Think Ontario if you are thinking green

By Green Energy News


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Canada expects to be pulling out of its recession by the middle of the year. Lending actually rose in December. Credit, for the most part, is flowing normally.

The reason? Canada has the wisdom to properly regulate its banks. Banks there have plenty of cash on hand to lend to creditworthy consumers and businesses. TheyÂ’ll survive the global financial mayhem.

The recession north of the US border is expected to be painful, but brief, even shorter than that of the early 1990s. So short, in fact, its time to start thinking ahead, thinking about growth and thinking about renewable energy and electric cars.

The Ontario Power Authority (OPA), the regulatory agency responsible for ensuring a reliable, sustainable supply of electricity for Ontario, has just awarded not one, or two, or three, four or five, but six long-term contracts for power from wind energy projects. The contracts will lead to the construction of 500 megawatts of wind capacity and help Ontario in its goal to eliminate power generated from coal-fired power plants by 2014.

The wind farms will make jobs too. OPA expects 2200 direct and indirect jobs to be created. The direct jobs are those in the construction, management and maintenance of the wind farms. Indirect jobs will be in the manufacturing of building materials and services such as engineering design, legal, accounting and real estate.

Aside from the availability of clean power for Ontarians, landowners who host wind turbines are expected to receive about $3 million each year in lease payments. Municipalities will receive about $1 million per year in tax revenues.

Together the projects will cost about $1.32 billion. All of the projects are expected to be complete by 2012 and the power contracts are for 20 years.

Related News

France's nuclear power stations to limit energy output due to high river temperatures

France Nuclear Heatwave Output Restrictions signal reduced reactor capacity along the Rhone River, as EDF curbs output to meet cooling-water rules, balance the grid, integrate solar peaks, and limit impacts on power prices.

 

Key Points

EDF limits reactor output during heat to protect rivers and keep the grid stable under cooling-water rules.

✅ Cuts likely at midday/weekends when solar peaks

✅ Bugey, Saint Alban maintain minimum grid output

✅ France net exporter; price impact expected small

 

The high temperature warning has come early this year but will affect fewer nuclear power plants, amid a broader France-Germany nuclear dispute over atomic power policy that shapes regional energy flows.

High temperatures could halve nuclear power production at plants along France's Rhone River this week, as European power hits records during extreme heat. 

Output restrictions are expected at two nuclear plants in eastern France due to high temperature forecasts, nuclear operator EDF said, which may limit energy output during heatwaves. It comes several days ahead of a similar warning that was made last year but will affect fewer plants.

The hot weather is likely to halve the available power supply from the 3.6 GW Bugey plant from 13 July and the 2.6 GW Saint Alban plant from 16 July, the operator said.

However, production will be at least 1.8 GW at Bugey and 1.3 GW at Saint Alban to meet grid requirements, and may change according to grid needs, the operator said.

Kpler analyst Emeric de Vigan said the restrictions were likely to have little effect on output in practice. Cuts are likely only at the weekend or midday when solar output was at its peak so the impact on power prices would be slim.

During recent lockdowns, power demand held firm in Europe, offering context for current price dynamics.

He said the situation would need monitoring in the coming weeks, however, noting it was unusually early in the summer for such restrictions to be imposed.

Water temperatures at the Bugey plant already eclipsed the initial threshold for restrictions on 9 July, underscoring France's outage risks under heat-driven constraints. They are currently forecast to peak next week and then drop again, Refinitiv data showed.

"France is currently net exporting large amounts of power – single nuclear units' supply restrictions will not have the same effect as last year," Refinitiv analyst Nathalie Gerl said.

The Garonne River in southern France has the highest potential for critical levels of warming, but its Golfech plant is currently offline for maintenance until mid-August, the data showed, highlighting how Europe is losing nuclear power during critical periods.

"(The restrictions were) to be expected and it will probably occur more often," Greenpeace campaigner Roger Spautz said.

"The authorities must stick to existing regulations for water discharges. Otherwise, the ecosystems will be even more affected," he added.

 

Related News

View more

Melting Glass Experiment Surprises Scientists by Defying a Law of Electricity

Electric Field-Induced Glass Softening reveals a Joule heating anomaly in silicate glass, where anode-side nanoscale alkali depletion drives ionic conduction, localized thermal runaway, melting, and evaporation, challenging homogeneity assumptions and refining materials processing models.

 

Key Points

An effect where electric fields lower glass softening temperature via nanoscale ionic migration and structural change.

✅ Anode-side alkali depletion creates extreme, localized heating

✅ Thermal runaway melts glass near the anode despite uniform bulk

✅ Findings refine Joule heating models and enable new glass processing

 

A team of scientists working with electrical currents and silicate glass have been left gobsmacked after the glass appeared to defy a basic physical law, in a field that also explores electricity-from-air devices for novel energy harvesting.

If you pass an electrical current through a material, the way that current generates heat can be described by Joule's first law. It's been observed time and time again, with the temperature always evenly distributed when the material is homogeneous (or uniform).

But not in this recent experiment. A section - and only a section - of silicate glass became so hot that it melted, and even evaporated. Moreover, it did so at a much lower temperature than the boiling point of the material.

The boiling point of pure silicate glass is 2,230 degrees Celsius (4,046 degrees Fahrenheit). The hottest temperature the researchers recorded in a homogeneous piece of silicate glass during the experiment was 1,868.7 degrees Celsius.

Say whaaaat.

"The calculations did not add up to explain what we were seeing as simply standard Joule heating," said engineer and materials scientist Himanshu Jain of Lehigh University.

"Even under very moderate conditions, we observed fumes of glass that would require thousands of degrees higher temperature than Joule's law could predict!"

Jain and his colleagues from materials science company Corning Incorporated were investigating a phenomenon they had described in a previous paper. In 2015, they reported that an electric field could reduce the temperature at which glass softens, by as much as a few hundred degrees, a line of inquiry that parallels work on low-cost heat-to-electricity materials in energy research. They called this "electric field-induced softening."

 

It was certainly a peculiar phenomenon, so they set up another experiment. They put pieces of glass in a furnace, and applied 100 to 200 volts in the form of both alternating and direct currents.

Next, a thin wisp of vapour emanated from the spot where the anode conveying the current contacted the glass.

"In our experiments, the glass became more than a thousand degrees Celsius hotter near the positive side than in the rest of the glass, which was very surprising considering that the glass was totally homogeneous to begin with," Jain said.

This seems to fly in the face of Joule's first law, so the team investigated more closely - and found that the glass wasn't remaining as homogeneous as it started out. The electric field changed the chemistry and the structure of the glass on nanoscale, in just a small section close to the anode.

This region heats faster than the rest of the glass, to the point of becoming a thermal runaway - where an increase in temperature further increases temperature in a blistering feedback loop.

As it turned out, that spot of structural change and dramatic heat resulted in a small area of glass reaching melting point while the rest of the material remained solid.

"Unlike electronically conducting metals and semiconductors, with time the heating of ionically conducting glass becomes extremely inhomogeneous with the formation of a nanoscale alkali-depletion region, such that the glass melts near the anode, even evaporates, while remaining solid elsewhere," the researchers wrote in their paper.

In other words, the material wasn't homogeneous any more, which means the glass heating experiment doesn't exactly change how we apply Joule's first law.

But it's an exciting result, since until now we didn't know a material could actually lose its homogeneity with the application of an electrical current, with possible implications for thin-film heat harvesters in electronics. (The thing is, no one had tried electrically heating glass to these extreme temperatures before.)

So the physical laws of the Universe are still okay, as a piece of glass hasn't broken them. But Joule's first law may need a bit of tweaking to take this effect into account, a reminder that unconventional energy concepts like nighttime solar cells also challenge our intuitions.

