Boulder on track to become first smart grid city

By Associated Press


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
President Barack Obama's vision of a "smart" electrical grid that is key to America's energy future is becoming reality in Boulder, which aims to become the world's first smart grid city this year.

Xcel Energy, the nation's No. 1 retail provider of wind power, leads the $100 million effort in this university city of 100,000 in the Rockies foothills. By 2010, homeowners will monitor how much power they're consuming. Plug-in electric vehicles will feed power into the grid. Energy-saving appliances and thermostats will feed information to the network. And all of it will enable Xcel to distribute electricity when and where it's needed, saving millions of dollars and the need to build more power plants.

Other benefits: Lower carbon emissions, coordinating energy use with the availability of power sources such as wind and solar, and savings by avoiding power disruptions.

"This really is the only truly smart-grid city in the country," said Roy Palmer, Xcel's project executive for the program. "All the components have never been brought together at one time."

Minneapolis-based Xcel, Colorado's largest electric utility, has installed about 14,000 "smart" meters that provide information to the utility and to customers. Xcel and its contractors have strung more than 100 miles of cable over power lines for broadband transmission and hooked up a handful of homes to program and monitor energy use.

Full build-out of the system is expected by June, with most of the city's 45,000 meters capable of two-way communication and Internet access so customers can actively control how and when they use energy. Some households will be part of a test that eliminates meters altogether to concentrate on getting energy use information over the Internet.

Most of the system will be up and running by year's end, Palmer said.

Other partners in the venture are the city of Boulder, the University of Colorado, the Boulder-based National Institute of Standards and Technology and the nearby National Renewable Laboratory in Golden.

Xcel's use of plug-in electric hybrid vehicles to draw energy from the grid and contribute to it, turning them into "mobile storage devices," is a unique feature in Boulder, said Ralph Cavanaugh, energy program for the Natural Resources Defense Council and a member of a federal electricity advisory committee.

Boulder's project is persuading skeptics that smart-grid systems aren't "simply some kind of pie in the sky," Cavanaugh said.

Boulder County is converting three of its hybrid vehicles so they can deliver power into the system. The total conversion cost is $10,000 to $15,000, said Xcel spokesman Tom Henley.

"A lot of people around the world are looking at Boulder," said Brendan Herron, vice president of corporate development and strategy for Maryland-based Current Group, a provider of two-way, high-speed communication and another of Xcel's partners.

Herron, whose company works abroad, said interest in the project has come from as far as China.

Val Peterson knows firsthand about the global interest. Some of those world travelers have milled through her house.

Peterson and her husband, G.P. "Bud" Peterson, chancellor of the University of Colorado-Boulder, have turned the chancellor's residence into a showcase for the smart grid effort.

Peterson, a retired Spanish teacher, recently tapped on a laptop computer in a formal dining room to check settings for the home's thermostats, electricity being generated by solar panels on the roof, and the carbon dioxide emissions being avoided as a result.

"Today it says what we have done is equivalent to removing 17 cars off the road for the day. I love that," Peterson said.

The Petersons program an electric hybrid SUV provided by Xcel to draw power when system demand is low and when the energy source is likely to be wind. They have a backup lithium ion battery that can supply their house with several hours of power in an emergency. Energy consumption in the 7,000-square-foot house, which has public areas for university events, has dropped 30 percent.

University of Colorado behavioral scientists are working with Xcel Energy to gauge if people are willing to become more active energy consumers.

"There's a lot technology involved in what Xcel's doing," Bud Peterson said. "But if we're not able to change people's behavior, then all the technology in the world isn't going to help."

In his inaugural speech, Obama said a smart grid could save money, protect power sources from blackout or attack and deliver clean energy nationwide. The $819 billion economic stimulus bill approved by the U.S. House included up to $32 billion to upgrade the country's electric grid. The Senate is working on its own version.

Utilities, companies and communities nationwide are installing digital meters and forming partnerships to modernize a grid that has changed little over the last century. Austin, Texas, is designing its own citywide smart grid.

