employers must still maintain their offices and incur all of the fixed expenses involved, including basic utilities, taxes and insurance," Krupp said. "The cost savings (for employers) that are realized are also offset by increased costs of creating and maintaining IT networks that allow employees to access their work sites from home and the costs of monitoring and managing the work force."

Kiki Nichols Nugent of Cheshire said she was against the idea of an employee trying to get their employer to pay for the increased electricity costs associated with working from home.

"I would not nickle and dime," Nugent said. "If companies are saving on electricity now, maybe employers will give better raises next year."

New Haven resident Chris Smith said he is "just happy to have a job where I am able to telecommute."

"When teleworking becomes more the norm, either now or in the future, we may see increased wages for teleworkers either for the lower cost to the employer or for the increase in productivity it brings," Smith said.

 

Related News

View more

Hydro Quebec to increase hydropower capacity to more than 37,000 MW in 2021

Hydro Quebec transmission expansion aims to move surplus hydroelectric capacity from record reservoirs to the US grid via new interties, increasing exports to New England and New York amid rising winter peak demand.

 

Key Points

A plan to add capacity and intertie links to export surplus hydro power from Quebec's reservoirs to the US grid.

✅ 245 MW added in 2021; portfolio reaches 37,012 MW

✅ Reservoirs at unprecedented levels; export potential high

✅ Lacks US transmission; working on new interties

 

Hydro Quebec plans to add an incremental 245 MW of hydro-electric generation capacity in 2021 to its expansive portfolio in the north of the province, while Quebec authorized nearly 1,000 MW for industrial projects across the region, bringing the total capacity to 37,012 MW, an official said Friday

Quebec`s highest peak demand of 39,240 MW occurred on January 22, 2014.

A little over 75% of Quebec`s population heat their homes with electricity, Sutherland said, aligning with Hydro Quebec's strategy to wean the province off fossil fuels over time.

The province-owned company produced 205.1 TWh of power in 2017 and its net exports were 34.4 TWh that year, while Ontario chose not to renew a power deal in a separate development.

Sutherland said Hydro Quebec`s reservoirs are currently at "unprecedented levels" and the company could export more of its electricity to New England and New York, but faces transmission constraints that limit its ability to do so.

Hydro Quebec is working with US transmission developers, electric distribution companies, independent system operators and state government agencies to expand that transmission capacity in order to delivery more power from its hydro system to the US, Sutherland said.

Separately, NB Power signed three deals to bring more Quebec electricity into the province, reflecting growing regional demand.

The last major intertie connection between Quebec and the US was completed close to 30 years ago. The roughly 2,000 MW capacity transmission line that connects into the Boston area was completed in the late 1990s, according to Hydro Quebec spokeswoman Lynn St-Laurent.

 

Related News

View more

Hydro-Québec puts global ambitions on hold as crisis weighs on demand

Hydro-Que9bec COVID-19 M&A Pause signals a halt to international expansion as falling electricity demand, weaker exports, and revenue pressure shift capital to the Quebec economy, prioritizing domestic investment, strategic plan revisions, and risk management.

 

Key Points

Hydro-Que9bec COVID-19 M&A Pause halts overseas deals, shifting investment to Quebec as demand, exports and revenue fall.

✅ International M&A on hold; capital reallocated to Quebec projects

✅ Lower electricity demand reduces exports and spot prices

✅ Strategic plan and 2020 guidance revised downward

 

COVID-19 is forcing Hydro-Québec to pull the plug on its global ambitions — for now, even as its electricity ambitions have reopened old wounds in Newfoundland and Labrador in recent years.

Quebec’s state-owned power generator and distributor has put international mergers and acquisitions on hold for the foreseeable future because of the COVID-19 crisis, chief financial officer Jean-Hugues Lafleur said Friday.

Former chief executive officer Éric Martel, who left last month, had made foreign expansion a key tenet of his growth strategy.

“We’re in revision mode” as pertains to acquisitions, Lafleur told reporters on a conference call, as the company pursues a long-term strategy to wean the province off fossil fuels at home as well. “I don’t see how Hydro-Québec could take $5 billion now and invest it in Chile because we have an investment opportunity there. Instead, the $5 billion will be invested here to support the Quebec economy. We’re going to make sure the Quebec economy recovers the right way before we go abroad.”

Lafleur spoke after Hydro-Québec reported a 14-per-cent drop in first-quarter profit and warned full-year results will fall short of expectations as COVID-19 weighs on power demand.

Net income in the three-month period ended March 31 was $1.53 billion, down from $1.77 billion a year ago, Hydro-Québec said in a statement. Revenue fell about six per cent to $4.37 billion.

“Due to the economic downturn resulting from the current crisis, we’re anticipating lower electricity sales in all of our markets,” Lafleur said. “Consequently, the financial outlook for 2020 set out in the strategic plan 2020–2024, which also reflects the province’s no-nuclear stance, will be revised downward.”

It’s still too early to determine the scope of the revision, the company said in its quarterly report. Hydro-Québec was targeting net income of between $2.8 billion and $3 billion in 2020, according to its strategic plan.

The first quarter was the utility’s last under Martel, who quit to take over at jetmaker Bombardier Inc. Quebec appointed former Énergir CEO Sophie Brochu to replace him, effective April 6.

First-quarter results “weren’t significantly affected” by the pandemic, Lafleur said on a conference call with reporters. Electricity sales generated $294 million less than a year ago due primarily to milder temperatures, he said.

Results will start to reflect COVID-19’s impact in the second quarter, though NB Power has signed three deals to bring more Quebec electricity into the province that could cushion some exports.

Electricity consumption in Quebec has fallen five per cent in the past two months, paced by an 11-per-cent plunge for commercial and institutional clients, and cities such as Ottawa saw a demand plunge during closures.

Industrial customers such as pulp and paper producers have also curbed power use, and it’s hard to see demand rebounding this year, Lafleur said.

“What we’ve lost since the start of the pandemic is not coming back,” he said.

Demand on export markets, meanwhile, has shrunk between six per cent and nine per cent since mid-March. The drop has been particularly steep in Ontario, reaching as much as 12 per cent, after the province chose not to renew its electricity deal with Quebec earlier this year, compared with declines of up to five per cent in New England and eight per cent in New York.

Spot prices in the U.S. have retreated in tandem, falling this week to as low as 1.5 U.S. cents per kilowatt-hour, Lafleur said. Hydro-Québec’s hedging strategy — which involves entering into fixed-price sales contracts about a year ahead of time — allowed the company to export power for an average of 4.9 U.S. cents per kilowatt-hour in the first quarter, compared with the 2.2 cents it would have otherwise made.

Investments will decline this year as construction activity proceeds at reduced speed, Lafleur said. Hydro-Québec was initially planning to invest about $4 billion in the province, he said, as it works to increase hydropower capacity to more than 37,000 MW across its fleet.

Physical distancing measures “are having an impact on productivity,” Lafleur said. “We can’t work the way we wanted, and project costs are going to be affected. Anytime we send workers north on a plane, we need to leave an empty seat beside them.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.