And, of course, it's another piece of understanding that could help us in other ways too, including advances in thermoelectric materials that turn waste heat into electricity.

"Besides demonstrating the need to qualify Joule's law," Jain said, "the results are critical to developing new technology for the fabrication and manufacturing of glass and ceramic materials."

The research has been published in Scientific Reports.

 

Related News

View more

IAEA reactor simulators get more use during Covid-19 lockdown

IAEA Nuclear Reactor Simulators enable virtual nuclear power plant training on IPWR/PWR systems, load-following operations, baseload dynamics, and turbine coupling, supporting advanced reactor education, flexible grid integration, and low-carbon electricity skills development during remote learning.

 

Key Points

IAEA Nuclear Reactor Simulators are tools for training on reactor operations, safety, and flexible power management.

✅ Simulates IPWR/PWR systems with real-time parameter visualization.

✅ Practices load-following, baseload, and grid flexibility scenarios.

✅ Supports remote training on safety, controls, and turbine coupling.

 

Students and professionals in the nuclear field are making use of learning opportunities during lockdown made necessary by the Covid-19 pandemic, drawing on IAEA low-carbon electricity lessons for the future.

Requests to use the International Atomic Energy Agency’s (IAEA’s) basic principle nuclear reactor simulators have risen sharply in recent weeks, IAEA said on 1 May, as India takes steps to get nuclear back on track. New users will have the opportunity to learn more about operating them.

“This suite of nuclear power plant simulators is part of the IAEA education and training programmes on technology development of advanced reactors worldwide. [It] can be accessed upon request by interested parties from around the world,” said Stefano Monti, head of the IAEA’s Nuclear Power Technology Development Section.

Simulators include several features to help users understand fundamental concepts behind the behaviour of nuclear plants and their reactors. They also provide an overview of how various plant systems and components work to power turbines and produce low-carbon electricity, while illustrating roles beyond electricity as well.

In the integral pressurised water reactor (IPWR) simulator, for instance, a type of advanced nuclear power design, users can navigate through several screens, each containing information allowing them to adjust certain variables. One provides a summary of reactor parameters such as primary pressure, flow and temperature. Another view lays out the status of the reactor core.

The “Systems” screen provides a visual overview of how the plant’s main systems, including the reactor and turbines, work together. On the “Controls” screen, users can adjust values which affect reactor performance and power output.

This simulator provides insight into how the IPWR works, and also allows users to see how the changes they make to plant variables alter the plant’s operation. Operators can also perform manoeuvres similar to those that would take place in the course of real plant operations e.g. in load following mode.

“Currently, most nuclear plants operate in ‘baseload’ mode, continually generating electricity at their maximum capacity. However, there is a trend of countries, aligned with green industrial revolution strategies, moving toward hybrid energy systems which incorporate nuclear together with a diverse mix of renewable energy sources. A greater need for flexible operations is emerging, and many advanced power plants offer standard features for load following,” said Gerardo Martinez-Guridi, an IAEA nuclear engineer who specialises in water-cooled reactor technology.

Prospective nuclear engineers need to understand the dynamics of the consequences of reducing a reactor’s power output, for example, especially in the context of next-generation nuclear systems and emerging grids, and simulators can help students visualise these processes, he noted.

“Many reactor variables change when the power output is adjusted, and it is useful to see how this occurs in real-time,” said Chirayu Batra, an IAEA nuclear engineer, who will lead the webinar on 12 May.

“Users will know that the operation is complete once the various parameters have stabilised at their new values.”

Observing and comparing the parameter changes helps users know what to expect during a real power manoeuvre, he added.

 

Related News

View more

PG&E keeps nearly 60,000 Northern California customers in the dark to reduce wildfire risk

PG&E Public Safety Power Shutoff reduces wildfire risk during extreme winds, triggering de-energization across the North Bay and Sierra Foothills under red flag warnings, with safety inspections and staged restoration to improve grid resilience.

 

Key Points

A utility protocol to de-energize lines during extreme fire weather, reducing ignition risks and improving grid safety.

✅ Triggered by red flag warnings, humidity, wind, terrain

✅ Temporary de-energization of transmission and distribution lines

✅ Inspections precede phased restoration to minimize wildfire risk

 

PG&E purposefully shut off electricity to nearly 60,000 Northern California customers Sunday night, aiming to mitigate wildfire risks from power lines during extreme winds.

Pacific Gas and Electric planned to restore power to 70 percent of affected customers in the North Bay and Sierra Foothills late Monday night. As crews inspect lines for safety by helicopter, vehicles and on foot, the remainder will have power sometime Tuesday.

While it was the first time the company shut off power for public safety, PG&E announced its criteria and procedures for such an event in June, said spokesperson Paul Doherty. After wildfires devastated Northern California's wine country last October, he added, PG&E developed its community wildfire safety program division to make power grids and communities more resilient, and prepares for winter storm season through enhanced local response. 

Two sagging PG&E power lines caused one of those wildfires during heavy winds, killing four people and injuring a firefighter, the California Department of Forestry and Fire Protection determined earlier this month. Trees or tree branches hitting PG&E power lines started another four wildfires in October 2017. Altogether, the power company has been blamed for igniting 13 wildfires last year.

"We're adapting our electric system our operating practices to improve safety and reliability," Doherty said of the safety program. "That's really the bottom line for us."

Turning off power to so many customers was a "last resort given the extreme fire danger conditions these communities are experiencing," Pat Hogan, senior vice president of electric operations, said in a statement. Conditions that led the company to shut off power included the National Weather Service's red flag fire warnings, humidity levels, sustained winds, temperature, dry fuel and local terrain, Doherty said, amid possible rolling blackouts during grid strain.

The company de-energized more than 78 miles of transmission lines and more than 2,150 miles of distribution power lines Sunday night. Many schools in the area were closed Monday because of the planned power outage, highlighting unequal access to electricity across communities.

Late Saturday and early Sunday, PG&E warned 97,000 customers in 12 counties that the shut off might go into effect. Through automated calls, texts and emails, the company encouraged customers to have drinking water, canned food, flashlights, prescriptions and baby supplies on hand.

Power was also turned off in Southern California on Monday.

San Diego Gas & Electric turned off service to about 360 customers near Cleveland National Forest, where multiple fires have scorched large swaths of land in recent years.

SDG&E has pre-emptively shut off power to customers in the past, most recently in December when 14,000 customers went without power.

Southern California Edison, the primary electric provider across Southern California — including Los Angeles — has a similar power shutoff program. As of Monday night, SCE had yet to turn off power in any of its service areas, a spokesperson told USA TODAY.

 

Related News

View more

FortisAlberta Takes Necessary Precautions to Provide Electricity Service for Alberta

FortisAlberta COVID-19 response delivers safe electricity distribution across Alberta, with remote monitoring, 24/7 support, outage alerts, dispersed crews, and business continuity measures to sustain essential services for customers and communities.

 

Key Points

Plan ensuring reliable electricity in Alberta through 24/7 support, remote monitoring, outage alerts, and dispersed crews.

✅ 24/7 customer support via 310-WIRE and mobile app

✅ Remote monitoring and rapid outage restoration

✅ Dispersed crews in 50 communities for faster response

 

As the COVID-19 pandemic continues to evolve in Alberta (and around the world), FortisAlberta is taking the necessary actions and precautions informed by utility disaster planning to protect the health and well-being of its employees and to provide electricity service to its customers. FortisAlberta serves more than half a million customers with the electricity they depend on to take care of their families and community members throughout our province.

"We recognize these are challenging times as while most Albertans are asked to stay home others continue to work in the community to provide essential services, including utility workers in Ontario demonstrating support efforts. As your electricity distribution provider, please be assured you can count on us to do what we do best – provide our customers with safe and reliable electricity service wherever and whenever they need it," says Michael Mosher, FortisAlberta President and CEO.

FortisAlberta is proud to be a part of the communities it serves and commits to keeping the lights on for its customers. The company is providing a full range of services for its customers and has instilled best practices within critical parts of its business. The company's control centre continues to remotely monitor, control, and restore, where possible, the delivery of power across the entire province, including during events such as an Alberta grid alert that stress the system. Early in March, FortisAlberta implemented its business continuity plan and the company remains fully accessible to customers 24/7 by phone at 310-WIRE (9473) or through its mobile app where customers can report outages online or view details of an outage. Customers can also sign up for outage alerts to their mobile phone and/or email address to let them know if an outage does occur.

FortisAlberta's power line employees are geographically dispersed across 50 different communities so they can quickly address any issues that may arise. The company has implemented work from home measures and isolation best practices, and is planning for potential on-site lockdowns where necessary to ensure no disruption to customers.

FortisAlberta will continue to remain in close communication with its stakeholders to provide updates to customers and with industry associations to share guidance specific to the electricity sector, including insights on the evolving U.S. grid response to COVID-19 from peer utilities. FortisAlberta will also continue to invest in and empower its communities by contributing to organizations that offer programs and services aligned with the greatest needs in the communities it serves.

With the Alberta Government's recent announcement to provide relief to eligible Albertans by deferring electricity and gas charges for up to 90 days, similar to some B.C. relief measures being implemented, FortisAlberta is committed to working with stakeholders and retail partners to ensure this option is available to customers quickly and efficiently, and to learn from initiatives like the Hydro One relief fund that support customers.

 

Related News

View more

Ontario Provides Stable Electricity Pricing for Industrial and Commercial Companies

Ontario ICI Electricity Pricing Freeze helps Industrial Conservation Initiative (ICI) participants by stabilizing Global Adjustment charges, suspending peak hours curtailment, and reducing COVID-19-related electricity cost volatility to support large employers returning operations to full capacity.

 

Key Points

A two-year policy stabilizing GA costs and pausing peak-hour cuts to aid industrial and commercial recovery.

✅ GA cost share frozen for two years

✅ No peak-hour curtailment obligations

✅ Supports industrial and commercial restart

 

The Ontario government is helping large industrial and commercial companies return to full levels of operation without the fear of electricity costs spiking by providing more stable electricity pricing for two years. Effective immediately, companies that participate in the Industrial Conservation Initiative (ICI) will not be required to reduce their electricity usage during peak hours or shift some load to ultra-low overnight pricing where applicable, as their proportion of Global Adjustment (GA) charges for these companies will be frozen.

"Ontario's industrial and commercial electricity consumers continue to experience unprecedented economic challenges during COVID-19, with electricity relief for households and small businesses introduced to help," said Greg Rickford, Minister of Energy, Northern Development and Mines. "Today's announcement will allow large industrial employers to focus on getting their operations up and running and employees back to work, instead of adjusting operations in response to peak electricity demand hours."

Due to COVID-19, electricity consumption in Ontario has been below average as fall in demand as people stayed home across the province, and the province is forecast to have a reliable supply of electricity, supported by the system operator's staffing contingency plans during the pandemic, to accommodate increased usage. Peak hours generally occur during the summer when the weather is hot and electricity demand from cooling systems is high.

"Today's action will reduce the burden of anticipating and responding to peak hours for more than 1,300 ICI participants with 2,000 primarily industrial facilities in Ontario," said Bill Walker, Associate Minister of Energy. "Now these large employers can focus on getting their operations back up and running at full tilt and explore new energy-efficiency programs to manage costs."

The government previously announced it was providing temporary relief for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan (RPP) by deferring a portion of GA charges for April, May and June 2020 and by extending off-peak rates for many customers, as well as a disconnect moratorium extension for residential electricity users.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified