Renewable energy technology stores the wind underground

NEW YORK, NEW YORK - One problem perhaps more than any other has proven a drag on the long-term prospects for wind power: how do you turn on the lights when the wind isn't blowing?

A New Jersey company said it has joined with Michael Nakhamkin, one of the top thinkers in energy storage, to develop new ways to trap wind-generated power in underground reservoirs.

Mr. Nakhamkin has helped develop technology to pull excess energy off the power grid – usually at night when usage has waned – to run compressors that pump air into sealed, underground caverns that once held oil, salt or natural gas.

During periods of higher demand, the air is released and heated to run air expansion turbines. The heating process uses about 100 megawatts of power from natural gas and 200 megawatts of power from the compressed air.

The announcement comes just as a drilling boom for natural gas heats up nationwide. Natural gas has supporters in both the private sector and in Washington because it releases fewer of the greenhouse gases that can lead to global warming and because it has been found domestically in massive quantities.

While this still involves fossil fuels, Mr. Nakhamkin said emissions, compared with traditional turbine systems, are far lower.

“This technology significantly reduces fuel oil and natural gas consumption,” he said.

In urban areas where underground storage isn't feasible, or where bedrock makes drilling expensive, ground-level pipes can be used to store the air, though capacity is diminished.

“We really think this is a game-changer for the renewables industry,” said Roy Daniel, chief executive officer of Energy Storage and Power LLC, a joint venture between PSEG Energy Holdings and Mr. Nakhamkin.

PSEG Energy Holdings is investing about $20-million (US) in the project, and plans to market and license the technology.

“We're pretty bullish on the market right now,” Mr. Daniel said.

Compressed air in a cave about a third the size of the New York Giants' football stadium – roughly 21,500,000 cubic square feet – would be enough to power a 300-megawatt turbine for 8 hours, Mr. Daniel said.

That load could power about 200,000 homes – a small city – for about 8 hours, said John A. Stratton, an electrical power systems professor at the Rochester Institute of Technology.

“That's a healthy load,” he said. “It's going to get us through the peak of the day by using excess energy at night.”

While the process isn't totally efficient – energy is lost while being transferred – it “makes wind a very different kind of energy than it is today,” Mr. Stratton said.

Related News

powerlines

U.S. Grid overseer issues warning on Coronavirus

WASHINGTON - The top U.S. grid security monitor urged power utilities to prepare for the new coronavirus in a rare alert yesterday, adding to a chorus of warnings from federal and private organizations.

The North American Electric Reliability Corp. called for power providers to update business continuity plans in case of a pandemic outbreak and weigh the need to prioritize construction or maintenance projects while the COVID-19 virus continues to spread.

NERC is requiring electric utilities to answer questions on their readiness for a possible pandemic by March 20, an unusual step that underscores the severity of the threat to U.S. power…

READ MORE
sask power

SaskPower reports $205M income in 2019-20, tables annual report

READ MORE

787 dreamliner

How the 787 uses electricity to maximise efficiency

READ MORE

franklin energy

Franklin Energy and Consumers Energy Support Small Businesses During COVID-19 with Virtual Energy Coaching

READ MORE

powerlines

More red ink at Manitoba Hydro as need for new power generation looms

READ MORE