Xcel chose Boulder out of eight cities in Wisconsin, Minnesota and Colorado that wanted to participate. Boulder's geographic concentration, its size and a highly wired, environmentally conscious populace were factors in the decision.

Palmer said the project, about five years in the works, was pursued by Ray Gogel, Xcel vice president and chief information officer, and Dick Kelly, Xcel CEO, chairman and president. Xcel expects to cover at least 15 percent of the $100 million cost with its partners providing the rest in funding or through in-kind services.

"A lot of people are talking" about smart grids, said Peter Corsell, CEO of GridPoint Inc. of Arlington, Va., which provides the information technology and is working in both Boulder and Austin. "Xcel was the first utility to come out with a clearly defined, complete plan, integrated end to end."

Related News

Wind and Solar Double Global Share of Electricity in Five Years

Wind And Solar Energy Growth is reshaping the global power mix, accelerating grid decarbonization as coal declines; boosted by pandemic demand drops, renewables now supply near 10% of electricity, advancing climate targets toward net-zero trajectories.

 

Key Points

It is the rise in wind and solar's share of electricity, driving decarbonization and displacing coal globally.

✅ Share doubled in five years across 83% of global electricity

✅ Coal's share fell; renewables neared 10% in H1 2020

✅ Growth still insufficient for 1.5 C; needs ~13% coal cuts yearly

 

Wind and solar energy doubled its share of the global power mix over the last five years, with renewable power records underscoring the trend, moving the world closer to a path that would limit the worst effects of global warming.

The sources of renewable energy made up nearly 10% of power in most parts of the world in the first half of this year, according to analysis from U.K. environmental group Ember, while globally over 30% of electricity is renewable in broader assessments.

That decarbonization of the power grid was boosted this year as shutdowns to contain the coronavirus reduced demand overall, leaving renewables to pick up the slack.

Ember analyzed generation in 48 countries that represent 83% of global electricity. The data showed wind and solar power increased 14% in the first half of 2020 compared with the same period last year while global demand fell 3% because of the impact of the coronavirus.

At the same time that wind turbines and solar panels have proliferated, coal’s share of the mix has fallen around the world. In some, mainly western European countries, where renewables surpassed fossil fuels, coal has been all but eliminated from electricity generation.


China relied on the dirtiest fossil fuel for 68% of its power five years ago, and solar PV growth in China has accelerated since then. That share dipped to 62% this year and renewables made up 10% of all electricity generated.

Still, the growth of renewables may not be going fast enough for the world to hit its climate goals, even as the U.S. is projected to have one-fourth of electricity from renewables soon, and coal is still being burnt for power in many parts of the world.

Coal use needs to fall by about 79% by 2030 from last year’s levels - a fall of 13% every year throughout the decade to come, and in the U.S. renewable electricity surpassed coal in 2022, Ember said.

New installations of wind farms are set to hold more or less steady in the next five years, according to data from BloombergNEF on deployment trends. That will make it difficult to realize a sustained pace of doubling renewable power every five years.

“If your expectations are that we need to be on target for 1.5 degrees, clearly we’re not going fast enough,” said Dave Jones, an analyst at Ember. “We’re not on a trajectory where we’re reducing coal emissions fast enough.”

 

Related News

View more

Should California classify nuclear power as renewable?

California Nuclear Renewable Bill AB 2898 seeks to add nuclear to the Renewables Portfolio Standard, impacting Diablo Canyon, PG&E compliance, carbon-free targets, and potential license extensions while addressing climate goals and natural gas reliance.

 

Key Points

A bill to add nuclear to California's RPS, influencing Diablo Canyon, PG&E planning, and carbon-free climate targets.

✅ Reclassifies nuclear as renewable in California's RPS.

✅ Could influence Diablo Canyon license extension and ownership.

✅ Targets carbon-free goals while limiting natural gas reliance.

 

Although he admits it's a long shot, a member of the California Legislature from the district that includes the Diablo Canyon nuclear plant has introduced a bill that would add nuclear power to the state's list of renewable energy sources.

"I think that nuclear power is an important component of generating large-scale electricity that's good for the environment," said Jordan Cunningham, R-San Luis Obispo. "Without nuclear as part of the renewable portfolio, we're going to have tremendous difficulty meeting the state's climate goals without a significant cost increase on electricity ratepayers."

Established in 2002, California's Renewables Portfolio Standard spells out the power sources eligible to count toward the state's goals to wean itself of fossil fuels. The list includes solar, wind, biomass, geothermal, small hydroelectric facilities and even tidal currents. The standard has been updated, currently calling for 60 percent of California's electricity to come from renewables by 2030 and 100 percent from carbon-free sources by 2045, even as some analyses argue net-zero emissions may be difficult to achieve without nuclear power.

Nuclear power is not part of the portfolio standard and Diablo Canyon — the only remaining nuclear plant in California — is scheduled to stop producing electricity by 2025, even as some Southern California plant closures face postponement to maintain grid reliability.

Pacific Gas & Electric, the operators of Diablo Canyon, announced in 2016 an agreement with a collection of environmental and labor groups to shut down the plant, often framed as part of a just transition for workers and communities. PG&E said Diablo will become uneconomical to run due to changes in California's power grid — such as growth of renewable energy sources, increased energy efficiency measures and the migration of customers from traditional utilities to community choice energy programs.

But Cunningham thinks the passage of Assembly Bill 2898, which he introduced last week, — as innovators like Bill Gates' mini-reactor venture tout new designs — could give the plant literally a new lease on life.

"If PG&E were able to count the power produced (at Diablo) toward its renewable goals, it might — I'm not saying it will or would, but it might — cause them to reconsider applying to extend the operating license at Diablo," Cunningham said.

Passing the bill, supporters say, could also make Diablo Canyon attractive to an outside investor to purchase and then apply to the Nuclear Regulatory Commission for a license extension.

But nuclear power has long generated opposition in California and AB 2898 will face long odds in Sacramento, and similar efforts elsewhere have drawn opposition from power producers as well. The Legislature is dominated by Democrats, who have expressed more interest in further developing wind and solar energy projects than offering a lifeline to nuclear.

And if the bill managed to generate momentum, anti-nuclear groups will certainly be quick to mobilize, reflecting a national energy debate over Three Mile Island and whether to save struggling plants.

When told of Cunningham's bill, David Weisman, outreach coordinator for the Alliance for Nuclear Responsibility, said flatly, "Diablo Canyon has become a burdensome, costly nuclear white elephant."

Critics say nuclear power by definition cannot be considered renewable because it leaves behind waste in the form of spent nuclear fuel that then has to be stored, while supporters point to next-gen nuclear designs that aim to improve safety and costs. The federal government has not found a site to deposit the waste that has built up over decades from commercial nuclear power plants.

Even though Diablo Canyon is the only nuclear plant left in the Golden State, it accounts for 9 percent of California's power mix. Cunningham says if the plant closes, the state's reliance on natural gas — a fossil fuel — will increase, pointing to what happened when the San Onofre Nuclear Generating Station closed.

In 2011, the final full year operations for San Onofre, nuclear accounted for 18.2 percent of in-state generation and natural gas made up 45.4 percent. The following year, nuclear dropped to 9.3 percent and gas shot up to 61.1 percent of in-state generation.

"If we're going to get serious about being a national leader as California has been on dealing with climate change, I think nuclear is part of the answer," Cunningham said.

But judging from the response to an email from the Union-Tribune, PG&E isn't exactly embracing Cunningham's bill.

"We remain focused on safely and reliably operating Diablo Canyon Power Plant until the end of its current operating licenses and planning for a successful decommissioning," said Suzanne Hosn, a PG&E senior manager at Diablo Canyon. "The Assemblyman's proposal does not change any of PG&E's plans for the plant."

Cunningham concedes AB 2898 is "a Hail Mary pass" but said "it's an important conversation that needs to be had."

The second-term assemblyman introduced a similar measure late last year that sought to have the Legislature bring the question before voters as an amendment to the state constitution. But the legislation, which would require a two-thirds majority vote in the Assembly and the Senate, is still waiting for a committee assignment.

AB 2898, on the other hand, requires a simple majority to move through the Legislature. Cunningham said he hopes the bill will receive a committee assignment by the end of next month.
 

 

Related News

View more

Tesla Electric is preparing to expand in the UK

Tesla Electric UK Expansion signals retail energy entry, leveraging Powerwall VPPs for grid services, dynamic pricing, and energy trading, building on Texas success and Octopus Energy ties to buy and sell electricity automatically.

 

Key Points

Tesla's plan to launch Tesla Electric in the UK, using Powerwall VPPs to retail energy, trade power, and hedge peaks.

✅ Retail energy model built on Powerwall VPP aggregation

✅ Automated buy-sell arbitrage with dynamic pricing

✅ Leverages prior UK approval and Octopus Energy ties

 

According to a new job posting, Tesla Electric, Tesla’s new electric utility division, is preparing to expand in the United Kingdom as regions such as California grid planners look to electric vehicles for stability to manage demand.

Late last year, after gaining experience through its virtual power plants (VPPs), including response during California blackouts that pressured the grid, Tesla took things a step further with the launch of “Tesla Electric.”

Instead of reacting to specific “events” and providing services to your local electric utilities through demand response programs, as Tesla Powerwall owners have done in VPPs in California, Tesla Electric is actively and automatically buying and selling electricity for Tesla Powerwall owners – providing a buffer against peak prices.

The company is essentially becoming an energy retailer, aligning with a major future for its energy business envisioned by leadership.

Tesla Electric is currently only available to Powerwall owners in Texas, but the company has plans to expand its products through this new division.

We recently reported on Tesla Electric customers in Texas making as much as $150 a day selling electricity back to the grid through the program.

Now Tesla is looking to expand Tesla Electric to the UK, where grid capacity for rising EV demand remains a key consideration.

The company has listed a new job posting for a role called “Head of Operations, Tesla Electric – Retail Energy.”

This has been in the works for a while now. Tesla used to have a partnership with Octopus Energy in the UK for special electricity rates for its owners, during a period when UK EV inquiries surged amid a fuel supply crisis, but it seemed to be a stepping stone before it would itself become an energy provider in the market.

In 2020, Tesla was officially approved as an electricity retailer in the UK. Now it looks like Tesla is going to use this approval with the launch of Tesla Electric.
 

 

Related News

View more

German official says nuclear would do little to solve gas issue

Germany Nuclear Phase-Out drives policy amid gas supply risks, Nord Stream 1 shutdown fears, Russia dependency, and energy security planning, as Robert Habeck rejects extending reactors, favoring coal backup, storage, and EU diversification strategies.

 

Key Points

Ending Germany's last reactors by year end despite gas risks, prioritizing storage, coal backup, and EU diversification.

✅ Reactors' legal certification expires at year end

✅ Minimal gas savings from extending nuclear capacity

✅ Nord Stream 1 cuts amplify energy security risks

 

Germany’s vice-chancellor has defended the government’s commitment to ending the use of nuclear power at the end of this year, amid fears that Russia may halt natural gas supplies entirely.

Vice-Chancellor Robert Habeck, who is also the economy and climate minister and is responsible for energy, argued that keeping the few remaining reactors running would do little to address the problems caused by a possible natural gas shortfall.

“Nuclear power doesn’t help us there at all,” Habeck, said at a news conference in Vienna on Tuesday. “We have a heating problem or an industry problem, but not an electricity problem – at least not generally throughout the country.”

The main gas pipeline from Russia to Germany shut down for annual maintenance on Monday, as Berlin grew concerned that Moscow may not resume the flow of gas as scheduled.

The Nord Stream 1 pipeline, Germany’s main source of Russian gas, is scheduled to be out of action until July 21 for routine work that the operator says includes “testing of mechanical elements and automation systems”.

But German officials are suspicious of Russia’s intentions, particularly after Russia’s Gazprom last month reduced the gas flow through Nord Stream 1 by 60 percent.

