NIPSCO settles with EPA

By Post-Tribune of Northwest Indiana


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The Northern Indiana Public Service Co. will permanently shut down its power plant in Gary, invest about $600 million in pollution controls and pay $13 million in environmental mitigation and penalties as a result of a settlement with the federal government.

The legal agreement will create jobs and result in reductions in air pollution, specifically of a pollutant that can lead to asthma attacks and cause premature death, one that can aggravate respiratory and heart disease and smells like rotten eggs, and one that contributes to ozone and acid rain.

Here's approximately how much air pollution will be reduced from NIPSCO's power plants in Northwest Indiana as a result of the settlement. The numbers are compared to 2008 emission levels:

• Sulfur dioxide smells like rotten eggs and contributes to acid rain, smog and haze: 46,000 tons per year

• Nitrogen oxides contribute to ozone: 18,000 tons per year

• Particulate matter contributes to asthma attacks: 4,500 tons per year.

When all the settlement requirements are complete in 2018, NIPSCO's nitrogen oxide emissions will be 35 percent below current rates and sulfur dioxide emissions will be 80 percent below current rates, according to NIPSCO.

"The pollution reductions achieved in this settlement will ensure that the people of Indiana and neighboring states have cleaner, healthier air to breathe," said Cynthia Giles, assistant administrator for the U.S. Environmental Protection Agency's Office of Enforcement and Compliance Assurance. "EPA is committed to advancing its national enforcement initiative to reduce air pollution from the largest sources of emissions."

At the peak of investment into environmental controls, NIPSCO said as many as 1,000 jobs could be created for local contractors and within the company over the next eight years.

"The installations are staged in. We're hoping on the skilled craft, we can bring it and hold it for five to eight years. So it's not that you bring in 1,000 people for six months and then done," said Kelly Carmichael, director of environmental health and safety for NiSource. "This is an extended period of time, which always helps with the labor force because then people can relocate."

The agreement comes after the EPA accused NIPSCO in 2004 of installing equipment at its coal-fired power plants in Chesterton Bailly Station, Michigan City and Wheatfield R.N. Schahfer in the 1980s and 1990s without first obtaining the required permits. The equipment was supposed to be the best available to remove pollutants, but was not, EPA said.

The Bailly station at the time was located in an area that had not attained EPA's air quality standard for ozone or sulfur dioxide — both of which NIPSCO was contributing to by overpolluting. Both are supposed to be reduced as part of the settlement.

The agreement covers all NIPSCO's plants. As part of the agreement, NIPSCO will install pollution control requirements at the three operating plants and permanently close the Gary plant Dean H. Mitchell on North Clark Road, which has been out of operation since an economic downturn in 2002.

"It's our plan to decommission it. In terms of future plans for that site, it's not been decided. We're looking at a wide array of options," said NIPSCO spokesman Nick Meyer. "The airport is looking to expand.... It could include building a new generating facility on top of that site. Nothing's been finalized."

NIPSCO said it would not initiate another rate case to cover the $600 million, but gradually apply small amounts to customer bills as the investments are made, as allowed by the Indiana Utility Regulatory Commission. One new unit, for instance, could be paid for over an 18-year period.

"In terms of actual impact on customer bills, that only occurs after we spend the money to do it. It's not like we come in and say we need $600 million today. As we spend it, we're going to go to the commission for coverage," Meyer said. "We are running calculations on when these investments would likely be made and how that will impact bills over time. We're talking small percentage points each year over the next eight years and beyond. I'm hesitant to say 4 percent, 2 percent, 1 percent. All we can say is, these will be gradual over time."

NIPSCO has invested more than $350 million in environmental controls since 1990 and reduced certain emissions by 70 percent. That investment is almost entirely paid off. With the additional upgrades, NIPSCO's plants will be ready to meet even stricter air pollution standards expected from EPA in the coming years.

As part of the settlement, NIPSCO has to spend $1.5 million to $2 million to acquire and restore environmentally sensitive lands adjacent to the Indiana Dunes National Lakeshore and donate it to the park. The company would like a partner to match its money. A stakeholder work group would be established to lay out a plan by the first quarter of 2012.

NIPSCO will also invest $9.5 million in various environmental improvement projects, including replacing diesel engines in its fleet with hybrid or electric cars, and sponsoring a rebate program to replace wood-burning stoves and outdoor boilers.

When an area has not attained standards, companies face much tougher requirements to start or relocate there. State Rep. Mara Candelaria Reardon, D-Munster, said the settlement will benefit the environment while creating new opportunities for economic development.

"The new investments will create hundreds of needed jobs in northern Indiana as we try to emerge from the state's deep economic recession," she said in a statement. "The significant reductions in emissions also will improve the air quality for families who live in neighborhoods near the NIPSCO electric generating stations."

The agreement between NIPSCO, EPA, the Department of Justice and the Indiana Department of Environmental Management is subject to a 30-day public comment period and court approval. It's the 21st settlement under a federal effort to enforce against power plants that allegedly violated the Clean Air Act.

Related News

New rules give British households right to sell solar power back to energy firms

UK Smart Export Guarantee enables households to sell surplus solar energy to suppliers, with dynamic export tariffs, grid payments, and battery-friendly incentives, boosting local renewable generation, microgeneration uptake, and decarbonisation across Britain.

 

Key Points

UK Smart Export Guarantee pays homes for exporting surplus solar power to the grid via supplier tariffs.

✅ Suppliers must pay households for exported kWh.

✅ Dynamic tariffs incentivize daytime solar generation.

✅ Batteries boost self-consumption and grid flexibility.

 

Britain’s biggest energy companies will have to buy renewable energy from their own customers through community-generated green electricity models under new laws to be introduced this week.

Homeowners who install new rooftop solar panels from 1 January 2020 will be able to lower their bills as many seek to cut soaring bills by selling the energy they do not need to their supplier.

A record was set at noon on a Friday in May 2017, when solar energy supplied around a quarter of the UK’s electricity, and a recent award that adds 10 GW of renewables indicates further growth.

However, solar panel owners are not always at home on sunny days to reap the benefit. The new rules will allow them to make money if they generate electricity for the grid.

Some 800,000 householders with solar panels already benefit from payments under a previous scheme. However, the subsidies were controversially scrapped by the government in April, with similar reduced credits for solar owners seen in other regions, causing the number of new installations to fall by 94% in May from the month before.

Labour accused the government last week of “actively dismantling” the solar industry. The sector will still struggle this summer as the change does not come in for another seven months, so homeowners have no incentive to buy panels this year.

Chris Skidmore, the minister for energy and clean growth, said the government wanted to increase the number of small-scale generators without adding the cost of subsidies to energy bills. “The future of energy is local and the new smart export guarantee will ensure households that choose to become green energy generators will be guaranteed a payment for electricity supplied to the grid,” he said. The government also hopes to encourage homes with solar panels to install batteries to help manage excess solar power on networks.

Greg Jackson, the founder of Octopus Energy, said: “These smart export tariffs are game-changing when it comes to harnessing the power of citizens to tackle climate change”.

A few suppliers, including Octopus, already offer to buy solar power from their customers, often setting terms for how solar owners are paid that reflect market conditions.

“They mean homes and businesses can be paid for producing clean electricity just like traditional generators, replacing old dirty power stations and pumping more renewable energy into the grid. This will help bring down prices for everyone as we use cheaper power generated locally by our neighbours,” Jackson said.

Léonie Greene, a director at the Solar Trade Association, said it was “vital” that even “very small players” were paid a fair price. “We will be watching the market like a hawk to see if competitive offers come forward that properly value the power that smart solar homes can contribute to the decarbonising electricity grid,” she said.

 

Related News

View more

Cost, safety drive line-burying decisions at Tucson Electric Power

TEP Undergrounding Policy prioritizes selective underground power lines to manage wildfire risk, engineering costs, and ratepayer impacts, balancing transmission and distribution reliability with right-of-way, safety, and vegetation management per Arizona regulators.

 

Key Points

A selective TEP approach to bury lines where safety, engineering, and cost justify undergrounding.

✅ Selective undergrounding for feeders near substations

✅ Balances wildfire mitigation, reliability, and ratepayer costs

✅ Follows ACC rules, BLM and USFS vegetation management

 

Though wildfires in California caused by power lines have prompted calls for more underground lines, Tucson Electric Power Co. plans to keep to its policy of burying lines selectively for safety.

Like many other utilities, TEP typically doesn’t install its long-range, high-voltage transmission lines, such as the TransWest Express project, and distribution equipment underground because of higher costs that would be passed on to ratepayers, TEP spokesman Joe Barrios said.

But the company will sometimes bury lower-voltage lines and equipment where it is cost-effective or needed for safety as utilities adapt to climate change across North America, or if customers or developers are willing to pay the higher installation costs

Underground installations generally include additional engineering expenses, right-of-way acquisition for projects like the New England Clean Power Link in other regions, and added labor and materials, Barrios said.

“This practice avoids passing along unnecessary costs to customers through their rates, so that all customers are not asked to subsidize a discretionary expenditure that primarily benefits residents or property owners in one small area of our service territory,” he said, adding that the Arizona Corporation Commission has supported the company’s policy.

Even so, TEP will place equipment underground in some circumstances if engineering or safety concerns, including electrical safety tips that utilities promote during storm season, justify the additional cost of underground installation, Barrios said.

In fact, lower-voltage “feeder” lines emerging from distribution substations are typically installed underground until the lines reach a point where they can be safely brought above ground, he added.

While in California PG&E has shut off power during windy weather to avoid wildfires in forested areas traversed by its power lines after events like the Drum Fire last June, TEP doesn’t face the same kind of wildfire risk, Barrios said.

Most of TEP’s 5,000 miles of transmission and distribution lines aren’t located in heavily forested areas that would raise fire concerns, though large urban systems have seen outages after station fires in Los Angeles, he said.

However, TEP has an active program of monitoring transmission lines and trimming vegetation to maintain a fire-safety buffer zone and address risks from vandalism such as copper theft where applicable, in compliance with federal regulations and in cooperation with the U.S. Bureau of Land Management and the U.S. Forest Service.

 

Related News

View more

TVA faces federal scrutiny over climate goals, electricity rates

TVA Rates and Renewable Energy Scrutiny spotlights electricity rates, distributed energy resources, solar and wind deployment, natural gas plans, grid access charges, energy efficiency cuts, and House oversight of lobbying, FERC inquiries, and least-cost planning.

 

Key Points

A congressional probe into TVA pricing and practices affecting renewables, energy efficiency, and climate goals.

✅ House panel probes TVA rates, DER and solar policies.

✅ Efficiency programs cut; least-cost planning questioned.

✅ Inquiry on lobbying, hidden fees; FERC scrutiny.

 

The Tennessee Valley Authority is facing federal scrutiny about its electricity rates and climate action, amid ongoing debates over network profits in other markets.

Members of the House Committee on Energy and Commerce are “requesting information” from TVA about its ratepayer bills and “out of concern” that TVA is interfering with the deployment of renewable and distributed energy resources, even as companies such as Tesla explore electricity retail to expand customer options.

“The Committee is concerned that TVA’s business practices are inconsistent with these statutory requirements to the disadvantage of TVA’s ratepayers and the environment,” the committee said in a letter to TVA CEO Jeffrey Lyash.

The four committee members — U.S. Reps. Frank Pallone, Jr. (D-NJ), Bobby L. Rush (D-IL), Diana DeGette (D-CO), and Paul Tonko (D-NY) — suggested that Tennessee Valley residents pay too much for electricity despite TVA’s relatively low rates, even as regulators have, in other cases, scrutinized mergers like the Hydro One-Avista deal to safeguard ratepayers, underscoring similar concerns. In 2020, Tennessee residents had electric bills higher than the national average, while low-income residents in Memphis have historically faced one of the highest energy burdens in the U.S.

In 2018, TVA reduced its wholesale rate while adding a grid access charge on local power companies—and interfered with the adoption of solar energy. Internal TVA documents obtained through a Freedom of Information Act request by the Energy and Policy Institute revealed that TVA permitted local power companies to impose new fees on distributed solar generation to “lessen the potential decrease in TVA load that may occur through the adoption of [behind the meter] generation.”

Additionally, the committee said TVA is not prioritizing energy conservation and efficiency or “least-cost planning” that includes renewables, as seen in oversight such as the OEB's Hydro One rates decision emphasizing cost allocation. TVA reduced its energy efficiency programs by nearly two-thirds between 2014 and 2018 and cut its energy efficiency customer incentive programs.

At this time, TVA has not aligned its long-term planning with the Biden administration’s goal to achieve a carbon-free electricity sector by 2035. TVA’s generation mix, which is roughly 60% carbon-free, comprises 39% nuclear, 19% coal, 26% natural gas, 11% hydro, 3% wind and solar, and 1% energy efficiency programs, according to TVA.

The committee is “greatly concerned that TVA has invested comparatively little to date in deploying solar and wind energy, while at the same time considering investments in new natural gas generation.”

TVA has announced plans to shutter the Kingston and Cumberland coal plants and is evaluating whether to replace this generation with natural gas, which is a fossil fuel, while debates over grid privatization raise questions about consumer benefits. TVA’s coal and natural gas plants represent most of the largest sources of greenhouses emissions in Tennessee.

TVA responded with a statement without directly addressing the committee’s concerns. TVA said its “developing and implementing emerging technologies to drive toward net-zero emissions by 2050.”

The final question that the House committee posed is whether TVA is funding any political activity. In 2019, the committee questioned TVA about its membership to the now-disbanded Utility Air Regulatory Group, a coalition that was involved in over 200 lawsuits that primarily fought Clear Air Act regulations.

TVA revealed that it had contributed $7.3 million to the industry lobbying group since 2001. Since TVA doesn’t have shareholders, customers paid for UARG membership fees, echoing findings that deferred utility costs burden customers in other jurisdictions. An Office of the Inspector General investigation couldn’t prove whether TVA’s contributions directly funded litigation because UARG didn’t have a line-by-line accounting of what they did with TVA’s dollars.

The congressional committee questioned whether TVA is still paying for lobbying or litigation that opposes “public health and welfare regulations.”

This last question follows a recent trend of questioning utilities about “hidden fees.” In December, the Federal Energy Regulatory Commission issued a Notice of Inquiry to examine how bills from investor-owned utilities might contain fees that fund political activity, and regulators have penalized firms like NT Power over customer notice practices, highlighting consumer protection. The Center for Biological Diversity filed a petition to protect electric and gas customers of investor-owned utilities from paying these fees, which may be used for lobbying, campaign-related donations and litigation.

 

Related News

View more

As New Zealand gets serious about climate change, can electricity replace fossil fuels in time?

New Zealand Energy Transition will electrify transport and industry with renewables, grid-scale solar, wind farms, geothermal, batteries, demand response, pumped hydro, and transmission upgrades to manage dry-year risk and winter peak loads.

 

Key Points

A shift to renewables and smart demand to decarbonise transport and industry while ensuring reliable, affordable power.

✅ Electrifies transport and industrial heat with renewables

✅ Uses demand response, batteries, and pumped hydro for resilience

✅ Targets 99%+ renewable supply, managing dry-year and peak loads

 

As fossil fuels are phased out over the coming decades, the Climate Change Commission (CCC) suggests electricity will take up much of the slack, aligning with the vision of a sustainable electric planet powering our vehicle fleet and replacing coal and gas in industrial processes.

But can the electricity system really provide for this increased load where and when it is needed? The answer is “yes”, with some caveats.

Our research examines climate change impacts on the New Zealand energy system. It shows we’ll need to pay close attention to demand as well as supply. And we’ll have to factor in the impacts of climate change when we plan for growth in the energy sector.

 

Demand for electricity to grow
While electricity use has not increased in NZ in the past decade, many agencies project steeply rising demand in coming years. This is partly due to both increasing population and gross domestic product, but mostly due to the anticipated electrification of transport and industry, which could result in a doubling of demand by mid-century.

It’s hard to get a sense of the scale of the new generation required, but if wind was the sole technology employed to meet demand by 2050, between 10 and 60 new wind farms would be needed nationwide.

Of course, we won’t only build wind farms, as renewables are coming on strong and grid-scale solar, rooftop solar, new geothermal, some new small hydro plant and possibly tidal and wave power will all have a part to play.

 

Managing the demand
As well as providing more electricity supply, demand management and batteries will also be important. Our modelling shows peak demand (which usually occurs when everyone turns on their heaters and ovens at 6pm in winter) could be up to 40% higher by 2050 than it is now.

