NIPSCO settles with EPA

By Post-Tribune of Northwest Indiana


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The Northern Indiana Public Service Co. will permanently shut down its power plant in Gary, invest about $600 million in pollution controls and pay $13 million in environmental mitigation and penalties as a result of a settlement with the federal government.

The legal agreement will create jobs and result in reductions in air pollution, specifically of a pollutant that can lead to asthma attacks and cause premature death, one that can aggravate respiratory and heart disease and smells like rotten eggs, and one that contributes to ozone and acid rain.

Here's approximately how much air pollution will be reduced from NIPSCO's power plants in Northwest Indiana as a result of the settlement. The numbers are compared to 2008 emission levels:

• Sulfur dioxide smells like rotten eggs and contributes to acid rain, smog and haze: 46,000 tons per year

• Nitrogen oxides contribute to ozone: 18,000 tons per year

• Particulate matter contributes to asthma attacks: 4,500 tons per year.

When all the settlement requirements are complete in 2018, NIPSCO's nitrogen oxide emissions will be 35 percent below current rates and sulfur dioxide emissions will be 80 percent below current rates, according to NIPSCO.

"The pollution reductions achieved in this settlement will ensure that the people of Indiana and neighboring states have cleaner, healthier air to breathe," said Cynthia Giles, assistant administrator for the U.S. Environmental Protection Agency's Office of Enforcement and Compliance Assurance. "EPA is committed to advancing its national enforcement initiative to reduce air pollution from the largest sources of emissions."

At the peak of investment into environmental controls, NIPSCO said as many as 1,000 jobs could be created for local contractors and within the company over the next eight years.

"The installations are staged in. We're hoping on the skilled craft, we can bring it and hold it for five to eight years. So it's not that you bring in 1,000 people for six months and then done," said Kelly Carmichael, director of environmental health and safety for NiSource. "This is an extended period of time, which always helps with the labor force because then people can relocate."

The agreement comes after the EPA accused NIPSCO in 2004 of installing equipment at its coal-fired power plants in Chesterton Bailly Station, Michigan City and Wheatfield R.N. Schahfer in the 1980s and 1990s without first obtaining the required permits. The equipment was supposed to be the best available to remove pollutants, but was not, EPA said.

The Bailly station at the time was located in an area that had not attained EPA's air quality standard for ozone or sulfur dioxide — both of which NIPSCO was contributing to by overpolluting. Both are supposed to be reduced as part of the settlement.

The agreement covers all NIPSCO's plants. As part of the agreement, NIPSCO will install pollution control requirements at the three operating plants and permanently close the Gary plant Dean H. Mitchell on North Clark Road, which has been out of operation since an economic downturn in 2002.

"It's our plan to decommission it. In terms of future plans for that site, it's not been decided. We're looking at a wide array of options," said NIPSCO spokesman Nick Meyer. "The airport is looking to expand.... It could include building a new generating facility on top of that site. Nothing's been finalized."

NIPSCO said it would not initiate another rate case to cover the $600 million, but gradually apply small amounts to customer bills as the investments are made, as allowed by the Indiana Utility Regulatory Commission. One new unit, for instance, could be paid for over an 18-year period.

"In terms of actual impact on customer bills, that only occurs after we spend the money to do it. It's not like we come in and say we need $600 million today. As we spend it, we're going to go to the commission for coverage," Meyer said. "We are running calculations on when these investments would likely be made and how that will impact bills over time. We're talking small percentage points each year over the next eight years and beyond. I'm hesitant to say 4 percent, 2 percent, 1 percent. All we can say is, these will be gradual over time."

NIPSCO has invested more than $350 million in environmental controls since 1990 and reduced certain emissions by 70 percent. That investment is almost entirely paid off. With the additional upgrades, NIPSCO's plants will be ready to meet even stricter air pollution standards expected from EPA in the coming years.

As part of the settlement, NIPSCO has to spend $1.5 million to $2 million to acquire and restore environmentally sensitive lands adjacent to the Indiana Dunes National Lakeshore and donate it to the park. The company would like a partner to match its money. A stakeholder work group would be established to lay out a plan by the first quarter of 2012.

NIPSCO will also invest $9.5 million in various environmental improvement projects, including replacing diesel engines in its fleet with hybrid or electric cars, and sponsoring a rebate program to replace wood-burning stoves and outdoor boilers.

When an area has not attained standards, companies face much tougher requirements to start or relocate there. State Rep. Mara Candelaria Reardon, D-Munster, said the settlement will benefit the environment while creating new opportunities for economic development.

"The new investments will create hundreds of needed jobs in northern Indiana as we try to emerge from the state's deep economic recession," she said in a statement. "The significant reductions in emissions also will improve the air quality for families who live in neighborhoods near the NIPSCO electric generating stations."

The agreement between NIPSCO, EPA, the Department of Justice and the Indiana Department of Environmental Management is subject to a 30-day public comment period and court approval. It's the 21st settlement under a federal effort to enforce against power plants that allegedly violated the Clean Air Act.

Related News

Enel Starts Operations of 450 MW Wind Farm in U.S

High Lonesome Wind Farm powers Texas with 500 MW of renewable energy, backed by a 12-year PPA with Danone North America and a Proxy Revenue Swap, cutting CO2 emissions as Enel's largest project to date.

 

Key Points

A 500 MW Enel wind project in Texas, supplying renewable power via PPAs and hedged by a Proxy Revenue Swap.

✅ 450 MW online; expanding to 500 MW in early 2020

✅ 12-year PPA with Danone North America for 20.6 MW

✅ PRS hedge with Allianz and Nephila stabilizes revenues

 

Enel, through its US renewable subsidiary Enel Green Power North America, Inc. (“EGPNA”), has started operations of its 450 MW High Lonesome wind farm in Upton and Crockett Counties, in Texas, the largest operational wind project in the Group’s global renewable portfolio, alongside a recent 90 MW Spanish wind build in its European pipeline. Enel also signed a 12-year, renewable energy power purchase agreement (PPA) with food and beverage company Danone North America, a Public Benefit Corporation, for physical delivery of the renewable electricity associated with 20.6 MW, leading to an additional 50 MW expansion of High Lonesome that will increase the plant’s total capacity to 500 MW. The construction of the 50 MW expansion is currently underway and operations are due to start in the first quarter of 2020.

“The start of operations of Enel’s largest wind farm in the world marks a significant achievement for our company and reinforces our global commitment to accelerated renewable energy growth,” said Antonio Cammisecra, CEO of Enel Green Power, referencing the largest wind project constructed in North America as evidence of market momentum. “This milestone is matched with a new partnership with Danone North America to support their renewable goals, a reinforcement of our continued commitment to provide customers with tailored solutions to meet their sustainability goals.”

The agreement between Enel and Danone North America will provide enough electricity to produce the equivalent of almost 800 million cups of yogurt1 and over 80 million gallons2 of milk each year and support the food and beverage company’s commitment to securing 100% of its purchased electricity from renewable sources by 2030, in a market where North Carolina’s first wind farm is now fully operational and expanding access to clean power.

Mariano Lozano, president and CEO of Danone North America, added:“This is an exciting and significant step as we continue to advance our 2030 renewable electricity goals. As a public benefit corporation committed to balancing the needs of our business with those of society and the planet, we truly believe that this agreement makes sense from both a business and sustainability point of view. We’re delighted to be working with Enel Green Power to expand their High Lonesome wind farm and grow the renewable electricity infrastructure, such as New York’s biggest offshore wind projects, here in the US.”

In addition, as more US wind projects come online, such as TransAlta’s 119 MW project, the energy produced by a 295 MW portion of the project will be hedged under a Proxy Revenue Swap (PRS) with insurer Allianz Global Corporate & Specialty, Inc.'s Alternative Risk Transfer unit (Allianz), and Nephila Climate, a provider of weather and climate risk management products. The PRS is a financial derivative agreement designed to produce stable revenues for the project regardless of power price fluctuations and weather-driven intermittency, hedging the project from this kind of risk in addition to that associated with price and volume.

Under the PRS agreement, and as other projects begin operations, like Building Energy’s latest plant, High Lonesome will receive fixed payments based on the expected value of future energy production, with adjustments paid depending on how the realized proxy revenue of the project differs from the fixed payment. The PRS for High Lonesome, which is the largest by capacity for a single plant globally and the first agreement of its kind for Enel, was executed in collaboration with REsurety, Inc.

The investment in the construction of the 500 MW plant amounts to around 720 million US dollars. The wind farm is due to generate around 1.9 TWh annually, comparable to a 280 MW Alberta wind farm’s output, while avoiding the emission of more than 1.2 million tons of CO2 per year.

 

Related News

View more

California electricity pricing changes pose an existential threat to residential rooftop solar

California Rooftop Solar Rate Reforms propose shifting net metering to fixed access fees, peak-demand charges, and time-of-use pricing, aligning grid costs, distributed generation incentives, and retail rates for efficient, least-cost electricity and fair cost recovery.

 

Key Points

Policies replacing net metering with fixed fees, demand charges, and time-of-use rates to align costs and incentives.

✅ Large fixed access charge funds grid infrastructure

✅ Peak-demand pricing reflects capacity costs at system peak

✅ Time-varying rates align marginal costs and emissions

 

The California Public Service Commission has proposed revamping electricity rates for residential customers who produce electricity through their rooftop solar panels. In a recent New York Times op‐​ed, former Governor Arnold Schwarzenegger argued the changes pose an existential threat to residential rooftop solar. Interest groups favoring rooftop solar portray the current pricing system, often called net metering, in populist terms: “Net metering is the one opportunity for the little guy to get relief, and they want to put the kibosh on it.” And conventional news coverage suggests that because rooftop solar is an obvious good development and nefarious interests, incumbent utilities and their unionized employees, support the reform, well‐​meaning people should oppose it. A more thoughtful analysis would inquire about the characteristics and prices of a system that supplies electricity at least cost.

Currently, under net metering customers are billed for their net electricity use plus a minimum fixed charge each month. When their consumption exceeds their home production, they are billed for their net use from the electricity distribution system (the grid) at retail rates. When their production exceeds their consumption and the excess is supplied to the grid, residential consumers also are reimbursed at retail rates. During a billing period, if a consumer’s production equaled their consumption their electric bill would only be the monthly fixed charge.

Net metering would be fine if all the fixed costs of the electric distribution and transmission systems were included in the fixed monthly charge, but they are not. Between 66 and 77 percent of the expenses of California private utilities do not change when a customer increases or decreases consumption, but those expenses are recovered largely through charges per kWh of use rather than a large monthly fixed charge. Said differently, for every kWh that a PG&E solar household exported into the grid in 2019, it saved more than 26 cents, on average, while the utility’s costs only declined by about 8 cents or less including an estimate of the pollution costs of the system’s fossil fuel generators. The 18‐​cent difference pays for costs that don’t change with variation in a household’s consumptions, like much of the transmission and distribution system, energy efficiency programs, subsidies for low‐​income customers, and other fixed costs. Rooftop solar is so popular in California because its installation under a net metering system avoids the 18 cents, creating a solar cost shift onto non-solar customers. Rooftop solar is not the answer to all our environmental needs. It is simply a form of arbitrage around paying for the grid’s fixed costs.

What should electricity tariffs look like? This article in Regulation argues that efficient charges for electricity would consist of three components: a large fixed charge for the distribution and transmission lines, meter reading, vegetation trimming, etc.; a peak‐​demand charge related to your demand when the system’s peak demand occurs to pay for fixed capacity costs associated with peak use; and a charge for electricity use that reflects the time‐ and location‐​varying cost of additional electricity supply.

Actual utility tariffs do not reflect this ideal because of political concerns about the effects of large fixed monthly charges on low‐​income customers and the optics of explaining to customers that they must pay 50 or 60 dollars a month for access even if their use is zero. Instead, the current pricing system “taxes” electricity use to pay for fixed costs. And solar net metering is simply a way to avoid the tax. The proposed California rate reforms would explicitly impose a fixed monthly charge on rooftop solar systems that are also connected to the grid, a change that could bring major changes to your electric bill statewide, and would thus end the fixed‐​cost avoidance. Any distributional concerns that arise because of the effect of much larger fixed charges on lower‐​income customers could be managed through explicit tax deductions that are proportional to income.

The current rooftop solar subsidies in California also should end because they have perverse incentive effects on fossil fuel generators, even as the state exports its energy policies to neighbors. Solar output has increased so much in California that when it ends with every sunset, natural gas generated electricity has to increase very rapidly. But the natural gas generators whose output can be increased rapidly have more pollution and higher marginal costs than those natural gas plants (so called combined cycle plants) whose output is steadier. The rapid increase in California solar capacity has had the perverse effect of changing the composition of natural gas generators toward more costly and polluting units.

The reforms would not end the role of solar power. They would just shift production from high‐​cost rooftop to lower‐​cost centralized solar production, a transition cited in analyses of why electricity prices are soaring in California, whose average costs are comparable with electricity production in natural gas generators. And they would end the excessive subsidies to solar that have negatively altered the composition of natural gas generators.

Getting prices right does not generate citizen interest as much as the misguided notion that rooftop solar will save the world, and recent efforts to overturn income-based utility charges show how politicized the debate remains. But getting prices right would allow the decentralized choices of consumers and investors to achieve their goals at least cost.

 

Related News

View more

Does Providing Electricity To The Poor Reduce Poverty? Maybe Not

Rural Electrification Poverty Impact examines energy access, grid connections, and reliability, testing economic development claims via randomized trials; findings show minimal gains without appliances, reliable supply, and complementary services like education and job creation initiatives.

 

Key Points

Study of household grid connections showing modest poverty impact without reliable power and appliances.

✅ Randomized grid connections showed no short-term income gains.

✅ Low reliability and few appliances limited electricity use.

✅ Complementary investments in jobs, education, health may be needed.

 

The head of Swedfund, the development finance group, recently summarized a widely-held belief: “Access to reliable electricity drives development and is essential for job creation, women’s empowerment and combating poverty.” This view has been the driving force behind a number of efforts to provide electricity to the 1.1 billion people around the world living in energy poverty, such as India's village electrification initiatives in recent years.

But does electricity really help lift households out of poverty? My co-authors and I set out to answer this question. We designed an experiment in which we first identified a sample of “under grid” households in Western Kenya—structures that were located close to but not connected to a grid. These households were then randomly divided into treatment and control groups. In the treatment group, we worked closely with the rural electrification agency to connect the households to the grid for free or at various discounts. In the control group, we made no changes. After eighteen months, we surveyed people from both groups and collected data on an assortment of outcomes, including whether they were employed outside of subsistence agriculture (the most common type of work in the region) and how many assets they owned. We even gave children basic tests, as a frequent assertion is that electricity helps children perform better in school since they are able to study at night.

When we analyzed the data, we found no differences between the treatment and control groups. The rural electrification agency had spent more than $1,000 to connect each household. Yet eighteen months later, the households we connected seemed to be no better off. Even the children’s test scores were more or less the same. The results of our experiment were discouraging, and at odds with the popular view that supplying households with access to electricity will drive economic development. Lifting people out of poverty may require a more comprehensive approach to ensure that electricity is not only affordable (with some evidence that EV growth can benefit all customers in mature markets), but is also reliable, useable, and available to the whole community, paired with other important investments.

For instance, in many low-income countries, the grid has frequent blackouts and maintenance problems, making electricity unreliable, as seen in Nigeria's electricity crisis in recent years. Even if the grid were reliable, poor households may not be able to afford the appliances that would allow for more than just lighting and cell phone charging. In our data, households barely bought any appliances and they used just 3 kilowatt-hours per month. Compare that to the U.S. average of 900 kilowatt-hours per month, a figure that could rise as EV adoption increases electricity demand over time.

There are also other factors to consider. After all, correlation does not equal causation. There is no doubt that the 1.1 billion people without power are the world’s poorest citizens. But this is not the only challenge they face. The poor may also lack running water, basic sanitation, consistent food supplies, quality education, sufficient health care, political influence, and a host of other factors that may be harder to measure but are no less important to well-being. Prioritizing investments in some of these other factors may lead to higher immediate returns. Previous work by one of my co-authors, for example, shows substantial economic gains from government spending on treatment for intestinal worms in children.

It’s possible that our results don’t generalize. They certainly don’t apply to enhancing electricity services for non-residential customers, like factories, hospitals, and schools, and electric utilities adapting to new load patterns. Perhaps the households we studied in Western Kenya are particularly poor (although measures of well-being suggest they are comparable to rural households across Sub-Saharan Africa) or politically disenfranchised. Perhaps if we had waited longer, or if we had electrified an entire region, the household impacts we measured would have been much greater. But others who have studied this question have found similar results. One study, also conducted in Western Kenya, found that subsidizing solar lamps helped families save on kerosene, but did not lead children to study more. Another study found that installing solar-powered microgrids in Indian villages resulted in no socioeconomic benefits.

 

Related News

View more

BC residents split on going nuclear for electricity generation: survey

BC Energy Debate: Nuclear Power and LNG divides British Columbia, as a new survey weighs zero-emission clean energy, hydroelectric capacity, the Site C dam, EV mandates, energy security, rising costs, and blackout risks.

 

Key Points

A BC-wide debate on power choices balancing nuclear, LNG, hydro, costs, climate goals, EVs, and grid reliability.

✅ Survey: 43% support nuclear, 40% oppose in BC

✅ 55% back LNG expansion, led by Southern BC

✅ Hydro at 90%; Site C adds 1,100 MW by 2025

 

There is a long-term need to produce more electricity to meet population and economic growth needs and, in particular, create new clean energy sources, with two new BC generating stations recently commissioned contributing to capacity.