Gazprom cited technical problems involving a gas turbine powering a compressor station that partner Siemens Energy sent to Canada for overhaul.

Germany’s main opposition party has called repeatedly to extend nuclear power by keeping the country’s last three nuclear reactors online after the end of December. There is some sympathy for that position in the ranks of the pro-business Free Democrats, the smallest party in Chancellor Olaf Scholz’s governing coalition.

In this year’s first quarter, nuclear energy accounted for 6 percent of Germany’s electricity generation and natural gas for 13 percent, both significantly lower than a year earlier. Germany has been getting about 35 percent of its gas from Russia.

Habeck said the legal certification for the remaining reactors expires at the end of the year and they would have to be treated thereafter as effectively new nuclear plants, complete with safety considerations and the likely “very small advantage” in terms of saving gas would not outweigh the complications.

Fuel for the reactors also would have to be procured and Scholz has said that the fuel rods are generally imported from Russia.

Opposition politicians have argued that Habeck’s environmentalist Green party, which has long strongly supported the nuclear phase-out, is opposing keeping reactors online for ideological reasons, even as some float a U-turn on the nuclear phaseout in response to the energy crisis.

Reducing dependency on Russia
Germany and the rest of Europe are scrambling to fill the gas storage in time for the northern hemisphere winter, even as Europe is losing nuclear power at a critical moment and reduce their dependence on Russian energy imports.

Prior to the Russian invasion of Ukraine, Berlin had said it considered nuclear energy dangerous and in January objected to European Union proposals that would let the technology remain part of the bloc’s plans for a climate-friendly future that includes a nuclear option for climate change pathway.

“We consider nuclear technology to be dangerous,” government spokesman Steffen Hebestreit told reporters in Berlin, noting that the question of what to do with radioactive waste that will last for thousands of generations remains unresolved.

While neighbouring France aimed to modernise existing reactors, Germany stayed on course to switch off its remaining three nuclear power plants at the end of this year and phase out coal by 2030.

Last month, Germany’s economy minister said the country would limit the use of natural gas for electricity production and make a temporary recourse to coal generation to conserve gas.

“It’s bitter but indispensable for reducing gas consumption,” Robert Habeck said.

 

Related News

View more

NB Power signs three deals to bring more Quebec electricity into the province

NB Power and Hydro-Québec Electricity Agreements expand clean hydroelectric exports, support Mactaquac dam refurbishment, add grid interconnections, and advance decarbonization, climate goals, reliability, and transmission capacity across Atlantic Canada and U.S. markets through 2040.

 

Key Points

Deals for hydro exports, Mactaquac upgrades, and new interconnections to improve reliability and cut emissions.

✅ 47 TWh to NB by 2040 over existing transmission lines

✅ HQ expertise to address Mactaquac concrete swelling

✅ Talks on new interconnections for Atlantic and U.S. exports

 

NB Power and Hydro-Quebec have signed three deals that will see Quebec sell more electricity to New Brunswick and provide help with the refurbishment of the Mactaquac hydroelectric generating station.

Under the first agreement, Hydro-Quebec will export 47 terawatt hours of electricity to New Brunswick between now and 2040 over existing power lines — expanding on an agreement in place since 2012 and on related regional agreements such as the Churchill Falls deal in Newfoundland and Labrador.

The second deal will see Hydro-Quebec share expertise for part of the refurbishment of the Mactaquac dam to extend the useful life of the generating station until at least 2068, when the 670 megawatt facility on the St. John River will be 100 years old.

Since the 1980s, concrete portions of the facility have been affected by a chemical reaction that causes the concrete to swell and crack.

Hydro-Quebec has been dealing with the same problem, and has developed expertise in addressing the issue.

“This is why we have signed a technical collaboration agreement between Hydro-Quebec and us for part of the refurbishment of the Mactaquac generating station,” NB Power president Gaetan Thomas said Friday.

Eric Martel, CEO of Hydro-Quebec, said hydroelectric plants provide long-term clean power that’s important in the fight against climate change as the province has ruled out nuclear power for now.

“We understand how important it is to ensure the long term sustainability of these facilities and we are happy to share the expertise that Hydro-Quebec has acquired over the years,” Martel said.

The refurbishment of the Mactaquac generating station is expected to cost between $2.9 billion and $3.5 billion. Once the work begins, each of the facility’s six generators will have to be taken offline for months at a time, and Thomas said that’s where the increased power from Quebec, supported by Hydro-Quebec's capacity expansion in recent years, will come into use.

He expects the power could cost about $100 million per year but will be much cheaper than other sources.

The third agreement calls for talks to begin for the construction of additional power connections between Quebec and New Brunswick to increase exports to Atlantic Canada and the United States, where transmission constraints have limited incremental deliveries in recent years.

“Building new interconnections and allowing for increased power transfer between our systems could be mutually beneficial, even as historic tensions in Newfoundland and Labrador linger. More than ever, we are looking to the future,” Martel said.

“Partnering will permit us to seize new business opportunities together and pool our effort to support de-carbonization, including Hydro-Quebec's non-fossil strategy that is now underway, and fight against climate change, both here and in our neighbourhood market,” he said. 

 

Related News

View more

Substation Maintenance Training

Substation Maintenance Training delivers live online instruction on testing switchgear, circuit breakers, transformers, protective relays, batteries, and SCADA systems, covering safety procedures, condition assessment, predictive maintenance, and compliance for utility substations.

 

Key Points

A live online course on testing and maintaining substation switchgear, breakers, transformers, relays, and batteries.

✅ Live instructor-led, 12-hour web-based training

✅ Covers testing: insulation resistance, contact resistance, TLI

✅ Includes 7 days of post-course email mentoring

 

Our Substation Maintenance Training course is a 12-Hour Live online instruction-led course that will cover the maintenance and testing requirements for common substation facilities, and complements VFD drive training for professionals managing motor control systems.

Electrical Transformer Maintenance Training

Substation Maintenance Training

Request a Free Training Quotation

Electrical Substation maintenance is a key component of any substation owner's electrical maintenance program. It has been well documented that failures in key procedures such as racking mechanisms, meters, relays and busses are among the most common source of unplanned outages. Electrical transmission, distribution and switching substations, as seen in BC Hydro's Site C transmission line work milestone, generally have switching, protection and control equipment and one or more transformers.Our electrical substation maintenance course focuses on maintenance and testing of switchgear, circuit breakers, batteries and protective relays.

This Substation Maintenance Training course will cover the maintenance and testing requirements for common substation devices, including power transformers, oil, air and vacuum circuit breakers, switchgear, ground grid systems aligned with NEC 250 grounding and bonding guidance, batteries, chargers and insulating liquids. This course focuses on what to do, when to do it and how to interpret the results from testing and maintenance. This Substation Maintenance course will deal with all of these important issues.

You Can Access The Live Online Training Through Our Web-Based Platform From Your Own Computer. You Can See And Hear The Instructor And See His Screen Live.

You Can Interact And Ask Questions, similar to our motor testing training sessions delivered online. The Cost Of The Training Also Includes 7 Days Of Email Mentoring With The Instructor.

 

LEARNING OBJECTIVES

  • Substation Types, Applications, Components And lightning protection systems safety procedures
  • Maintenance And Testing Methods For Medium-Voltage Circuit Breakers
  • How To Perform Insulation Resistance, Contact Resistance On Air, Oil And Vacuum Breakers, And Tank Loss Index On Oil Circuit Breaker And Vacuum Bottle Integrity Tests On Vacuum Breaker
  • Switchgear Arrangement, Torque Requirements, Insulation Systems, grounding guidelines And Maintenance Intervals
  • How To Perform Switchgear Inspection And Maintenance

 

WHO SHOULD ATTEND

This course is designed for engineering project managers, engineers, and technicians from utilities who have built or are considering building or retrofitting substations or distribution systems with SCADA and substation integration and automation equipment, and for teams focused on electrical storm safety in the field.

Complete Course Details Here:

https://electricityforum.com/electrical-training/substation-maintenance-training

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified