International Power, GDF Suez talks stall

By The Independent


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Talks that could have seen France's GDF Suez and Britain's International Power combine many of their international assets or even embark on a full-scale merger have collapsed.

International Power (IP), whose shares have risen by almost a third over the past two months amid speculation that the French utility was close to bidding for the company, admitted that it had been holding talks with GDF but said these had now ended.

"The company confirms it has held preliminary discussions regarding a potential combination of International Power and certain power assets of GDF Suez," it said. "No agreement was reached and discussions are no longer ongoing."

Analysts said it was still possible that GDF might launch a bid for IP, having seen plans for a more limited deal knocked back. "Given GDF's current financial structure we estimate it could pay up to 650p for IP and still see the purchase as accretive to earnings per share," a Citigroup expert said. "A 400p takeover [the price on which bid speculation has centred] could lift GDF's EPS by around 6 per cent in 2011."

However, yesterday's announcement also suggests the two companies have, until now, been discussing a less ambitious deal. The collapse of the talks will disappoint many analysts, who argue that the two groups' international businesses are a good fit and that both need to secure new assets in order to grow. International Power, an FTSE 100-listed business that is one of Britain's biggest energy producers, also has assets in North America, the Middle East, Asia and Australia, all areas that GDF has targeted for growth. GDF, meanwhile, is Europe's fifth-largest energy producer and is worth 10 times its British counterpart.

A combination of assets would also have been less politically sensitive than a takeover bid. If GDF were to launch a full-scale bid for IP, it would be likely to face opposition from critics concerned about the sale of another British company with a key role in infrastructure passing into foreign ownership. GDF, which is 35 per cent owned by the French government, will have noted the controversy which surrounded the takeover last year of nuclear power producer British Energy by its rival Electricité de France (EDF).

Related News

Japan's power demand hit by coronavirus outbreak: industry head

Japan Power Demand Slowdown highlights reduced electricity consumption as industrial activity stalls amid the coronavirus pandemic, pressuring utilities, the grid, and manufacturing, with economic impacts monitored by Chubu Electric and the federation of electric utilities.

 

Key Points

A drop in Japan's electricity use as industrial activity slows during the coronavirus pandemic, pressuring utilities.

✅ Industrial slowdown cuts electricity consumption

✅ Utilities monitor grid stability and demand trends

✅ Pandemic-linked economic risks weigh on power sector

 

Japan's power demand has been hit by a slowdown in industrial activity due to the coronavirus outbreak, reflecting broader shifts in electricity demand worldwide, Japanese utilities federation's head said on Friday, without giving specific figures.

Electricity load profiles during lockdowns revealed changes in daily routines, as shown by lockdown electricity data across multiple regions.

Analysts have identified key shifts in U.S. electricity consumption patterns that mirror industrial slowdowns.

"We are closely watching development of the pandemic, underscoring the need for electricity during such crises, as further reduction in corporate and economic activities would lead to serious impacts," Satoru Katsuno, the chairman of Japan's federation of electric utilities and president of Chubu Electric Power Co Inc, told a news conference.

In parallel, the power industry has intensified coordination with federal partners to sustain grid reliability and protect critical workers.

Some governments, including Brazil, considered emergency loans for the power sector to stabilize utilities amid revenue pressures.

Consumer advocates warned that pandemic-related electricity shut-offs and bill burdens could exacerbate energy insecurity for vulnerable households.

 

Related News

View more

Energy-insecure households in the U.S. pay 27% more for electricity than others

Community Solar for Low-Income Homes expands energy equity by delivering renewable energy access, predictable bill savings, and tax credit benefits to renters and energy-insecure households, accelerating distributed generation and storage adoption nationwide.

 

Key Points

A program model enabling renters and LMI households to subscribe to off-site solar and save on utility bills.

✅ Earn bill credits from shared solar generation.

✅ Expands access for renters and LMI subscribers.

✅ Often paired with storage and IRA tax credit adders.

 

On a square-foot basis, the issue of inequality is made worse by higher costs for energy usage in the nation. Efforts like community solar programs such as Maryland community solar are underway to boost low-income participation in the cost benefits of renewable energy.

The Energy Information Administration (EIA) shows that households that are considered energy insecure, or those that have the inability to adequately meet basic household energy costs, are paying more for electricity than their wealthier counterparts. 

On average in the United States in 2020, households were billed about $1.04 per square foot for all energy sources. For homes that did not report energy insecurity, that average was $0.98 per square foot, while homes with energy insecurity issues paid an average of $1.24 per square foot for energy. This means that U.S. residents that need the most support on their energy bills are stuck with costs 27% higher than their neighbors on square-foot-basis.

EIA said energy-insecure households have reduced or forgone basic necessities to pay energy bills, kept their houses at unsafe temperatures because of energy cost concerns, or been unable to repair heating or cooling equipment because of cost.

In 2020, households with income less than $10,000 a year were billed an average of $1.31 per square foot for energy, while households making $100,000 or more were billed an average of $0.96 per square foot, said EIA. Renters paid considerably more ($1.28 per square foot) than owners ($0.98 per square foot). There were also considerable differences between regions, with New England solar growth sparking grid upgrade debates, ethnic groups and races, and insulation levels, as seen below.

The energy transition toward renewables like solar has offered price stability, amid record solar and storage growth nationwide, but thus far energy-insecure communities have relatively been left behind. A recent Berkeley Lab report, Residential Solar-Adopter Income and Demographic Trends, indicates that even though the rate of solar adoption among low-income residents is increasing (from 5% in 2010 to 11% in 2021), that segment of energy consumers remains under-represented among solar adopters, relative to its share of the population.


Community solar efforts

As such, the United States is targeting communities most impacted by energy costs that have not benefitted from the transition, highlighting “Energy Communities” that are eligible for an additional 10% tax credit through funds made possible by the Inflation Reduction Act.

Additionally, a push for community solar development is taking place nationwide to extend access to affordable solar energy to renters and other residents that aren’t able to leverage finances to invest in predictable, low-cost residential solar systems. The Biden Administration set a goal this year to sign up 5 million community solar households, achieving $1 billion in bill savings by 2025. The community solar model only represents about 8% of the total distributed solar capacity in the nation. This target would entail a jump from 3 GW installed capacity to 20 GW by the target year. The Department of Energy estimates community solar subscribers save an average of 20% on their bills.

California this year passed AB 2316, the Community Renewable Energy Act takes aim at four acute problems in the state’s power market: reliability amid rising outage risks, rates, climate and equity. The law creates a community renewable energy program, including community solar-plus-storage, supported by cheaper batteries, to overcome access barriers for nearly half of Californians who rent or have low incomes. Community solar typically involves customers subscribing to an off-site solar facility, receiving a utility bill credit for the power it generates.

“Community renewable energy is a proven powerful tool to help close California’s clean energy gap, bringing much needed relief to millions struggling with high housing costs and utility debt,” said Alexis Sutterman, energy equity program manager at the California Environmental Justice Alliance.

The program has energy equity baked into its structure, working to make sure Californians of all income levels participate in the benefits of the energy transition. Not only does it open solar access to renters, the law ensures that at least 51% of subscribers are low-income customers, which is expected to make projects eligible for a 10% tax credit adder under the IRA.

“The money’s on the table now,” said Jeff Cramer, president and chief executive of the Coalition for Community Solar Access. “While there are groups pushing for solar access for all, and states with strong legislation, there are other pockets of interest in surprising places in the United States. For example, Louisiana has no policy for community solar or support for low-income residents going solar but the city of New Orleans has its own utility commission with a community solar program. In Nebraska, forward-looking co-operatives have created community solar projects.

Community solar markets are active in 22 states, with more expected to come online in the future as states pursue 100% clean energy targets across the country. However, the market is expected to require strong community outreach efforts to foster trust and gain subscribers.

“There is a distrust of community solar initially in LMI communities as many have been burned before by retail energy false promises,” said Eric LaMora, executive director, community solar, Nautilus Solar on a panel at the Solar Energy Industries Association Finance, Tax, and Buyers seminar. “People are suspicious but there really are no hooks with community solar.”

LMI residents are leery to provide tax records or much documents at all in order to sign up for community solar, LaMora said. “We were surprised to see less of a default rate with LMI residents. We attribute this to the fact that they see significant savings on their electric bill, making it easier to pay each month,” he said.

 

Related News

View more

Alberta Leads the Way in Agrivoltaics

Agrivoltaics in Alberta integrates solar energy with agriculture, boosting crop yields and water conservation. The Strathmore Solar project showcases dual land use, sheep grazing for vegetation control, and PPAs that expand renewable energy capacity.

 

Key Points

A dual-use model where solar arrays and farming co-exist, boosting yields, saving water, and diversifying revenue.

