Ontario's power supply outlook positive

By Ontario's Independent Electricity System Operator IESO


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Ontario's positive supply outlook over the next 18 months includes new resources - two refurbished units at the Bruce nuclear station plus the province's first grid-connected solar farm - as well as new tools to effectively integrate renewable resources. The quarterly 18-Month Outlook, released recently by the Independent Electricity System Operator IESO, provides an assessment of the adequacy and reliability of Ontario's bulk power system.

Approximately 2,200 megawatts MW of grid-connected renewable capacity will be added to the system between December 2012 and May 2014, including the completion of Ontario's first transmission-connected solar project, a 100 MW solar farm in Haldimand County. By May 2014, distribution- and transmission-connected wind and solar generation in Ontario is expected to reach approximately 5,500 MW.

The refurbishment and reliable operation of two Bruce nuclear units is an integral requirement for the scheduled elimination of coal-fired capacity. Both Bruce nuclear units have now completed commissioning and once these units have demonstrated sustained reliable performance, Ontario will be in a good position to continue the removal of coal-fired generation from the system.

The IESO is continuing with plans to move to an economic dispatch of variable generation. Regular day-ahead and pre-dispatch generator scheduling processes now incorporate a centralized forecast of wind output, which has improved the accuracy of forecasted wind production. In time, this forecast will also include Ontario's large solar facilities. By the end of 2013, a five-minute forecast for variable generation will be integrated into the real-time scheduling process and, through the introduction of new market rules, grid-connected variable resources will become fully dispatchable.

"The new tools and processes we're developing are starting to demonstrate their value," said Bruce Campbell, Vice-President of Resource Integration at the IESO. "Renewable resources behave very differently from conventional resources like nuclear and hydroelectric, and we're investing in new technologies to extract maximum benefit from these units."

Energy demand is forecast to decrease by 1.1 in 2013 after a small 0.5 increase in 2012. Factors such as growth in embedded generation capacity, which reduces demand from the bulk power system, and ongoing conservation initiatives will more than offset any impacts from population growth and economic expansion, leading to an overall decline in electricity consumption at the bulk power level.

Peak demands will be similarly impacted by the same factors. In particular, the projected growth in distribution-connected solar capacity will have a significant impact on the apparent summer peak by effectively reducing demand for grid-supplied energy. Additionally, price impacts like time-of-use rates and the Global Adjustment Allocation will continue to have an effect on peak demands, leading to a decline in summer peaks.

The IESO regularly assesses the adequacy and reliability of Ontario's power system. The 18-Month Outlook is issued on a quarterly basis and is available at: www.ieso.ca/18-month.outlook.nov2012.

The IESO is responsible for managing Ontario's bulk electricity system and operating the wholesale market. For more information, please visit www.ieso.ca.

Related News

IVECO BUS Achieves Success with New Hydrogen and Electric Bus Contracts in France

IVECO BUS hydrogen and electric buses in France accelerate clean mobility, zero-emission public transport, fleet electrification, and fuel cell adoption, with battery-electric ranges, fast charging, hydrogen refueling, lower TCO, and high passenger comfort in cities.

 

Key Points

Zero-emission buses using battery-electric and fuel cell tech, cutting TCO with fast refueling and urban-ready range.

✅ Zero tailpipe emissions, lower noise, improved air quality

✅ Fast charging and rapid hydrogen refueling infrastructure

✅ Lower TCO via reduced fuel and maintenance costs

 

IVECO BUS is making significant strides in the French public transportation sector, recently securing contracts for the delivery of hydrogen and battery electric buses. This development underscores the growing commitment of cities and regions in France to transition to cleaner, more sustainable public transportation options, even as electric bus adoption challenges persist. With these new contracts, IVECO BUS is poised to strengthen its position as a leader in the electric mobility market.

Expanding the Green Bus Fleet

The contracts involve the supply of various models of IVECO's hydrogen and electric buses, highlighting a strategic shift towards sustainable transport solutions. France has been proactive in its efforts to reduce carbon emissions and promote environmentally friendly transportation. As part of this initiative, many local authorities are investing in clean bus fleets, which has opened up substantial opportunities for manufacturers like IVECO.

These contracts will provide multiple French cities with advanced vehicles designed to minimize environmental impact while maintaining high performance and passenger comfort. The move towards hydrogen and battery electric buses reflects a broader trend in public transportation, where cities are increasingly adopting green technologies, with lessons from TTC's electric bus fleet informing best practices to meet both regulatory requirements and public demand for cleaner air.

The Role of Hydrogen and Battery Electric Technology

Hydrogen and battery electric buses represent two key technologies in the transition to sustainable transport. Battery electric buses are known for their zero tailpipe emissions, making them ideal for urban environments where air quality is a pressing concern, as demonstrated by the TTC battery-electric rollout in North America. IVECO's battery electric models come equipped with advanced features, including fast charging capabilities and longer ranges, making them suitable for various operational needs.

On the other hand, hydrogen buses offer the advantage of rapid refueling and extended range, addressing some of the limitations associated with battery electric vehicles, as seen with fuel cell buses in Mississauga deployments across transit networks. IVECO’s hydrogen buses utilize cutting-edge fuel cell technology, allowing them to operate efficiently in urban and intercity routes. This flexibility positions them as a viable solution for public transport authorities aiming to diversify their fleets.

Economic and Environmental Benefits

The adoption of hydrogen and battery electric buses is not only beneficial for the environment but also presents economic opportunities. By investing in these technologies, local governments can reduce operating costs associated with traditional diesel buses. Electric and hydrogen buses generally have lower fuel costs and require less maintenance, resulting in long-term savings.

Furthermore, the transition to cleaner buses can help stimulate local economies. As cities invest in electric mobility, new jobs will be created in manufacturing, maintenance, and infrastructure development, such as charging stations and hydrogen fueling networks, including the UK bus charging hub model, which supports large-scale operations. This shift can have a positive ripple effect, contributing to overall economic growth while fostering a cleaner environment.

IVECO BUS's Commitment to Sustainability

IVECO BUS's recent successes in France align with the company’s broader commitment to sustainability and innovation. As part of the CNH Industrial group, IVECO is dedicated to advancing green technologies and reducing the carbon footprint of public transportation. The company has been at the forefront of developing environmentally friendly vehicles, and these new contracts further reinforce its leadership position in the market.

Moreover, IVECO is investing in research and development to enhance the performance and efficiency of its electric and hydrogen buses. This commitment to innovation ensures that the company remains competitive in a rapidly evolving market while meeting the changing needs of public transport authorities.

Future Prospects

As more cities in France and across Europe commit to sustainable transportation, including initiatives like the Berlin zero-emission bus initiative, the demand for hydrogen and battery electric buses is expected to grow. IVECO BUS is well-positioned to capitalize on this trend, with a diverse range of products that cater to various operational requirements.

The successful implementation of these contracts will likely encourage other regions to follow suit, paving the way for a greener future in public transportation. As IVECO continues to innovate and expand its offerings, alongside developments like Volvo electric trucks in Europe, it sets a precedent for the industry, illustrating how commitment to sustainability can drive business success.

 

Related News

View more

Energy storage poised to tackle grid challenges from rising EVs as mobile chargers bring new flexibility

EV Charging Grid Readiness addresses how rising EV adoption, larger batteries, and fast charging affect electric utilities, using vehicle-to-grid, energy storage, mobile and temporary chargers, and smart charging to mitigate distribution stress.

 

Key Points

Planning and tech to manage EV load growth with V2G, storage and smart charging to avoid overloads on distribution grids.

✅ Lithium-ion costs may drop 60%, enabling new charger models

✅ Mobile and temporary chargers buffer local distribution peaks

✅ Smart charging and V2G defer transformer and feeder upgrades

 

The impacts of COVID-19 likely mean flat electric vehicle (EV) sales this year, but a trio of new reports say the long-term outlook is for strong growth — which means the electric grid and especially state power grids will need to respond.

As EV adoption grows, newer vehicles will put greater stress on the electric grid due to their larger batteries and capacity for faster charging, according to Rhombus Energy Solutions, while a DOE lab finds US electricity demand could rise 38% as EV adoption scales. A new white paper from the company predicts the cost of lithium-ion batteries will drop by 60% over the next decade, helping enable a new set of charging solutions.

Meanwhile, mobile and temporary EV charging will grow from 0.5% to 2% of the charging market by 2030, according to new Guidehouse research. The overall charging market is expected to reach reach almost $16 billion in revenues in 2020 and more than $60 billion by 2030. ​A third report finds long-range EVs are growing their share of the market as well, and charging them could cause stress to electric distribution systems. 

"One can expect that the number of EVs in fleets will grow very rapidly over the next ten years," according to Rhombus' report. But that means many fleet staging areas will have trouble securing sufficient charging capacity as electric truck fleets scale up.

"Given the amount of time it takes to add new megawatt-level power feeds in most cities (think years), fleet EVs will run into a significant 'power crisis' by 2030," according to Rhombus.

"Grid power availability will become a significant problem for fleets as they increase the number of electric vehicles they operate," Rhombus CEO Rick Sander said in a statement. "Integrating energy storage with vehicle-to-grid capable chargers and smart [energy management system] solutions as seen in California grid stability efforts is a quick and effective mitigation strategy for this issue."

Along with energy storage, Guidehouse says a new, more flexible approach to charger deployment enabled by grid coordination strategies will help meet demand. That means chargers deployed by a van or other mobile stations, and "temporary" chargers that can help fleets expand capacity. 

According to Guidehouse, the temporary units "are well positioned to de-risk large investments in stationary charging infrastructure" while also providing charge point networks and service providers "with new capabilities to flexibly supply predictable changes in EV transportation behaviors and demand surges."

"Mobile charging is a bit of a new area in the EV charging scene. It primarily leverages batteries to make chargers mobile, but it doesn't necessarily have to," Guidehouse Senior Research Analyst Scott Shepard told Utility Dive. 

"The biggest opportunity is with the temporary charging format," said Shepard. "The bigger units are meant to be located at a certain site for a period of time. Those units are interesting because they create a little more scale-ability for sites and a little risk mitigation when it comes to investing in a site."

"Utilities could use temporary chargers as a way to provide more resilient service, using these chargers in line with on-site generation," Shepard said.

Increasing rates of EV adoption, combined with advances in battery size and charging rates, "will impact electric utility distribution infrastructure at a higher rate than previously projected," according to new analysis from FleetCarma.

The charging company conducted a study of over 3,900 EVs, illustrating the rapid change in vehicle capabilities in just the last five years. According to FleetCarma, today's EVs use twice as much energy and draw it at twice the power level. The long-range EV has increased as a proportion of new electric vehicle sales from 14% in 2014 to 66% in 2019 in the United States, it found.

Long-range EVs "are very different from older electric vehicles: they are driven more, they consume more energy, they draw power at a higher level and they are less predictable," according to FleetCarma.

Guidehouse analysts say grid modernization efforts and energy storage can help smooth the impacts of charging larger vehicles. 

Mobile and temporary charging solutions can act as a "buffer" to the distribution grid, according to Guidehouse's report, allowing utilities to avoid or defer some transmission and distribution upgrade costs that could be required due to stress on the grid from newer vehicles.

"At a high level, there's enough power and energy to supply EVs with proper management in place," said Shepard. "And in a lot of different locations, those charging deployments will be built in a way that protects the grid. Public fast charging, large commercial sites, they're going to have the right infrastructure embedded."

"But for certain areas of the grid where there is low visibility, there is the potential for grid disruption and questions about whether the UK grid can cope with EV demand," said Shepard. "This has been on the mind of utilities but never realized: overwhelming residential transformers."

As EVs with higher charging and energy capacities are connected to the grid, Shepard said, "you are going to start to see some of those residential systems come under pressure, and probably see increased incidences of having to upgrade transformers." Some residential upgrades can be deferred through smarter charging programs, he added.

 

Related News

View more

Experts Question Quebec's Push for EV Dominance

Quebec EV transition plan aims for 2 million electric vehicles by 2030 and bans new gas cars by 2035, stressing charging infrastructure, incentives, emissions cuts, and industry impacts, with debate over feasibility and economic risks.

 

Key Points

A provincial policy targeting 2M EVs by 2030 and a 2035 gas-car sales ban, backed by charging buildout and incentives.

✅ Requires major charging infrastructure and grid upgrades

✅ Balances incentives with economic impacts and industry readiness

✅ Gas stations persist while EV adoption accelerates cautiously

 

Quebec's ambitious push to dominate the electric vehicle (EV) market, echoing Canada's EV goals in its plan, by setting a target of two million EVs on the road by 2030 and planning to ban the sale of new gas-powered vehicles by 2035 has sparked significant debate among industry experts. While the government's objectives aim to reduce greenhouse gas emissions and promote sustainable transportation, some experts question the feasibility and potential economic impacts of such rapid transitions.

Current Landscape of Gas Stations in Quebec

Contrary to Environment Minister Benoit Charette's assertion that gas stations may become scarce within the next decade, industry experts suggest that the number of gas stations in Quebec is unlikely to decline drastically. Carol Montreuil, Vice President of the Canadian Fuels Association, describes the minister's statement as "wishful thinking," emphasizing that the number of gas stations has remained relatively stable over the past decade. Statistics indicate that in 2023, Quebec residents purchased more gasoline than ever before, and EV shortages and wait times further underscore the continued demand for traditional fuel sources.

Challenges in Accelerating EV Adoption

The government's goal of having two million EVs on Quebec roads by 2030 presents several challenges. Currently, there are approximately 200,000 fully electric cars in the province. Achieving a tenfold increase in less than a decade requires substantial investments in charging infrastructure, consumer incentives, and public education to address concerns such as range anxiety and charging accessibility, especially amid electricity shortage warnings across Quebec and other provinces.

Economic Considerations and Industry Concerns

Industry stakeholders express concerns about the economic implications of rapidly phasing out gas-powered vehicles. Montreuil warns that the industry is already struggling and that attempting to transition too quickly could lead to economic challenges, a view echoed by critics who label the 2035 EV mandate delusional. He suggests that the government may be spending excessive public funds on subsidies for technologies that are still expensive and not yet widely adopted.

Public Sentiment and Adoption Rates

Public sentiment towards EVs is mixed, and experiences in Manitoba suggest the road to targets is not smooth. While some consumers, like Montreal resident Alex Rajabi, have made the switch to electric vehicles and are satisfied with their decision, others remain hesitant due to concerns about vehicle cost, charging infrastructure, and the availability of incentives. Rajabi, who transitioned to an EV nine months ago, notes that while he did not take advantage of the incentive program, he is happy with his decision and suggests that adding charging ports at gas stations could facilitate the transition.

The Need for a Balanced Approach

Experts advocate for a balanced approach that considers the pace of technological advancements, consumer readiness, and economic impacts. While the transition to electric vehicles is essential for environmental sustainability, it is crucial to ensure that the infrastructure, market conditions, and public acceptance are adequately addressed, and to recognize that a share of Canada's electricity still comes from fossil fuels, to make the shift both feasible and beneficial for all stakeholders.

In summary, Quebec's ambitious EV targets reflect a strong commitment to environmental sustainability. However, industry experts caution that achieving these goals requires careful planning, substantial investment, and a realistic assessment of the challenges involved as federal EV sales regulations take shape, in transitioning from traditional vehicles to electric mobility.

 

Related News

View more

Planning for our electricity future should be led by an independent body

Nova Scotia Integrated Resource Plan evaluates NSPI supply options, UARB oversight, Muskrat Falls imports, coal retirements, wind and biomass expansion, transmission upgrades, storage, and least-cost pathways to decarbonize the grid for ratepayers.

 

Key Points

A 25-year roadmap assessing supply, imports, costs, and emissions to guide least-cost decarbonization for Nova Scotia.

✅ Compares wind, biomass, gas, imports, and storage costs

✅ Addresses coal retirements, emissions caps, and reliability

✅ Recommends transmission upgrades and Muskrat Falls utilization

 

Maintaining a viable electricity network requires good long-term planning and, as a recent grid operations report notes, ongoing operational improvements. The existing stock of generating assets can become obsolete through aging, changes in fuel prices or environmental considerations. Future changes in demand must be anticipated.

Periodically, an integrated resource plan is created to predict how all this will add up during the ensuing 25 years. That process is currently underway and is led by Nova Scotia Power Inc. (NSPI) and will be submitted for approval to the Utilities and Review Board (UARB).

Coal-fired plants are still the largest single source of electricity in Nova Scotia. They need to be replaced with more environmentally friendly sources when they reach the end of their useful lives. Other sources include wind, hydroelectricity from rivers, biomass, as seen in increased biomass use by NS Power, natural gas and imports from other jurisdictions.

Imports are used sparingly today but will be an important source when the electricity from Muskrat Falls comes on stream. That project has big capacity. It can produce all the power needed in Newfoundland and Labrador (NL), where Quebec's power ambitions influence regional flows, plus the amount already committed to Nova Scotia, and still have a lot left over.

Some sources of electricity are more valuable than others. The daily amount of power from wind and solar cannot be controlled. Fuel-based sources and hydro can.

Utilities make their profits by providing the capital necessary to build infrastructure. Most of the money is borrowed but a portion, typically 30 per cent, usually comes from NSPI or a sister company. On that they receive a rate of return of nine per cent. Nova Scotia can borrow money today at less than two per cent.

The largest single investment of that type is the $1.577-billion Maritime Link connecting power from Newfoundland to Nova Scotia. It continues through to the New Brunswick border to facilitate exports to the United States. NSPI’s sister company, NSP Maritime Link Inc. (NSPML), is making nine per cent on $473 million of the cost.

There is little unexploited hydro capacity in Nova Scotia and there will not be any new coal-fired plants. Large-scale solar is not competitive in Nova Scotia’s climate. Nova Scotia’s needs would not accommodate the amount of nuclear capacity needed to be cost-effective, even as New Brunswick explores small reactors in its strategy.

So the candidates for future generating resources are wind, natural gas, biomass (though biomass criticism remains) and imports from other jurisdictions. Tidal is a promising opportunity but is still searching for a commercially viable technology. 

NSPI is commendably transparent about its process (irp.nspower.ca). At this stage there is little indication of the conclusions they are reaching but that will presumably appear in due course.

The mountains of detail might obscure the fact that NSPI is not an unbiased arbiter of choices for the future.

It is reported that they want to prematurely close the Trenton 5 coal plant in 2023-25. It is valued at $88.5 million. If it is closed early, ratepayers will still have to pay off the remaining value even though the plant will be idle. NSPI wants to plan a decommissioning of five of its other seven plants. There is a federal emissions constraint but retiring coal plants earlier than needed will cost ratepayers a lot.

Whenever those plants are closed, there will be a need for new sources of power. NSPI is proposing to plan for new investments in new transmission infrastructure to facilitate imports. Other possibilities would be additional wind farms, consistent with the shift to more wind and solar projects, thermal plants that burn natural gas or biomass, or storage for excess wind power that arrives before it can be used. The investment in storage could be anywhere from $20 million to $200 million.

These will add to the asset burden funded by ratepayers, even as industrial customers seek discounts while still paying for shuttered coal infrastructure.

External sources of new power will not provide NSPI the same opportunity: wind power by independent producers might be less expensive because they are willing to settle for less than nine per cent or because they are more efficient. Buying more power from Muskrat Falls will use transmission infrastructure we are already paying for. If a successful tidal technology is found, it will not be owned by NSPI or a sister company, which are no longer trying to perfect the technology.

This is not to suggest that NSPI would misrepresent the alternatives. But they can tilt the discussion in their favour. How tough will they be negotiating for additional Muskrat Falls power when it hurts their profits? Arguing for premature coal retirement on environmental grounds is fair game but whether the cost should be accepted is a political choice. 

NSPI is in a conflict of interest. We need a different process. An independent body should author the integrated resource plan. They should be fully informed about NSPI’s views.

They should communicate directly with Newfoundland and Labrador for Muskrat power, with independent wind producers, and with tidal power companies. The UARB cannot do any of these things.

The resulting plan should undergo the same UARB review that NSPI’s version would. This enhances the likelihood that Nova Scotians will get the least-cost alternative.

 

Related News

View more

Ukraine has electricity reserves, no more outages planned if no new strikes

Ukraine Electricity Outages may pause as the grid stabilizes, with energy infrastructure repairs, generators, and reserves supporting supply; officials cite no rationing absent new Russian strikes, while Odesa networks recover and Ukrenergo completes restoration works.

 

Key Points

Planned power cuts in Ukraine paused as grid capacity, repairs, and reserves improve, barring new strikes.

✅ No rationing if Russia halts strikes on energy infrastructure

✅ Grid repairs and reserves meet demand for third straight week

✅ Odesa networks restored; Ukrenergo crews redeploy to repairs

 

Ukraine plans no more outages to ration electricity if there are no new strikes and has been able to amass some power reserves, the energy minister said on Saturday, as it continues to keep the lights on despite months of interruptions caused by Russian bombings.