Increasingly, in the worldwide discourse on climate change, nuclear power plants are being touted as a zero-emission clean energy source, with Ontario exploring large-scale nuclear to expand capacity, and a key solution towards meeting reduced emissions goals. New technological advancements could make nuclear power far safer than existing plant designs.

When queried on whether British Columbia should support nuclear power for electricity generation, respondents in a new province-wide survey by Research Co. were split, with 43% in favour and 40% against.

Levels of support reached 46% in Metro Vancouver, 41% in the Fraser Valley, 44% in Southern BC, 39% in Northern BC, and 36% on Vancouver Island.

The closest nuclear power plant to BC is the Columbia Generating Station, located in southern Washington State.

The safe use of nuclear power came to the forefront following the 2011 Fukushima nuclear disaster when the most powerful earthquake ever recorded in Japan triggered a large tsunami that damaged the plant’s emergency generators. Japan subsequently shut off many of its nuclear power plants and increased its reliance on fossil fuel imports, but in recent years there has been a policy reversal to restart shuttered nuclear plants to provide the nation with improved energy security.

Over the past decade, Germany has also been undergoing a transition away from nuclear power. But in an effort to replace Russian natural gas, Germany is now using more coal for power generation than ever before in decades, while Ontario’s electricity outlook suggests a shift to a dirtier mix, and it is looking to expand its use of liquefied natural gas (LNG).

Last summer, German chancellor Olaf Scholz told the CBC he wants Canada to increase its shipments of LNG gas to Europe. LNG, which is greener compared to coal and oil, is generally seen as a transitionary fuel source for parts of the world that currently depend on heavy polluting fuels for power generation.

When the Research Co. survey asked BC residents whether they support the further development of the province’s LNG industry, including LNG electricity demand that BC Hydro says justifies Site C, 55% of respondents were supportive, while 29% were opposed and 17% undecided.

Support for the expansion of the LNG is highest in Southern BC (67%), followed by the Fraser Valley (56%), Metro Vancouver (also 56%), Northern BC (55%), and Vancouver Island (41%).

A larger proportion of BC residents are against any idea of the provincial government moving to ban the use of natural gas for stoves and heating in new buildings, with 45% opposed and 39% in support.

Significant majorities of BC residents are concerned that energy costs could become too expensive, and a report on coal phase-outs underscores potential cost and effectiveness concerns, with 84% expressing concern for residents and 66% for businesses. As well, 70% are concerned that energy shortages could lead to measures such as rationing and rolling blackouts.

Currently, about 90% of BC’s electricity is produced by hydroelectric dams, but this fluctuates throughout the year — at times, BC imports coal- and gas-generated power from the United States when hydro output is low.

According to BC Hydro’s five-year electrification plan released in September 2021, it is estimated BC has a sufficient supply of clean electricity only by 2030, including the capacity of the Site C dam, which is slated to open in 2025. The $16 billion dam will have an output capacity of 1,100 megawatts or enough power for the equivalent of 450,000 homes.

The provincial government’s strategy for pushing vehicles towards becoming dependent on the electrical grid also necessitates a reliable supply of power, prompting BC Hydro’s first call for power in 15 years to prepare for electrification. Most BC residents support the provincial government’s requirement for all new car and passenger truck sales to be zero-emission by 2035, with 75% supporting the goal and 21% opposed.
 

 

Related News

View more

Nova Scotia can't order electric utility to lower power rates, minister says

Nova Scotia Power Rate Regulation explains how the privately owned utility is governed by the Utility Review Board, limiting government authority, while COVID-19 relief measures include suspended disconnections, waived fees, payment plans, and emergency assistance.

 

Key Points

URB oversight where the board, not the province, sets power rates, with COVID-19 relief pausing disconnections and fees.

✅ Province lacks authority to order rate cuts

✅ URB regulates Nova Scotia Power rates

✅ Relief: no disconnections, waived fees, payment plans

 

The province can't ask Nova Scotia Power to lower its rates to ease the financial pressure on out-of-work residents because it lacks the authority to take that kind of action, even as the Nova Scotia regulator approved a 14% hike in a separate proceeding, the provincial energy minister said Thursday.

Derek Mombourquette said he is in "constant contact" with the privately owned utility.

"The conversations are ongoing with Nova Scotia Power," he said after a cabinet meeting.

When asked if the Liberal government would order the utility to lower electricity rates as households and businesses struggle with the financial fallout from the COVID-19 pandemic, Mombourquette said there was nothing he could do.

"We don't have the regulatory authority as a government to reduce the rates," he told reporters during a conference call.

"They're independent, and they are regulated through the (Nova Scotia Utility Review Board). My conversations with Nova Scotia Power essentially have been to do whatever they can to support Nova Scotians, whether it's residents or businesses in this very difficult time."

Asked if the board would take action, the minister said: "I'm not aware of that," despite the premier's appeals to regulators in separate rate cases.

However, the minister noted that the utility, owned by Emera Inc., has suspended disconnections for bill non-payment for at least 90 days, a step similar to reconnection efforts by Hydro One announced in Ontario.

It has also relaxed payment timelines and waived penalties and fees, while some jurisdictions offered lump-sum credits to help with bills.

Nova Scotia Power CEO Wayne O'Connor has also said the company is making additional donations to a fund available to help low-income individuals and families pay their energy bills.

In late March, Ontario cut electricity rates for residential consumers, farms and small businesses in response to a surge in people forced to work from home as a result of the pandemic, alongside bill support measures for ratepayers.

Premier Doug Ford said there would be a 45-day switch to off-peak rates, later moving to a recovery rate framework, which meant electricity consumers would be paying the lowest rate possible at any time of day.

The change was expected to cost the province about $162 million.

 

Related News

View more

US Approves Rule to Boost Renewable Transmission

FERC Transmission Rule accelerates grid modernization and interregional high-voltage lines, enabling renewable energy integration, load balancing, and reliability to advance net-zero goals while strengthening resilience, capacity expansion, and decarbonization across U.S. regional transmission organizations.

 

Key Points

A federal policy mandating interregional grid planning and cost sharing to expand high-voltage lines for renewables.

✅ Expands interregional high-voltage transmission capacity

✅ Improves reliability, resilience, and load balancing

✅ Aligns cost allocation and long-term planning for renewables

 

On May 13th, 2024, the US took a monumental step towards its clean energy goals. The Federal Energy Regulatory Commission (FERC) approved a long-awaited rule designed to significantly expand the transmission of renewable energy across the nation's power grid, a US grid overhaul that many advocates say was overdue. This decision aligns with President Biden's ambitious plan to achieve net-zero carbon emissions by 2050, with renewable energy playing a central role.

The new rule tackles a critical bottleneck hindering the widespread adoption of renewables – transmission infrastructure. Unlike traditional power plants like coal or natural gas that run constantly, solar and wind power generation fluctuates with weather conditions. This variability poses a challenge for the existing grid, which is not designed to efficiently handle large-scale integration of these intermittent sources, helping explain why the grid isn't 100% renewable today.

The FERC rule aims to address this by promoting the construction of new, high-voltage transmission lines, particularly those connecting different regions, where grid limitations in the Pacific Northwest have highlighted the need for better interregional transfers. This improved connectivity would allow for a more strategic distribution of renewable energy. Imagine solar energy harnessed in the sun-drenched Southwest being transmitted eastward to meet peak demand during hot summer days on the Atlantic Coast.

The benefits of this expanded transmission network are multifaceted. First, it unlocks the full potential of renewable resources by allowing for their efficient utilization across the country, a trend consistent with wind and solar surpassing coal in U.S. generation. Abundant wind power in the Midwest could be utilized on the West Coast, while surplus solar energy from the South could supplement demand in the Northeast.

Second, a more robust grid with a higher capacity for renewables reduces reliance on fossil fuel-based power plants and complements other ways to meet decarbonization goals across sectors. This translates to cleaner air and a significant reduction in greenhouse gas emissions, contributing to the fight against climate change.

Third, a modernized grid with improved long-distance transmission bolsters the nation's energy security. Extreme weather events, a growing concern due to climate change, can disrupt energy production in specific regions. This interconnected grid would provide a buffer, ensuring a more reliable and resilient power supply and helping put regions on the road to 100% renewables even during adverse weather conditions.

The FERC's decision is a win for environmental groups and the renewable energy industry. They see it as a critical step towards a cleaner energy future and a significant driver of job creation in the construction and maintenance of new transmission lines. However, concerns have been raised by some stakeholders, particularly investor-owned utilities. They worry about the potential cost burden associated with building these expansive new lines, and recent reports of stalled grid spending underscore those concerns and the need for efficient cost allocation mechanisms. Striking a balance between efficiency, affordability, and environmental responsibility will be crucial for the successful implementation of this policy.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.