Enel building wind farm in Italy

By Reuters


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Italy's biggest renewable energy company, Enel Green Power EGP, said it had received authorization to build a 90-megawatt wind farm on the island of Sardinia.

EGP plans to build the farm, which will consist of 39 Siemens wind turbines each with 2.3 MW capacity, this year, the company controlled by Italy's biggest utility Enel said in a statement.

The plant, expected to become EGP's largest wind farm in Italy, will generate 185 million kW/h of power a year, enough to meet the demand of 70,000 households, and will help avoid emission of more than 130,000 metric tons of carbon dioxide CO2.

The new wind farm will raise EGP's total installed wind capacity to more than 250 MW in Sardinia, where it currently operates three wind farms with an annual production of more than 240 million kW/h and a total installed capacity of 161 MW.

Capacity growth was a key driver of a 5.6 percent rise in EGP's core earnings in the first nine months of 2010, but the stock, listed in Milan and Madrid on November 4, has been hit by dwindling interest from professional investors for green energy.

At the end of 2010, EGP had a total installed capacity of about 5,900 MW around the world. Italy accounted for more than 2,600 MW, including more than 450 MW of wind power.

EGP shares have mostly traded below the price of 1.6 euros per share set in what was Europe's biggest initial public offering since 2008 and were down 0.19 percent at 1.596 euros in Milan by 1115 GMT.

Related News

Duke Energy Florida's smart-thinking grid improves response, power restoration for customers during Hurricane Ian

Self-healing grid technology automatically reroutes power to reduce outages, speed restoration, and boost reliability during storms like Hurricane Ian in Florida, leveraging smart grid sensors, automation, and grid hardening to support Duke Energy customers.

 

Key Points

Automated smart grid systems that detect faults and reroute power to minimize outages and accelerate restoration.

✅ Cuts outage duration via automated fault isolation

✅ Reroutes electricity with sensors and distribution automation

✅ Supports storm resilience and faster field crew restoration

 

As Hurricane Ian made its way across Florida, where restoring power in Florida can take weeks in hard-hit areas, Duke Energy's grid improvements were already on the job helping to combat power outages from the storm.

Smart, self-healing technology, similar to smart grid improvements elsewhere, helped to automatically restore more than 160,000 customer outages and saved nearly 3.3 million hours (nearly 200 million minutes) of total lost outage time.

"Hurricane Ian is a strong reminder of the importance of grid hardening and storm preparedness to help keep the lights on for our customers," said Melissa Seixas, Duke Energy Florida state president. "Self-healing technology is just one of many grid improvements that Duke Energy is making to avoid outages, restore service faster and increase reliability for our customers."

Much like the GPS in your car can identify an accident ahead and reroute you around the incident to keep you on your way, self-healing technology is like a GPS for the grid. The technology can quickly identify power outages and alternate energy pathways to restore service faster for customers when an outage occurs.

Additionally, self-healing technology provides a smart tool to assist crews in the field with power restoration after a major storm like Ian, helping reduce outage impacts and freeing up resources to help restore power in other locations.

Three days after Hurricane Ian exited the state, Duke Energy Florida wrapped up restoration of approximately 1 million customers. This progress enabled the company to deploy more than 550 Duke Energy workers from throughout Florida, as well as contractors from across the country, to help restore power for Lee County Electric Cooperative customers.

Crews worked in Cape Coral and Pine Island, one of the hardest-hit areas in the storm's path, as Canadian power crews have in past storms, and completed power restoration for the majority of customers on Pine Island within approximately one week after arriving to the island.

Prior to Ian in 2022, smart, self-healing technology had helped avoid nearly 250,000 extended customer outages in Florida, similar to Hydro One storm recovery efforts, saving around 285,000 hours (17.1 million minutes) of total lost outage time.

Duke Energy currently serves around 59% of customers in Florida with self-healing capabilities on its main power distribution lines, with a goal of serving around 80% over the next few years.

 

Related News

View more

Northvolt Affirms Continuation of EV Battery Plant Project Near Montreal

Northvolt Montreal EV Battery Plant advances as a Quebec clean energy hub, leveraging hydroelectric power to supply EV batteries, strengthen North American supply chains, and support automakers' electrification with sustainable manufacturing and regional distribution.

 

Key Points

A Quebec-based EV battery facility using hydroelectric power to scale sustainable production for North America.

✅ Powered by Quebec hydro for lower-carbon cell manufacturing

✅ Strengthens North American EV supply chain resilience

✅ Creates local jobs, R&D, and advanced manufacturing skills

 

Northvolt, a prominent player in the electric vehicle (EV) battery industry, has reaffirmed its commitment to proceed with its battery plant project near Montreal as originally planned. This development marks a significant step forward in Northvolt's expansion strategy and signals confidence in Canada's role in the global EV market.

The decision to move forward with the EV battery plant project near Montreal underscores Northvolt's strategic vision to establish a strong foothold in North America's burgeoning electric vehicle sector. The plant is poised to play a crucial role in meeting the growing demand for sustainable battery solutions as automakers accelerate their transition towards electrification.

Located strategically in Quebec, a province known for its abundant hydroelectric power and supportive government policies towards clean energy initiatives, including major Canada-Quebec investments in battery assembly, the battery plant project aligns with Canada's commitment to promoting green technology and reducing carbon emissions. By leveraging Quebec's renewable energy resources, Northvolt aims to produce batteries with a lower carbon footprint compared to traditional manufacturing processes.

The EV battery plant is expected to contribute significantly to the local economy by creating jobs, stimulating economic growth, and fostering technological innovation in the region, much as a Niagara Region battery plant is catalyzing development in Ontario. As Northvolt progresses with its plans, collaboration with local stakeholders, including government agencies, educational institutions, and industry partners, will be pivotal in ensuring the project's success and maximizing its positive impact on the community.

Northvolt's decision to advance the battery plant project near Montreal also reflects broader trends in the global battery manufacturing landscape. With increasing emphasis on sustainability and supply chain resilience, companies like Northvolt are investing in diversified production capabilities, including projects such as a $1B B.C. battery plant, to meet regional market demands and reduce dependency on overseas suppliers.

Moreover, the EV battery plant project near Montreal represents a milestone in Canada's efforts to strengthen its position in the global electric vehicle supply chain, with EV assembly deals helping put the country in the race. By attracting investments from leading companies like Northvolt, Canada aims to build a robust ecosystem for electric vehicle manufacturing and innovation, driving economic competitiveness and environmental stewardship.

The plant's proximity to key markets in North America further enhances its strategic value, enabling efficient distribution of batteries to automotive manufacturers across the continent. This geographical advantage positions Northvolt to capitalize on the growing demand for electric vehicles in Canada, the United States, and beyond, supporting Canada-U.S. collaboration on supply chains and market growth.

Looking ahead, Northvolt's commitment to advancing the EV battery plant project near Montreal underscores its long-term vision and dedication to sustainable development. As the global electric vehicle market continues to evolve, alongside the U.S. auto sector's pivot to EVs, investments in battery manufacturing infrastructure will play a critical role in shaping the industry's future landscape and accelerating the adoption of clean transportation technologies.

In conclusion, Northvolt's affirmation to proceed with the EV battery plant project near Montreal represents a significant milestone in Canada's transition towards sustainable mobility solutions. By harnessing Quebec's renewable energy resources and fostering local partnerships, Northvolt aims to establish a state-of-the-art manufacturing facility that not only supports the growth of the electric vehicle sector but also contributes to Canada's leadership in clean technology innovation, bolstered by initiatives like Nova Scotia vehicle-to-grid pilots that strengthen grid readiness nationwide. As the project moves forward, its impact on economic growth, job creation, and environmental sustainability is expected to resonate positively both locally and globally.

 

Related News

View more

How Bitcoin's vast energy use could burst its bubble

Bitcoin Energy Consumption drives debate on blockchain mining, proof-of-work, carbon footprint, and emissions, with CCAF estimates in terawatt hours highlighting electricity demand, fossil fuel reliance, and sustainability concerns for data centers and cryptocurrency networks.

 

Key Points

Electricity used by Bitcoin proof-of-work mining, often fossil-fueled, estimated by CCAF in terawatt hours.

✅ CCAF: 40-445 TWh, central estimate ~130 TWh

✅ ~66% of mining electricity sourced from fossil fuels

✅ Proof-of-work increases hash rate, energy, and emissions

 

The University of Cambridge Centre for Alternative Finance (CCAF) studies the burgeoning business of cryptocurrencies.

It calculates that Bitcoin's total energy consumption is somewhere between 40 and 445 annualised terawatt hours (TWh), with a central estimate of about 130 terawatt hours.

The UK's electricity consumption is a little over 300 TWh a year, while Argentina uses around the same amount of power as the CCAF's best guess for Bitcoin, as countries like New Zealand's electricity future are debated to balance demand.

And the electricity the Bitcoin miners use overwhelmingly comes from polluting sources, with the U.S. grid not 100% renewable underscoring broader energy mix challenges worldwide.

The CCAF team surveys the people who manage the Bitcoin network around the world on their energy use and found that about two-thirds of it is from fossil fuels, and some regions are weighing curbs like Russia's proposed mining ban amid electricity deficits.

Huge computing power - and therefore energy use - is built into the way the blockchain technology that underpins the cryptocurrency has been designed.

It relies on a vast decentralised network of computers.

These are the so-called Bitcoin "miners" who enable new Bitcoins to be created, but also independently verify and record every transaction made in the currency.

In fact, the Bitcoins are the reward miners get for maintaining this record accurately.

It works like a lottery that runs every 10 minutes, explains Gina Pieters, an economics professor at the University of Chicago and a research fellow with the CCAF team.

Data processing centres around the world, including hotspots such as Iceland's mining strain, race to compile and submit this record of transactions in a way that is acceptable to the system.

They also have to guess a random number.

The first to submit the record and the correct number wins the prize - this becomes the next block in the blockchain.

Estimates for bitcoin's electricity consumption
At the moment, they are rewarded with six-and-a-quarter Bitcoins, valued at about $50,000 each.

As soon as one lottery is over, a new number is generated, and the whole process starts again.

The higher the price, says Prof Pieters, the more miners want to get into the game, and utilities like BC Hydro suspending new crypto connections highlight grid pressures.

"They want to get that revenue," she tells me, "and that's what's going to encourage them to introduce more and more powerful machines in order to guess this random number, and therefore you will see an increase in energy consumption," she says.

And there is another factor that drives Bitcoin's increasing energy consumption.

The software ensures it always takes 10 minutes for the puzzle to be solved, so if the number of miners is increasing, the puzzle gets harder and the more computing power needs to be thrown at it.

Bitcoin is therefore actually designed to encourage increased computing effort.

The idea is that the more computers that compete to maintain the blockchain, the safer it becomes, because anyone who might want to try and undermine the currency must control and operate at least as much computing power as the rest of the miners put together.

What this means is that, as Bitcoin gets more valuable, the computing effort expended on creating and maintaining it - and therefore the energy consumed - inevitably increases.

We can track how much effort miners are making to create the currency.

They are currently reckoned to be making 160 quintillion calculations every second - that's 160,000,000,000,000,000,000, in case you were wondering.

And this vast computational effort is the cryptocurrency's Achilles heel, says Alex de Vries, the founder of the Digiconomist website and an expert on Bitcoin.

All the millions of trillions of calculations it takes to keep the system running aren't really doing any useful work.

"They're computations that serve no other purpose," says de Vries, "they're just immediately discarded again. Right now we're using a whole lot of energy to produce those calculations, but also the majority of that is sourced from fossil energy, and clean energy's 'dirty secret' complicates substitution."

The vast effort it requires also makes Bitcoin inherently difficult to scale, he argues.

"If Bitcoin were to be adopted as a global reserve currency," he speculates, "the Bitcoin price will probably be in the millions, and those miners will have more money than the entire [US] Federal budget to spend on electricity."

"We'd have to double our global energy production," he says with a laugh, even as some argue cheap abundant electricity is getting closer to reality today. "For Bitcoin."

He says it also limits the number of transactions the system can process to about five per second.

This doesn't make for a useful currency, he argues.

Rising price of bitcoin graphic
And that view is echoed by many eminent figures in finance and economics.

The two essential features of a successful currency are that it is an effective form of exchange and a stable store of value, says Ken Rogoff, a professor of economics at Harvard University in Cambridge, Massachusetts, and a former chief economist at the International Monetary Fund (IMF).

He says Bitcoin is neither.

"The fact is, it's not really used much in the legal economy now. Yes, one rich person sells it to another, but that's not a final use. And without that it really doesn't have a long-term future."

What he is saying is that Bitcoin exists almost exclusively as a vehicle for speculation.

So, I want to know: is the bubble about to burst?

"That's my guess," says Prof Rogoff and pauses.

"But I really couldn't tell you when."

 

Related News

View more

Three New Solar Electricity Facilities in Alberta Contracted At Lower Cost than Natural Gas

Alberta Solar Energy Contracts secure low-cost photovoltaic PPAs for government operations, delivering renewable electricity at 4.8 cents/kWh, beating natural gas LCOE, enhancing summer grid efficiency across Hays, Tilley, and Jenner with Canadian Solar.

 

Key Points

Low-cost PV power agreements meeting 55% of Alberta government electricity demand via new Canadian Solar facilities.

✅ Price: 4.8 cents/kWh CAD, under gas-fired generation LCOE.

✅ Sites: Hays, Tilley, Jenner; 50% equity with Conklin Métis Local #193.

✅ Supplies 55% of provincial government electricity demand.

 

Three new solar electricity facilities to be built in south eastern Alberta (Canada) amid Alberta's solar growth have been selected through a competitive process to supply the Government of Alberta with 55 per cent of their annual electricity needs. The facilities will be built near Hays, Tilley, and Jenner, by Canadian Solar with Conklin Métis Local #193 as 50-percent equity owners.

The Government of Alberta's operations have been powered 100 per cent with wind power since 2007. Upon the expiration of some of these contracts, they have been renewed to switch from wind to solar energy. The average contract pricing will be $0.048 per kilowatt hour (3.6 cents/kWh USD), which is less than the average historical wholesale power pool price paid to natural gas-fired electricity in the province in years 2008 - 2018.

"The conversation about solar energy has long been fixated on its price competitiveness with fossil fuels," said John Gorman, CanSIA President & CEO. "Today's announcement demonstrates that low cost solar energy has arrived as a mainstream option in Alberta, even as demand for solar lags in Canada according to federal assessments. The conversation should next focus on how to optimize an all-of-the-above strategy for developing the province's renewable and non-renewable resources."

"This price discovery is monumental for the solar industry in Canada" said Patrick Bateman, CanSIA Director of Policy & Market Development. "At less than five cents per kilowatt hour, this solar electricity has a cost that is less than that of natural gas. Achieving Alberta's legislated 30 per cent by 2030 renewable electricity target just became a whole lot cheaper!".

 

Quick Facts:

  • The contract price of 4.8 cents/kWh CAD to be paid by Alberta Infrastructure for this solar electricity represents a lower Levelized Cost of Electricity (LCOE) than the average annual wholesale price paid by the power pool to combined-cycle and single-cycle natural gas-fired electricity generation which was 7.1 cents/kWh and 11.2 cents/kWh respectively from 2008 - 2018.
  • Alberta receives more hours of sunshine than Miami, Florida in the summer months. Alberta's electricity supply is most strained in summer, highlighting challenges for solar expansion when high temperatures increase the resistance of the distribution and transmission systems, and reduce the efficiency of cooling thermal power plants. For this reason, solar facilities sited near to electricity demand improves overall grid efficiency. Supply shortages are atypical in Alberta in winter when solar energy is least available. When they do occur, imports are increased and large loads are decreased.
  • In 2018, Alberta's solar electricity generation exceeded 50 MW. While representing much less than 1% of the province's electricity supply today, the Canadian Solar Industries Association (CanSIA) forecasts that solar energy could supply as much as 3 per cent of the province's electricity by 2030, supporting renewable energy job growth across Alberta. A recent supply chain study of the solar electricity sector in Alberta by Solas Energy Consulting Inc. found a potential of $4.1 billion in market value and a labour force rising to 10,000 in 2030.

 

To learn more about solar energy and the best way for consumers to go solar, please visit the Canadian Solar Industries Association at www.CanSIA.ca.

 

Related News

View more

Florida says no to $400M in federal solar energy incentives

Florida Solar for All Opt-Out highlights Gov. DeSantis rejecting EPA grant funds under the Inflation Reduction Act, limiting low-income households' access to solar panels, clean energy programs, and promised electricity savings across disadvantaged communities.

 

Key Points

Florida Solar for All Opt-Out is the state declining EPA grants, restricting low-income access to solar energy savings.

✅ EPA grant under IRA aimed at low-income solar

✅ Estimated 20% electricity bill savings missed

✅ Florida lacks PPAs and renewable standards

 

Florida has passed up on up to $400 million in federal money that would have helped low-income households install solar panels.

A $7 billion grant “competition” to promote clean energy in disadvantaged communities by providing low-income households with access to affordable solar energy was introduced by President Joe Biden earlier this year, and despite his climate law's mixed results in practice, none of that money will reach Florida households.

The Environmental Protection Agency announced the competition in June as part of Biden’s Inflation Reduction Act. However, Florida Gov. Ron DeSantis has decided to pass on the $400 million up for grabs by choosing to opt out of the opportunity.

Inflation Reduction Act:What is the Inflation Reduction Act? Everything to know about one of Biden's big laws

The program would have helped Florida households reduce their electricity costs by a minimum of 20% during a key time when Floridians are leaving in droves due to a rising cost of living associated with soaring insurance costs, inflation, and proposed FPL rate hikes statewide.

Florida was one of six other states that chose not to apply for the money.

President Joe Biden announced a $7 billion “competition” to promote clean energy in disadvantaged communities.

The opportunity, named “Solar for All,” was announced by the EPA in June and promised to provide up to $7 billion in grants to states, territories, tribal governments, municipalities, and nonprofits to expand the number of low-income and disadvantaged communities primed for residential solar investment — enabling millions of low-income households to access affordable, resilient and clean solar energy.

The grant is intended to help lower energy costs for families, create jobs and help reduce greenhouse effects that accelerate global climate change by providing financial support and incentives to communities that were previously locked out of investments.


How much money would Floridians save under the ‘Solar for All’ solar panel grant?

The program aims to reduce household electricity costs by at least 20%. Florida households paid an average of $154.51 per month for electricity in 2022, just over 14% of the national average of $135.25, and debates over hurricane rate surcharges continue to shape customer bills, according to the U.S. Energy Information Administration. A 20% savings would drop those bills down to around $123 per month.

On the campaign trail, DeSantis has pledged to unravel Biden’s green energy agenda if elected president, amid escalating solar policy battles nationwide, slamming the Inflation Reduction Act and what he called “a concerted effort to ramp up the fear when it comes to things like global warming and climate change.”

His energy agenda includes ending Biden’s subsidies for electric cars while pushing policies that he says would ramp up domestic oil production.

“The subsidies are going to drive inflation higher,” DeSantis said at an event in September. “It’s not going to help with interest rates, and it is certainly not going to help with our unsustainable debt levels.”

DeSantis heading to third debate:As he enters third debate, Ron DeSantis has a big Nikki Haley problem

DeSantis’ plan to curb clean energy usage in Florida seems to be at odds with the state as a whole, and the region's evolving strategy for the South underscores why it has been ranked among the top three states to go solar since 2019, according to the Solar Energy Industries Association (SEIA).

SEIA also shows, however, that Florida lags behind many other states when it comes to solar policies, as utilities tilt the solar market in ways that influence policy outcomes statewide. Florida, for instance, has no renewable energy standards, which are used to increase the use of renewable energy sources for electricity by requiring or encouraging suppliers to provide customers with a stated minimum share of electricity from eligible renewable resources, according to the EIA.

Power purchase agreements, which can help lower the cost of going solar through third-party financing, are also not allowed in Florida, with court rulings on monopolies reinforcing the existing market structure. And there have been other policies implemented that drove other potential solar investments to other states.

 

Related News

View more

Ukraine Prepares for Winter Amid Energy Challenges

Ukraine Winter Energy Resilience focuses on energy security, grid repairs, renewable power, EU support, heating reliability, electricity imports, and conservation measures to stabilize infrastructure and protect households amid conflict and severe cold.

 

Key Points

A strategy to secure heat and power via repairs, renewables, imports, and conservation during wartime winter.

✅ Grid repairs and hardening of power plants and transmission lines

✅ Diversified supply: renewables, electricity imports, fuel reserves

✅ Public conservation to cut peak demand and safeguard essential services

 

As winter approaches, Ukraine is bracing for a challenging season, especially in the energy sector amid global energy instability and price pressures, which has been heavily impacted by the ongoing conflict with Russia. With the weather forecast predicting colder temperatures, the Ukrainian government is ramping up efforts to secure energy supplies and bolster infrastructure, aiming to ensure that citizens have access to heating and electricity during the harsh months ahead.

The Energy Landscape in Ukraine

The conflict has severely disrupted Ukraine’s energy infrastructure, leading to widespread damage and inefficiencies. Key facilities, including power plants and transmission lines, have been targeted amid energy ceasefire violations reported by both sides, resulting in significant energy shortages. As a response, the government has implemented a series of measures aimed at stabilizing the energy sector, ensuring that the nation can withstand the winter months.

One of the primary strategies has been the repair and reinforcement of energy infrastructure. Officials have prioritized critical facilities that are essential for electricity generation and distribution. Emergency repairs and upgrades are being carried out to restore functionality and improve resilience against potential attacks.

In addition to repairing existing infrastructure, Ukraine is actively seeking to diversify its energy sources. This includes increasing reliance on renewable energy, such as wind and solar, which can be less susceptible to disruption. The shift toward renewables not only enhances energy security and supports moving away from fossil fuels in line with Ukraine's long-term environmental goals.

International Support and Collaboration

Ukraine's challenges have not gone unnoticed on the international stage. Countries and organizations around the world have pledged energy security support to help Ukraine fortify its energy sector. This assistance includes financial aid, technical expertise, and the provision of materials needed for infrastructure repairs.

The European Union, in particular, has been a key ally, providing both immediate and long-term support to Ukraine's energy efforts. The EU's commitment to helping Ukraine transition to a more sustainable energy model, including steps toward ENTSO-E synchronization to bolster grid stability, is reflected in various initiatives aimed at increasing energy efficiency and integrating renewable sources.

Furthermore, international organizations have mobilized resources to assist in the restoration of damaged infrastructure. This collaboration not only enhances Ukraine's energy capabilities but also strengthens ties with global partners, fostering a sense of solidarity amidst the ongoing conflict.

Preparing for Winter Challenges

As temperatures drop, the demand for heating will surge, putting additional pressure on an already strained energy system. To address this, the Ukrainian government is urging citizens to prepare for potential shortages. Officials are promoting energy conservation measures, encouraging households to reduce consumption and use energy more efficiently.

Public awareness campaigns are being launched to educate citizens about the importance of energy saving and the steps they can take to minimize their energy use and prevent outages during peak demand. These initiatives aim to foster a collective sense of responsibility as the nation braces for the winter ahead.

In addition to conservation efforts, the government is exploring alternative energy supplies. This includes negotiating with neighboring countries for electricity imports and enhancing domestic production where feasible. By securing a diverse range of energy sources, Ukraine aims to mitigate the risk of shortages and ensure that essential services remain operational.

The Role of Resilience and Innovation

Despite the challenges, the resilience of the Ukrainian people and their commitment to overcoming adversity shine through. Communities are coming together to support one another, sharing resources and information to help navigate the difficulties of winter.

Innovative solutions are also emerging as part of the response to the energy crisis. Local initiatives aimed at promoting energy efficiency and the use of alternative energy sources are gaining traction. From community-led solar projects to energy-efficient building practices, Ukrainians are finding ways to adapt and thrive even in the face of uncertainty.

Looking Ahead

As Ukraine prepares for the winter months, the focus remains on ensuring energy security and maintaining the functionality of critical infrastructure. While challenges loom, the collective efforts of the government, international partners, and citizens demonstrate a strong commitment to resilience and adaptation.

In conclusion, the upcoming winter presents significant challenges for Ukraine's energy sector, yet the nation's determination to secure its energy future remains unwavering. With ongoing repairs, international support, and community innovation, Ukraine is working diligently to navigate the complexities of this winter, aiming to emerge stronger and more resilient in the face of adversity. The resilience shown today will be crucial as the country continues to confront the ongoing impacts of conflict and seeks to build a sustainable future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.