✅ Strathmore Solar: 41 MW on 320 acres with managed sheep grazing

✅ 25-year TELUS PPA secures power and renewable energy credits

✅ Panel shade cuts irrigation needs and protects crops from extremes

 

Alberta is emerging as a leader in agrivoltaics—the innovative practice of integrating solar energy production with agricultural activities, aligning with the province's red-hot solar growth in recent years. This approach not only generates renewable energy but also enhances crop yields, conserves water, and supports sustainable farming practices. A notable example of this synergy is the Strathmore Solar project, a 41-megawatt solar farm located on 320 acres of leased industrial land owned by the Town of Strathmore. Operational since March 2022, it exemplifies how solar energy and agriculture can coexist and thrive together.

The Strathmore Solar Initiative

Strathmore Solar is a collaborative venture between Capital Power and the Town of Strathmore, with a 25-year power purchase agreement in place with TELUS Corporation for all the energy and renewable energy credits generated by the facility. The project not only contributes significantly to Alberta's renewable energy capacity, as seen with new solar facilities contracted at lower cost across the province, but also serves as a model for agrivoltaic integration. In a unique partnership, 400 to 600 sheep from Whispering Cedars Ranch are brought in to graze the land beneath the solar panels. This arrangement helps manage vegetation, reduce fire hazards, and maintain the facility's upkeep, all while providing shade for the grazing animals. This mutually beneficial setup maximizes land use efficiency and supports local farming operations, illustrating how renewable power developers can strengthen outcomes with integrated designs today. 

Benefits of Agrivoltaics in Alberta

The integration of solar panels with agricultural practices offers several advantages for a province that is a powerhouse for both green energy and fossil fuels already across sectors:

  • Enhanced Crop Yields: Studies have shown that crops grown under solar panels can experience increased yields due to reduced water evaporation and protection from extreme weather conditions.

  • Water Conservation: The shade provided by solar panels helps retain soil moisture, leading to a decrease in irrigation needs.

  • Diversified Income Streams: Farmers can generate additional revenue by selling renewable energy produced by the solar panels back to the grid.

  • Sustainable Land Use: Agrivoltaics allows for dual land use, enabling the production of both food and energy without the need for additional land.

These benefits are evident in various agrivoltaic projects across Alberta, where farmers are successfully combining crop cultivation with solar energy production amid a renewable energy surge that is creating thousands of jobs.

Challenges and Considerations

While agrivoltaics presents numerous benefits, there are challenges to consider as Alberta navigates challenges with solar expansion today across Alberta:

  • Initial Investment: The setup costs for agrivoltaic systems can be high, requiring significant capital investment.

  • System Maintenance: Regular maintenance is essential to ensure the efficiency of both the solar panels and the agricultural operations.

  • Climate Adaptability: Not all crops may thrive under the conditions created by solar panels, necessitating careful selection of suitable crops.

Addressing these challenges requires careful planning, research, and collaboration between farmers, researchers, and energy providers.

Future Prospects

The success of projects like Strathmore Solar and other agrivoltaic initiatives in Alberta indicates a promising future for this dual-use approach. As technology advances and research continues, agrivoltaics could play a pivotal role in enhancing food security, promoting sustainable farming practices, and contributing to Alberta's renewable energy goals. Ongoing projects and partnerships aim to refine agrivoltaic systems, making them more efficient and accessible to farmers across the province.

The integration of solar energy production with agriculture in Alberta is not just a trend but a transformative approach to sustainable farming. The Strathmore Solar project serves as a testament to the potential of agrivoltaics, demonstrating how innovation can lead to mutually beneficial outcomes for both the agricultural and energy sectors.

 

 

Related News

View more

This Floating Hotel Will Generate Electricity By Rotating All Day

Floating Rotating Eco Hotel harnesses renewable energy via VAWTAU, recycles rainwater for greywater, and follows zero-waste principles. This mobile, off-grid, Qatar-based resort generates electricity by slow 360-degree rotation while offering luxury amenities.

 

Key Points

A mobile, off-grid hotel that rotates to generate power, uses VAWTAU, recycles greywater, and targets zero-waste.

✅ Rotates 360 deg in 24 hours to produce electricity

✅ VAWTAU system: vertical-axis turbine and sun umbrella

✅ Rain capture and greywater recycling minimize waste

 

A new eco-friendly, floating hotel plans to generate its own electricity by rotating while guests relax on board, echoing developments like the solar Marriott hotel in sustainable hospitality.

Led by Hayri Atak Architectural Design Studio (HAADS), the structure will be completely mobile, meaning it can float from place to place, never sitting in a permanent position. Building began in March 2020 and the architects aim for it to be up and running by 2025.

It will be based in Qatar, but has the potential to be located in different areas due to its mobility, and it sits within a region advancing projects such as solar hydrogen production that signal a broader clean-energy shift.

The design includes minimum energy loss and a zero waste principle at its core, aligning with progress in wave energy research that aims to power a clean future. As it will rotate around all day long, this will generate electrical energy to power the whole hotel.

But guests won’t feel too dizzy, as it takes 24 hours for the hotel to spin 360 degrees.

The floating hotel will stay within areas with continuous currents, to ensure that it is always rotating, drawing on ideas from ocean and river power systems that exploit natural flows. This type of green energy production is called ‘vawtau’ (vertical axis wind turbine and umbrella) which works like a wind turbine on the vertical axis, while alternative approaches like kite-based wind energy target stronger, high-altitude currents as well, and functions as a sun umbrella on the coastal band.

Beyond marine-current concepts such as underwater kites, the structure will also make use of rainwater to create power. A cover on the top of the hotel will collect rain to be used for greywater recycling. This is when wastewater is plumbed straight back into toilets, washing machines or outside taps to maximise efficiency.

The whole surface area is around 35,000 m², comparable in scale to emerging floating solar plants that demonstrate modular, water-based infrastructure, and there are a total of 152 rooms. It will have three different entrances so that there is access to the land at any time of the day, thanks to the 140-degree pier that surrounds it.

There will also be indoor and outdoor swimming pools, a sauna, spa, gym, mini golf course and other activity areas.

 

Related News

View more

Nova Scotia's last paper mill seeks new discount electricity rate

Nova Scotia Power Active Demand Control Tariff lets the utility direct Port Hawkesbury Paper load, enabling demand response, efficiency, and industrial electricity rates, while regulators assess impacts on ratepayers, grid reliability, mill viability, and savings.

 

Key Points

A four-year tariff letting the utility control the mill load for demand response, efficiency, and lower costs.

✅ Utility can increase or reduce daily consumption at the mill

✅ Projected savings of $10M annually for other ratepayers to 2023

✅ Regulators reviewing cost allocation, monitoring, and viability

 

Nova Scotia Power is scheduled to appear before government regulators Tuesday morning seeking approval for a unique discount rate for its largest customer.

Under the four-year plan, Nova Scotia Power would control the supply of electricity to Port Hawkesbury Paper, a move referenced in a grid operations report that urges changes, with the right to direct the company to increase or reduce daily consumption throughout the year.

The rate proposal is supported by the mill, which says it needs to lower its power bill to keep its operation viable.

The rate went into effect on Jan. 1 on a temporary basis, pending the outcome of a hearing this week before the Nova Scotia Utility and Review Board, amid broader calls for an independent body to lead electricity planning.

The mill accounts for 10 per cent of the provincial electricity load, even as a neighbouring utility pursues more Quebec power for the region, producing glossy paper used in magazines and catalogs.

Nova Scotia Power says controlling how much electricity the mill uses — and when — will allow it to operate the system much more efficiently, as it expands biomass generation initiatives, saving other customers $10 million a year until the rate expires in 2023.

Ceding control 'not an easy decision'
In its opening statement that was filed in advance, Port Hawkesbury Paper said ceding the control of its electrical supply to Nova Scotia Power was "not an easy decision" to make, but the company is confident the arrangement will work.

In September 2019, Nova Scotia Power and the mill jointly applied for an "extra large active demand control tariff," which would provide electricity to the mill for about $61 per megawatt hour, well below the full cost of generating the electricity.

The utility said "fully allocating costs" would result in "prices in excess of $80/MWh ... and [would] not [be] financially viable for the mill."

In its statement, Port Hawkesbury Paper said since the initial filing "there have been greater near term declines in market demand and pricing for PHP's product than was forecast at that time, continuing to put pressure on our business and further highlighting the need to maintain the balance provided for in the new tariff."

Consumer advocate sees 'advantage,' but will challenge
Bill Mahody represents Nova Scotia Power's 400,000 residential customers before the review board. He wants proof the mill will pay enough toward the cost of generating the electricity it uses, amid concerns over biomass use in the province today.

"We filed evidence, as have others involved in the proceeding, that would call into question whether or not the rate design is capturing all of those costs and that will be a significant issue before the board," Mahody said.

Still, he sees value in the proposal.

The proposed new rate went into effect on Jan. 1 on a temporary basis. (The Canadian Press)
"This proposed rate gives Nova Scotia Power the ability to control that sizable Port Hawkesbury Paper load to the advantage of other ratepayers, as the province pursues more wind and solar projects, because Nova Scotia Power would be reducing the costs that other ratepayers are going to face," he said.

Mahody is also calling for a mechanism to monitor whether the mill's position actually improves to the point where it could pay higher rates.

"An awful lot can change during a four-year period, with new tidal power projects underway, and I think the board ought to have the ability to check in on this and make sure that their preferential rate continues to be justified," he said.

Major employer
Port Hawkesbury Paper, owned by Stern Partners in Vancouver, has received discounted power rates since it bought the idled mill in 2012. But the "load retention tariff" as it was called, expired at the end of 2019.

Regulators have accepted Nova Scotia Power's argument that it would cost other customers more if the mill ceased to operate.

The mill said it spends between $235 million and $265 million annually, employing 330 people directly and supporting 500 other jobs indirectly.

The Nova Scotia government pledged $124 million in financial assistance as part of the reopening in 2012.

 

Related News

View more

TC Energy confirms Ontario pumped storage project is advancing

Ontario Pumped Storage advances as Ontario's largest energy storage project, delivering clean electricity, long-duration capacity, and grid reliability for peak demand, led by TC Energy and Saugeen Ojibway Nation, with IESO review underway.

 

Key Points

A long-duration storage project in Meaford storing clean power for peak demand, supporting Ontario's emission-free grid.

✅ Stores clean electricity to power 1M homes for 11 hours

✅ Partnership: TC Energy and Saugeen Ojibway Nation

✅ Pending IESO review and OEB regulation decisions

 

In a bid to accelerate the province's ambitions for clean economic growth, TC Energy Corporation has announced significant progress in the development of the Ontario Pumped Storage Project. The Government of Ontario in Canada has unveiled a plan to address growing energy needs as a sustainable road map aimed at achieving an emission-free electricity sector, and as part of this plan, the Ministry of Energy is set to undertake a final evaluation of the proposed Ontario Pumped Storage Project. A decision is expected to be reached by the end of the year.

Ontario Pumped Storage is a collaborative effort between TC Energy and the Saugeen Ojibway Nation. The project is designed to be Ontario's largest energy storage initiative, capable of storing clean electricity to power one million homes for 11 hours. As the province strives to transition to a cleaner electricity grid by embracing clean power across sectors, long duration storage solutions like Ontario Pumped Storage will play a pivotal role in providing reliable, emission-free power during peak demand periods.

The success of the Project hinges on the approval of TC Energy's board of directors and a fruitful partnership agreement with the Saugeen Ojibway Nation. TC Energy is aiming for a final investment decision in 2024, as Ontario confronts an electricity shortfall in the coming years, with the anticipated in-service date being in the early 2030s, pending regulatory and corporate approvals.

“Ontario Pumped Storage will be a critical component of Ontario’s growing clean economy and will deliver significant benefits and savings to consumers,” said Corey Hessen, Executive Vice-President and President, TC Energy, Power and Energy Solutions. “Ontario continues to attract major investments that will have large power needs — many of which are seeking zero-emission energy before they invest. We are pleased the government is advancing efforts to recognize the significant role that long duration storage plays — firming resources, including new gas plants under provincial consideration, will become increasingly valuable in supporting a future emission-free electricity system.” 

The Municipality of Meaford also expressed its support for the project, recognizing the positive impact it could have on the local economy and the overall electricity system of Ontario. Additionally, various stakeholders, including LiUNA OPDC, LiUNA Local 183, and the Ontario Chamber of Commerce, lauded the potential for job creation, training opportunities, and resilient energy infrastructure as Ontario seeks new wind and solar power to ease a coming electricity supply crunch.

The timeline for Ontario Pumped Storage's progress includes a final analysis by the Independent Electricity System Operator (IESO) to confirm its role in Ontario's electricity system and in balancing demand and emissions during the transition, to be completed by 30 September 2023. Concurrently, the Ministry of Energy will engage in consultations on the potential regulation of the Project via the Ontario Energy Board, while debates over clean, affordable electricity intensify ahead of the Ontario election, with a final determination scheduled for 30 November 2023.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.