But meeting this daily period of high demand could see expensive plant sitting idle for much of the time (with the last 25% of generation capacity only used about 10% of the time).

This is particularly a problem in a renewable electricity system when the hydro lakes are dry, as hydro is one of the few renewable electricity sources that can be stored during the day (as water behind the dam) and used over the evening peak (by generating with that stored water).

Demand response will therefore be needed. For example, this might involve an industrial plant turning off when there is too much load on the electricity grid.

 

But by 2050, a significant number of households will also need smart appliances and meters that automatically use cheaper electricity at non-peak times. For example, washing machines and electric car chargers could run automatically at 2am, rather than 6pm when demand is high.

Our modelling shows a well set up demand response system could mitigate dry-year risk (when hydro lakes are low on water) in coming decades, where currently gas and coal generation is often used.

Instead of (or as well as) having demand response and battery systems to combat dry-year risk, a pumped storage system could be built. This is where water is pumped uphill when hydro lake inflows are plentiful, and used to generate electricity during dry periods.

The NZ Battery project is currently considering the potential for this in New Zealand, and debates such as whether we would use Site C's electricity offer relevant lessons.

 

Almost (but not quite) 100% renewable
Dry-year risk would be greatly reduced and there would be “greater greenhouse gas emissions savings” if the Interim Climate Change Committee’s (ICCC) 2019 recommendation to aim for 99% renewable electricity was adopted, rather than aiming for 100%.

A small amount of gas-peaking plant would therefore be retained. The ICCC said going from 99% to 100% renewable electricity by overbuilding would only avoid a very small amount of carbon emissions, at a very high cost.

Our modelling supports this view. The CCC’s draft advice on the issue also makes the point that, although 100% renewable electricity is the “desired end point”, timing is important to enable a smooth transition.

Despite these views, Energy Minister Megan Woods has said the government will be keeping the target of a 100% renewable electricity sector by 2030.

 

Impacts of climate change
In future, the electricity system will have to respond to changing climate patterns as well, becoming resilient to climate risks over time.

The National Institute of Water and Atmospheric Research predicts winds will increase in the South Island and decrease in the far north in coming decades.

Inflows to the biggest hydro lakes will get wetter (more rain in their headwaters), and their seasonality will change due to changes in the amount of snow in these catchments.

Our modelling shows the electricity system can adapt to those changing conditions. One good news story (unless you’re a skier) is that warmer temperatures will mean less snow storage at lower elevations, and therefore higher lake inflows in the big hydro catchments in winter, leading to a better match between times of high electricity demand and higher inflows.

 

The price is right
The modelling also shows the cost of generating electricity is not likely to increase, because the price of building new sources of renewable energy continues to fall globally.

Because the cost of building new renewables is now cheaper than non-renewables (such as coal-fired plants), investing in carbon-free electricity is increasingly compelling, and renewables are more likely to be built to meet new demand in the near term.

While New Zealand’s electricity system can enable the rapid decarbonisation of (at least) our transport and industrial heat sectors, international efforts like cleaning up Canada's electricity underline the need for certainty so the electricity industry can start building to meet demand everywhere.

Bipartisan cooperation at government level will be important to encourage significant investment in generation and transmission projects with long lead times and life expectancies, as analyses of climate policy and grid implications underscore in comparable markets.

Infrastructure and markets are needed to support demand response uptake, as well as certainty around the Tiwai exit in 2024 and whether pumped storage is likely to be built.

Our electricity system can support the rapid decarbonisation needed if New Zealand is to do its fair share globally to tackle climate change.

But sound planning, firm decisions and a supportive and relatively stable regulatory framework are all required before shovels can hit the ground.

 

Related News

View more

Opinion: UK Natural Gas, Rising Prices and Electricity

European Energy Market Crisis drives record natural gas and electricity prices across the EU, as LNG supply constraints, Russian pipeline dependence, marginal pricing, and renewables integration expose volatility in liberalised power markets.

 

Key Points

A 2021 surge in European gas and electricity prices from supply strains, demand rebounds, and marginal pricing exposure.