"Electricity restrictions will not be introduced, provided there are no Russian strikes on infrastructure facilities," Energy Minister Herman Halushchenko said in remarks posted on the ministry's Telegram messaging platform.

"Outages will only be used for repairs."

After multiple battlefield setbacks and scaling down its troop operation to Ukraine's east and south, Russia in October began bombing the country's energy infrastructure, as winter loomed over the battlefront, leaving millions without power and heat for days on end.

The temperature in winter months often stays below freezing across most of Ukraine. Halushchenko said this heating season has been extremely difficult.

"But our power engineers managed to maintain the power system, and for the third week in a row, electricity generation has ensured consumption needs, we have reserves," Halushchenko said.

Ukraine, which does not produce power generators itself, has imported and received thousands of them over the past few years, with the U.S. pledging a further $10 billion on Friday to aid Kyiv's energy needs, despite ended grid restoration support reported earlier.

Separately, the chief executive of state grid operator Ukrenergo, Volodymyr Kudrytskyi, said that repair works on the damaged infrastructure in the city of Odesa suffered earlier this month, has been finished, highlighting how Ukraine has even helped Spain amid blackouts while managing its own network challenges.

"Starting this evening, there is more light in Odesa," Kudrytskyi wrote on his Facebook page. "The crews that worked on restoring networks are moving to other facilities."

A Feb. 4 fire that broke out at an overloaded power station left hundreds of thousands of residents without electricity, prompting many to adopt new energy solutions to cope with outages.

 

Related News

View more

Electricity in Spain is 682.65% more expensive than the same day in 2020

Spain Electricity Prices surge to record highs as the wholesale market hits €339.84/MWh, driven by gas costs and CO2 permits, impacting PVPC regulated tariffs, free-market contracts, and household energy bills, OMIE data show.

 

Key Points

Rates in Spain's wholesale market that shape PVPC tariffs and free-market bills, moving with gas prices and CO2 costs.

✅ Record €339.84/MWh; peak 20:00-21:00; low 04:00-05:00 (OMIE).

✅ PVPC users and free-market contracts face higher bills.

✅ Drivers: high gas prices and rising CO2 emission rights.

 

Electricity in Spain's wholesale market will rise in price once more as European electricity prices continue to surge. Once again, it will set a historical record in Spain, reaching €339.84/MWh. With this figure, it is already the fifth time that the threshold of €300 has been exceeded.

This new high is a 6.32 per cent increase on today’s average price of €319.63/MWh, which is also a historic record, while Germany's power prices nearly doubled over the past year. Monday’s energy price will make it 682.65 per cent higher than the corresponding date in 2020, when the average was €43.42.

According to data published by the Iberian Energy Market Operator (OMIE), Monday’s maximum will be between the hours of 8pm and 9pm, reaching €375/MWh, a pattern echoed by markets where Electric Ireland price hikes reflect wholesale volatility. The cheapest will be from 4am to 5am, at €267.99.

The prices of the ‘pool’ have a direct effect on the regulated tariff  – PVPC – to which almost 11 million consumers in the country are connected, and serve as a reference for the other 17 million who have contracted their supply in the free market, where rolling back prices is proving difficult across Europe.

These spiraling prices in recent months, which have fueled EU energy inflation, are being blamed on high gas prices in the markets, and carbon dioxide (CO2) emission rights, both of which reached record highs this year.

According to an analysis by Facua-Consumidores en Acción, if the same rates were maintained for the rest of the month, the last invoice of the year would reach €134.45 for the average user. That would be 94.1 per cent above the €69.28 for December 2020, while U.S. residential electricity bills rose about 5% in 2022 after inflation adjustments.

The average user’s bill so far this year has increased by 15.1 per cent compared to 2018, as US electricity prices posted their largest jump in 41 years. Thus, compared to the €77.18 of three years ago, the average monthly bill now reaches €90.87 euros. However, the Government continues to insist that this year households will end up paying the same as in 2018.

As Ruben Sanchez, the general secretary of Facua commented, “The electricity bill for December would have to be negative for President Sanchez, and Minister Ribera, to fulfill their promise that this year consumers will pay the same as in 2018 once the CPI has been discounted”.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.