✅ Record TTF gas and day-ahead power prices across Europe

✅ LNG constraints and Russian pipeline dependence tightened supply

✅ Debate over marginal pricing vs regulated models intensifies

 

By Ronan Bolton

The year 2021 was a turbulent one for energy markets across Europe, as Europe's energy nightmare deepened across the region. Skyrocketing natural gas prices have created a sense of crisis and will lead to cost-of-living problems for many households, as wholesale costs feed through into retail prices for gas and electricity over the coming months.

This has created immediate challenges for governments, but it should also encourage us to rethink the fundamental design of our energy markets as we seek to transition to net zero, with many viewing it as a wake-up call to ditch fossil fuels across the bloc.

This energy crisis was driven by a combination of factors: the relaxation of Covid-19 lockdowns across Europe created a surge in demand, while cold weather early in the year diminished storage levels and contributed to increasing demand from Asian economies. A number of technical issues and supply-side constraints also combined to limit imports of liquefied natural gas (LNG) into the continent.

Europe’s reliance on pipeline imports from Russia has once again been called into question, as Gazprom has refused to ride to the rescue, only fulfilling its pre-existing contracts. The combination of these, and other, factors resulted in record prices – the European benchmark price (the Dutch TTF Gas Futures Contract) reached almost €180/MWh on 21 December, with average day-ahead electricity prices exceeding €300/MWh across much of the continent in the following days.

Countries which rely heavily on natural gas as a source of electricity generation have been particularly exposed, with governments quickly put under pressure to intervene in the market.

In Spain the government and large energy companies have clashed over a proposed windfall tax on power producers. In Ireland, where wind and gas meet much of the country’s surging electricity demand, the government is proposing a €100 rebate for all domestic energy consumers in early 2022; while the UK government is currently negotiating a sector-wide bailout of the energy supply sector and considering ending the gas-electricity price link to curb bills.

This follows the collapse of a number of suppliers who had based their business models on attracting customers with low prices by buying cheap on the spot market. The rising wholesale prices, combined with the retail price cap previously introduced by the Theresa May government, led to their collapse.

While individual governments have little control over prices in an increasingly globalised and interconnected natural gas market, they can exert influence over electricity prices as these markets remain largely national and strongly influenced by domestic policy and regulation. Arising from this, the intersection of gas and power markets has become a key site of contestation and comment about the role of government in mitigating the impacts on consumers of rising fuel bills, even as several EU states oppose major reforms amid the price spike.

Given that renewables are constituting an ever-greater share of production capacity, many are now questioning why gas prices play such a determining role in electricity markets.

As I outline in my forthcoming book, Making Energy Markets, a particular feature of the ‘European model’ of liberalised electricity trade since the 1990s has been a reliance on spot markets to improve the efficiency of electricity systems. The idea was that high marginal prices – often set by expensive-to-run gas peaking plants – would signal when capacity limits are reached, providing clear incentives to consumers to reduce or delay demand at these peak periods.

This, in theory, would lead to an overall more efficient system, and in the long run, if average prices exceeded the costs of entering the market, new investments would be made, thus pushing the more expensive and inefficient plants off the system.

The free-market model became established during a more stable era when domestically-sourced coal, along with gas purchased on long-term contracts from European sources (the North Sea and the Netherlands), constituted a much greater proportion of electricity generation.

While prices fluctuated, they were within a somewhat predictable range, and provided a stable benchmark for the long-term contracts underpinning investment decisions. This is no longer the case as energy markets become increasingly volatile and disrupted during the energy transition.

The idea that free price formation in a competitive market, with governments standing back, would benefit electricity consumers and lead to more efficient systems was rooted in sound economic theory, and is the basis on which other major commodity markets, such as metals and agricultural crops, have been organised for decades.

The free-market model applied to electricity had clear limitations, however, as the majority of domestic consumers have not been exposed directly to real-time price signals. While this is changing with the roll-out of smart meters in many countries, the extent to which the average consumer will be willing or able to reduce demand in a predicable way during peak periods remains uncertain.

Also, experience shows that governments often come under pressure to intervene in markets if prices rise sharply during periods of scarcity, thus undermining a basic tenet of the market model, with EU gas price cap strategies floated as one option.

Given that gas continues to play a crucial role in balancing supply and demand for electricity, the options available to governments are limited, illustrating why rolling back electricity prices is harder than it appears for policymakers. One approach would be would be to keep faith with the liberalised market model, with limited interventions to help consumers in the short term, while ultimately relying on innovations in demand side technologies and alternatives to gas as a means of balancing systems with high shares of variable renewables.

An alternative scenario may see a return to old style national pricing policies, involving a move away from marginal pricing and spot markets, even as the EU prepares to revamp its electricity market in response. In the past, in particular during the post-WWII decades, and until markets were liberalised in the 1990s, governments have taken such an approach, centrally determining prices based on the costs of delivering long term system plans. The operation of gas plants and fuel procurement would become a much more regulated activity under such a model.

Many argue that this ‘traditional model’ better suits a world in which governments have committed to long-term decarbonisation targets, and zero marginal cost sources, such as wind and solar, play a more dominant role in markets and begin to push down prices.

A crucial question for energy policy makers is how to exploit this deflationary effect of renewables and pass-on cost savings to consumers, whilst ensuring that the lights stay on.

Despite the promise of storage technologies such as grid-scale batteries and hydrogen produced from electrolysis, aside from highly polluting coal, no alternative to internationally sourced natural gas as a means of balancing electricity systems and ensuring our energy security is immediately available.

This fact, above all else, will constrain the ambitions of governments to fundamentally transform energy markets.

Ronan Bolton is Reader at the School of Social and Political Science, University of Edinburgh and Co-Director of the UK Energy Research Centre. His book Making Energy Markets: The Origins of Electricity Liberalisation in Europe is to be published by Palgrave Macmillan in 2022.

 

Related News

View more

Energy-hungry Europe to brighten profit at US solar equipment makers

European Solar Inverter Demand surges as photovoltaics and residential solar expand during the clean energy transition, driven by high natural gas prices; Germany leads, boosting Enphase and SolarEdge sales for rooftop systems and grid-tied installations.

 

Key Points

Rising European need for solar inverters, fueled by residential PV growth, high energy costs, and clean energy policies.

✅ Germany leads EU rooftop PV installations

✅ Enphase and SolarEdge see revenue growth

✅ High gas prices and policies spur adoption

 

Solar equipment makers are expected to post higher quarterly profit, benefiting from strong demand in Europe for critical components that convert energy from the sun into electricity, amid record renewable momentum worldwide.

The continent is emerging as a major market for solar firms as it looks to reduce its dependence on the Russian energy supply and accelerate its clean energy transition, with solar already reshaping power prices in Northern Europe across the region, brightening up businesses of companies such as Enphase Energy (ENPH.O) and SolarEdge Technologies (SEDG.O), which make solar inverters.

Wall Street expects Enphase and SolarEdge to post a combined adjusted net income of $323.8 million for the April-June quarter, a 56.7% jump from a year earlier, even as demand growth slows in the United States.

The energy crisis in Europe is not as acute as last year when Western sanctions on Russia severely crimped supplies, but prices of natural gas and electricity continue to be much higher than in the United States, Raymond James analyst Pavel Molchanov said.

As a result, demand for residential solar keeps growing at a strong pace in the region, with Germany being one of the top markets and solar adoption in Poland also accelerating in recent years across the region.

About 159,000 residential solar systems became operational in the first quarter in Germany amid a solar power boost that reflects policy and demand, a 146% rise from a year earlier, according to BSW solar power association.

Adoption of solar is also helping European homeowners have greater control over their energy costs as fossil fuel prices tend to be more volatile, Morningstar analyst Brett Castelli said.

SolarEdge, which has a bigger exposure to Europe than Enphase, said its first-quarter revenue from the continent more than doubled compared with last year.

In comparison, growth in the United States has been tepid due to lukewarm demand in states like Texas and Arizona where cheaper electricity prices make the economics of residential solar less attractive, even though solar is now cheaper than gas in parts of the U.S. market.

Higher interest rates following the U.S. Federal Reserve's recent actions to tame inflation are also weighing on demand, even as power outage risks rise across the United States.

Analysts also expect weakness in California where a new metering reform reduces the money credited to rooftop solar owners for sending excess power into the grid, underscoring how policy shifts can reshape the sector. The sunshine state accounts for nearly a third of the U.S. residential solar market.

Enphase will report its results on Thursday after the bell, while SolarEdge will release its second-quarter numbers on Aug. 1.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified