Wife of Enron's Ex-CFO Reports to Prison

By Reuters


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Lea Fastow, the wife of former Enron Corp. Chief Financial Officer Andrew Fastow, recently began serving her one-year sentence in a downtown Houston federal lock-up for a misdemeanor tax charge.

Fastow, 42, a former assistant treasurer of the energy trading company, is the second former executive to go to prison since Enron collapsed in a welter of accusations of fraudulent bookkeeping in December 2001.

Her plea bargain resulted from prosecutors' ultimately successful efforts to persuade her husband to plead guilty and begin cooperating with the Enron investigation.

Fastow recently turned herslef into the federal detention center in downtown Houston, said Maria Douglas, a spokeswoman for the prison. Her husband was not present.

She had been given a deadline to turn herself in to the prison, just blocks from Enron's headquarters.

The Houston federal detention center is a considerably more restrictive prison than the one her lawyer, Mike DeGeurin, had requested. DeGeurin did not return a call seeking comment.

The stark 11-story building houses both male and female inmates of differing security classifications, so the rules for all inmates are stiffer.

The former assistant treasurer at Enron pleaded guilty on May 6 to filing a false income tax return, for which U.S. District Judge David Hittner gave her the maximum sentence of a year.

She was initially charged with six felony tax and conspiracy counts, but those were dropped by prosecutors as part of the plea bargain with the Fastows. She left the company long before it collapsed, and the charges stemmed from her actions after leaving.

The U.S. Justice Department's Enron Task Force had pressured the couple for more than a year, charging that Lea Fastow was complicit in her husband's schemes to reap millions for himself while hiding Enron's ballooning debt and manipulating its earnings.

She eventually admitted submitting an income tax return that did not include profits her family received from her husband's off-the-books partnerships.

The Fastows initially pleaded guilty on Jan. 14 in a coup for prosecutors eager to push their investigation higher up the corporate ladder. Less than a month later, prosecutors had indicted former Chief Executive Officer Jeff Skilling with Andrew Fastow's assistance on 35 fraud and insider trading counts.

Last week, prosecutors got to the top of the ladder, indicting former Chairman and Chief Executive Officer Ken Lay with 11 counts of wire, bank and securities fraud and making false statements to banks. He was charged alongside Skilling.

Both men have pleaded not guilty and are free on bond awaiting trial.

Former Enron treasurer Ben Glisan, who reported to Andrew Fastow while at Enron, was the first former Enron executive to go to prison. Glisan pleaded guilty to a conspiracy charge in September and was sentenced to five years in prison.

Related News

Balancing Act: Germany's Power Sector Navigates Energy Transition

Germany January Power Mix shows gas-fired generation rising, coal steady, and nuclear phaseout impacts, amid cold weather, energy prices, industrial demand, and emissions targets shaping renewables, grid stability, and security of supply.

 

Key Points

The January electricity mix, highlighting gas, coal, renewables, and nuclear exit effects on emissions, prices, and demand.

✅ Gas output up 13% to 8.74 TWh, share at 18.6%.

✅ Coal share 23%, down year on year, steady vs late 2023.

✅ Nuclear gap filled by gas and coal; emissions below Jan 2023.

 

Germany's electricity generation in January presented a fascinating snapshot of its energy transition journey. As the country strives to move away from fossil fuels, with renewables overtaking coal and nuclear in its power mix, it grapples with the realities of replacing nuclear power and meeting fluctuating energy demands.

Gas Takes the Lead:

Gas-fired power plants saw their highest output in two years, generating 8.74 terawatt hours (TWh). This 13% increase compared to January 2023 compensated for the closure of nuclear reactors, which were extended during the energy crisis to shore up supply, and colder weather driving up heating needs. This reliance on gas, however, pushed its share in the electricity mix to 18.6%, highlighting Germany's continued dependence on fossil fuels.

Coal Fades, but Not Forgotten:

While gas surged, coal-fired generation remained below previous levels, dropping 29% from January 2023. However, it stayed relatively flat compared to late 2023, suggesting utilities haven't entirely eliminated it. Coal still held a 23% share, and periodic coal reliance remains evident, exceeding gas' contribution, reflecting its role as a reliable backup for intermittent renewable sources like wind.

Nuclear Void and its Fallout:

The shutdown of nuclear plants in April 2023 created a significant gap, previously accounting for an average of 12% of annual electricity output. This loss is being compensated through gas and coal, with gas currently the preferred choice, even as a nuclear option debate persists among policymakers. This strategy kept January's power sector emissions lower than the previous year, but rising demand could shift the balance.

Industry's Uncertain Impact:

Germany's industrial sector, a major energy consumer, is facing challenges like high energy prices and weak consumer demand. While the government aims to foster industrial recovery, uncertainties linger due to a shaky coalition and limited budget, and debate about a possible nuclear resurgence continues in parallel, which could reshape policy. Any future industrial revival would likely increase energy demand and potentially necessitate more gas or coal.

Cost-Driven Choices and Emission Concerns:

The choice between gas and coal depends on their relative costs, in a system pursuing a coal and nuclear phase-out under long-term policy. Currently, gas seems more favorable emission-wise, but if its price rises, coal might become more attractive, impacting overall emissions.

Looking Ahead:

Germany's energy transition faces a complex balancing act, with persistent grid expansion woes and exposure to cheap gas complicating progress. While the reliance on gas and coal highlights the difficulties in replacing nuclear, the focus on emissions reduction is encouraging. Navigating the challenges of affordability, industrial needs, and climate goals will be crucial for a successful transition to a clean and secure energy future.

 

Related News

View more

BC Ferries celebrates addition of hybrid ships

BC Ferries Island Class hybrid ferries deliver quiet, battery-electric travel with shore power readiness, lower emissions, and larger capacity on northern routes, protecting marine wildlife while replacing older vessels on Powell River and Texada services.

 

Key Points

Hybrid-electric ferries using batteries and diesel for quiet, low-emission service, ready for shore power upgrades.

✅ Operate 20% electric at launch; future full-electric via shore power

✅ 300 passengers, 47 vehicles; replacing older, smaller vessels

✅ Quieter transits help protect West Coast whales and marine habitat

 

In a champagne celebration, BC Ferries welcomed two new, hybrid-electric ships into its fleet Wednesday. The ships arrived in Victoria last month, and are expected to be in service on northern routes by the summer.

The Island Aurora and Island Discovery have the ability to run on either diesel or electricity.

"The pressure on whales on the West Coast is very intense right now," said BC Ferries CEO Mark Collins. "Quiet operation is very important. These ships will be gliding out of the harbor quietly and electrically with no engines running, that will be really great for marine space."

BC Ferries says the ships will be running on electricity 20 per cent of the time when they enter service, but the company hopes they can run on electricity full-time in the future. That would require the installation of shoreline power, which the company hopes to have in place in the next five to 10 years. Each ship costs around $40-million, a price tag that the federal government partially subsidized through CIB support as part of the electrification push.

When the two ships begin running on the Powell River to Texada, and Port McNeill, Alert Bay, and Sointula routes, two older vessels will be retired.

On Kootenay Lake, an electric-ready ferry is slated to begin operations in 2023, reflecting the province's wider shift.

"They are replacing a 47-car ferry, but on some routes they will be replacing a 25-car ferry, so those routes will see a considerable increase in service," said Collins.

Although the ships will not be servicing Colwood, the municipality's mayor is hoping that one day, they will.

"We can look at an electric ferry when we look at a West Shore ferry that would move Colwood residents to Victoria," said Mayor Rob Martin, noting that across the province electric school buses are hitting the road as well. "Here is a great example of what BC Ferries can do for us."

BC Ferries says it will be adding four more hybrid ships to its fleet by 2022, and is working on adding hybrid ships that could run from Victoria to Tsawwassen, similar to Washington State Ferries' hybrid upgrade underway in the region. 

B.C’s first hybrid-electric ferries arrived in Victoria on Saturday morning ushering in a new era of travel for BC Ferries passengers, as electric seaplane flights are also on the horizon for the region.

“It’s a really exciting day for us,” said Tessa Humphries, spokesperson for BC Ferries.

It took the ferries 60 days to arrive at the Breakwater District at Ogden Point. They came all the way from Constanta, Romania.

“These are battery-equipped ships that are designed for fully electric operation; they are outfitted with hybrid technology that bridges the gap until the EV charging infrastructure and funding is available in British Columbia,” said Humphries.

The two new "Island Class" vessels arrived at about 9 a.m. to a handful of people eagerly wanting to witness history.

Sometime in the next few days, the transport ship that brought the new ferries to B.C. will go out into the harbor and partially submerge to allow them to be offloaded, Humphries said.

The transfer process could happen in four to five days from now. After the final preparations are finished at the Breakwater District, the ships will be re-commissioned in Point Hope Maritime and then BC Ferries will officially take ownership.

“We know a lot of people are interested in this so we will put out advisory once we have more information as to a viewing area to see the whole process,” said Humphries.

Both Island Class ferries can carry 300 passengers and 47 vehicles. They won’t be sailing until later this year, but Humphries tells CTV News they will be named by the end of February. 

 

Related News

View more

OPINION | Bridging the electricity gap between Alberta and B.C. makes perfect climate sense

BC-Alberta Transmission Intertie enables clean hydro to balance wind and solar, expanding transmission capacity so Site C hydro can dispatch power, cut emissions, lower costs, and accelerate electrification across provincial grids under federal climate policy.

 

Key Points

A cross-provincial grid link using BC hydro to firm Alberta wind and solar, cutting emissions and costs.

✅ Balances variable renewables with dispatchable hydro from Site C.

✅ Enables power trade: peak exports, low-cost wind imports.

✅ Lowers decarbonization costs and supports electrification goals.

 

By Mark Jaccard

Lost in the news and noise of the federal government's newly announced $170-per-tonne carbon tax was a single, critical sentence in Canada's updated climate plan, one that signals a strategy that could serve as the cornerstone for a future free of greenhouse gas emissions.

"The government will work with provinces and territories to connect parts of Canada that have abundant clean hydroelectricity with parts that are currently more dependent on fossil fuels for electricity generation — including by advancing strategic intertie projects."

Why do we think this one sentence is so important? And what has it got to do with the controversial Site C project Site C electricity debate under construction in British Columbia?

The answer lies in the huge amount of electricity we'll need to generate in Canada to achieve our climate goals for 2030 and 2050. Even while we aggressively pursue energy efficiency, our electric cars, buses and perhaps trucks in Canada's net-zero race will need a huge amount of new electricity, as will our buildings and industries. 

Luckily, Canada is blessed with an electricity system that is the envy of the world — already over 80 per cent zero emission, the bulk being from flexible hydro-electricity, with a backbone of nuclear power largely in Ontario, a national electricity success and rapidly growing shares of cheap wind and solar. 

Provincial differences
Yet the story differs significantly from one province to another. While B.C.'s electricity is nearly emissions free, the opposite is true of its neighbour, Alberta, where more than 80 per cent still comes from fossil fuels. This, despite an impressive shift away from coal power in recent years.

Now imagine if B.C. and Alberta were one province.

This might sound like the start of a bad joke, or a horror movie to some, but it's the crux of new research by a trio of energy economists who put a fine point on the value of such co-operation.

The study, by Brett Dolter, Kent Fellows and Nic Rivers, takes a detailed look at the economic case for completing Site C, BC Hydro's controversial large hydro project under construction, and makes three key conclusions.

First, they argue Site C should likely not have been started in the first place. Only a narrow set of assumptions can now justify its total cost. But what's done is done, and absent a time machine, the decision to complete the dam rests on go-forward costs.

On that note, their second conclusion is no more optimistic. Considering the cost to complete the project, even accounting for avoiding termination costs should it be cancelled, they find the economics of completing Site C over-budget status to be weak. If the New York Times had a Site C needle in the style of the newspaper's election visual, it would be "leaning cancel" at this point.

In Alberta, more than 80 per cent of the electricity still comes from fossil fuels, despite an impressive shift away from coal power in recent years. (CBC)
But it is their third conclusion that stands out as worthy of attention. They argue there is a case for completing Site C if the following conditions are met:

B.C. and Alberta reduce their electricity sector emissions by more than 75 per cent (this really means Alberta, given B.C.'s already clean position); and

B.C. and Alberta expand their ability to move electricity between their respective provinces by building new transmission lines.

Let's deal with each of these in turn.

On Condition 1, we give an emphatic: YES! Reducing electricity emissions is an absolute must to meet climate pledges if Canada is to come even close to achieving its net-zero goals. As noted above, a clean electricity grid will be the cornerstone of a decarbonized economy as we generate a great deal more power to electrify everything from industrial processes to heating to transportation and more. 

Condition 2 is more challenging. Talk of increasing transmission connections across Canada, including Hydro-Québec's U.S. strategy has been ongoing for over 50 years, with little success to speak of. But this time might well be different. And the implications for a completed Site C, should the government go that route, are profound.

Wind and solar costs rapidly declining
Somewhat ironically, the case for Site C is made stronger by the rapidly declining costs of two of its apparent renewable competitors: wind and solar.

The cost of wind and solar generation has fallen by 70 per cent and 90 per cent, respectively, a dramatic decline in the past 10 years. No longer can these variable sources of power be derided as high cost; they are unequivocally the cheapest sources of raw energy in electricity systems today.

However, electricity system operators must deal with their "non-dispatchability," a seemingly complicated term that simply means they produce electricity only when the sun shines and the wind blows, which is not necessarily when electricity customers want their electricity delivered (dispatched) to them. And because of this characteristic, the value of dispatchable electricity sources, like a completed Site C, will grow as a complement to wind and solar. 

Thus, as Alberta's generation of cheap wind and solar grows, so too does the value of connecting it with the firm, dispatchable resources available in B.C.

Rather than displacing wind and solar, large hydro facilities with the ability to increase or decrease output on short notice can actually enable more investment in these renewable sources. Expanding the transmission connection, with Site C on one side of that line, becomes even more valuable.

Many in B.C. might read this and rightly ask themselves, why should we foot the bill for this costly project to help out Albertans? The answer is that it won't be charity — B.C. will get paid handsomely for the power it delivers in peak periods and will be able to import wind power at low prices from Alberta in other times. B.C. will benefit greatly from these gains of trade.

Turning to Alberta, why should Albertans support B.C. reaping these gains? The answer is two-fold.

First, Site C will actually enable more low-cost wind and solar to be built in Alberta due to hydro's ability to balance these non-dispatchable renewables. Jobs and economic opportunity will occur in Alberta from this renewable energy growth.

Second, while B.C. imports won't come cheap, they will be less costly than the decarbonization alternatives Alberta would need without B.C.'s flexible hydro, as the economists' study shows. This means lower overall costs to Alberta's power consumers.

A clear role for Ottawa
To be sure, there are challenges to increasing the connectedness of B.C. and Alberta's power systems, not least of which is BC Hydro being a regulated, government-owned monopoly while Alberta is a competitive market amongst private generators. Some significant accommodations in climate policy and grids will be needed to ensure both sides can compete and benefit from trade on an equal footing.

There is also the pesky matter of permitting and constructing thousands of kilometres of power lines. Getting linear energy infrastructure built in Canada has not exactly been our forte of late.

We are not naive to the significant challenges in such an approach, but it's not often that we see such a clear narrative for beneficial climate action that, when considered at the provincial level, is likely to be thwarted, but when considered more broadly can produce a big win.

It's the clearest example yet of a role for the federal government to bridge the gap, to facilitate the needed regulatory conversations, and, let's be frank, to bring money to the table to make the line happen. Neither provincial side is likely to do it on their own, nor, as history has shown, are they likely to do it together. 

For a government committed to reducing emissions, and with a justified emphasis on the electricity sector, the opportunity to expand the Alberta-B.C. transmission intertie, leveraging the flexibility of B.C.'s hydro with the abundance of wind and solar potential on the Prairies, offers a potential massive decarbonization win for Western Canada that is too good to ignore.


Mark Jaccard, a professor at Simon Fraser University, and Blake Shaffer, a professor at the University of Calgary

 

Related News

View more

Cleaning up Canada's electricity is critical to meeting climate pledges

Canada Clean Electricity Standard targets a net-zero grid by 2035, using carbon pricing, CO2 caps, and carbon capture while expanding renewables and interprovincial trade to decarbonize power in Alberta, Saskatchewan, and Ontario.

 

Key Points

A federal plan to reach a net-zero grid by 2035 using CO2 caps, carbon pricing, carbon capture, renewables, and trade.

✅ CO2 caps and rising carbon prices through 2050

✅ Carbon capture required on gas plants in high-emitting provinces

✅ Renewables build-out and interprovincial trade to balance supply

 

A new tool has been proposed in the federal election campaign as a way of eradicating the carbon emissions from Canada’s patchwork electricity system. 

As the country’s need for power grows through the decarbonization of transportation, industry and space heating, the Liberal Party climate plan is proposing a clean energy standard to help Canada achieve a 100% net-zero-electricity system by 2035, aligning with Canada’s net-zero by 2050 target overall. 

The proposal echoes a report released August 19 by the David Suzuki Foundation and a group of environmental NGOs that also calls for a clean electricity standard, capping power-sector emissions, and tighter carbon-pricing regulations. The report, written by Simon Fraser University climate economist Mark Jaccard and data analyst Brad Griffin, asserts that these policies would effectively decarbonize Canada’s electricity system by 2035.

“Fuel switching from dirty fossil fuels to clean electricity is an essential part of any serious pathway to transition to a net-zero energy system by 2050,” writes Tom Green, climate policy advisor to the Suzuki Foundation, in a foreword to the report. The pathway to a net-zero grid is even more important as Canada switches from fossil fuels to electric vehicles, space heating and industrial processes, even as the Canadian Gas Association warns of high transition costs.

Under Jaccard and Griffin’s proposal, a clean electricity standard would be established to regulate CO2 emissions specifically from power plants across Canada. In addition, the plan includes an increase in the carbon price imposed on electricity system releases, combined with tighter regulation to ensure that 100% of the carbon price set by the federal government is charged to electricity producers. The authors propose that the current scheduled carbon price of $170 per tonne of CO2 in 2030 should rise to at least $300 per tonne by 2050.

In Alberta, Saskatchewan, Ontario, New Brunswick and Nova Scotia, the 2030 standard would mean that all fossil-fuel-powered electricity plants would require carbon capture in order to comply with the standard. The provinces would be given until 2035 to drop to zero grams CO2 per kilowatt hour, matching the 2030 standard for low-carbon provinces (Quebec, British Columbia, Manitoba, Newfoundland and Labrador and Prince Edward Island). 

Alberta and Saskatchewan targeted 
Canada has a relatively clean electricity system, as shown by nationwide progress in electricity, with about 80% of the country’s power generated from low- or zero-emission sources. So the biggest impacts of the proposal will be felt in the higher-carbon provinces of Alberta and Saskatchewan. Alberta has a plan to switch from coal-based electric power to natural gas generation by 2023. But Saskatchewan is still working on its plan. Under the Jaccard-Griffin proposal, these provinces would need to install carbon capture on their gas-fired plants by 2030 and carbon-negative technology (biomass with carbon capture, for instance) by 2035. Saskatchewan has been operating carbon capture and storage technology at its Boundary Dam power station since 2014, but large-scale rollout at power plants has not yet been achieved in Canada. 

With its heavy reliance on nuclear and hydro generation, Ontario’s electricity supply is already low carbon. Natural gas now accounts for about 7% of the province’s grid, but the clean electricity standard could pose a big challenge for the province as it ramps up natural-gas-generated power to replace electricity from its aging Pickering station, scheduled to go out of service in 2025, even as a fully renewable grid by 2030 remains a debated goal. Pickering currently supplies about 14% of Ontario’s power. 

Ontario doesn’t have large geological basins for underground CO2 storage, as Alberta and Saskatchewan do, so the report says Ontario will have to build up its solar and wind generation significantly as part of Canada’s renewable energy race, or find a solution to capture CO2 from its gas plants. The Ontario Clean Air Alliance has kicked off a campaign to encourage the Ontario government to phase out gas-fired generation by purchasing power from Quebec or installing new solar or wind power.

As the report points out, the federal government has Supreme Court–sanctioned authority to impose carbon regulations, such as a clean electricity standard, and carbon pricing on the provinces, with significant policy implications for electricity grids nationwide.

The federal government can also mandate a national approach to CO2 reduction regardless of fuel source, encouraging higher-carbon provinces to work with their lower-carbon neighbours. The Atlantic provinces would be encouraged to buy power from hydro-heavy Newfoundland, for example, while Ontario would be encouraged to buy power from Quebec, Saskatchewan from Manitoba, and Alberta from British Columbia.

The Canadian Electricity Association, the umbrella organization for Canada’s power sector, did not respond to a request for comment on the Jaccard-Griffin report or the Liberal net-zero grid proposal.

Just how much more clean power will Canada need? 
The proposal has also kicked off a debate, and an IEA report underscores rising demand, about exactly how much additional electricity Canada will need in coming decades.

In his 2015 report, Pathways to Deep Decarbonization in Canada, energy and climate analyst Chris Bataille estimated that to achieve Canada’s climate net-zero target by 2050 the country will need to double its electricity use by that year.

Jaccard and Griffin agree with this estimate, saying that Canada will need more than 1,200 terawatt hours of electricity per year in 2050, up from about 640 terawatt hours currently.

But energy and climate consultant Ralph Torrie (also director of research at Corporate Knights) disputes this analysis.

He says large-scale programs to make the economy more energy efficient could substantially reduce electricity demand. A major program to install heat pumps and replace inefficient electric heating in homes and businesses could save 50 terawatt hours of consumption on its own, according to a recent report from Torrie and colleague Brendan Haley. 

Put in context, 50 terawatt hours would require generation from 7,500 large wind turbines. Applied to electric vehicle charging, 50 terawatt hours could power 10 million electric vehicles.

While Torrie doesn’t dispute the need to bring the power system to net-zero, he also doesn’t believe the “arm-waving argument that the demand for electricity is necessarily going to double because of the electrification associated with decarbonization.” 

 

Related News

View more

Senate Democrats push for passage of energy-related tax incentives

Senate Renewable Energy Tax Credits face Finance Committee scrutiny, with Democrats urging action on tax extenders, clean energy incentives, and climate policy, while Republicans cite prior wins in wind, biodiesel, and EV credits.

 

Key Points

Legislative incentives debated in the Senate Finance Committee to extend and align clean energy tax benefits.

✅ Democrats press hearings and action on energy tax policy

✅ Focus on clean energy, EVs, wind, biodiesel, and resilience

✅ Grassley cites prior extenders; disputes push for bigger subsidies

 

A group of 27 Democratic senators is calling for action in the Senate Finance Committee on extending energy-related tax credits and examining new tax proposals, especially those that incentivize renewable energy projects and align with FERC action on aggregated DERs across the grid.

Sen. Ron Wyden, D-Ore., the ranking Democrat on the Senate Finance Committee, who recently introduced a wildfire-resilient grid bill with Sen. Merkley, led the group of Democrats in writing a letter Tuesday to Sen. Charles Grassley, R-Iowa, who chairs the committee.

“Despite numerous opportunities, including in the recent tax extenders package, the Finance Committee has failed to take action on the dozens of energy tax proposals pending before it,” they wrote. “It is critical that the Committee move to address these issues in a timely manner, along with much needed policy changes that heed warnings on regulatory rollbacks to combat the damage and growing dangers caused by global climate change.”

The number of Americans ages 65 and over is projected to nearly double by 2060. And most would prefer to age in place and hiresenior caregivers if needed.

They pointed out that the Senate Finance Committee hasn’t held a single hearing on energy tax policy during the previous congressional term, and has yet to hold one in the current one.

“The sole energy tax-related recommendation of the Committee’s temporary policy task forces was ignored in the tax extender legislation passed in December 2019, along with nearly all proposals put forward in members’ legislation this Congress,” they wrote. “This Committee must fulfill its role in examining members’ energy tax proposals and in bolstering our nation’s efforts to combat climate change, including a clean electricity standard approach that sets firm targets.”

They noted that In 2019, the global average temperature was the second highest ever recorded and the past decade was the hottest ever. The lawmakers pointed to raging wildfires and increased flooding in the western part of the U.S., as well as challenges in California’s power system during the transition, causing unprecedented destruction over the past several years. They called for tax incentives for renewable energy to help combat climate change.

“Gaps in the tax code have disadvantaged complementary technologies that could improve climate resiliency and provide additional emissions reductions,” they wrote. “While power sector emissions continue to decrease, emissions from transportation, heavy industry and agriculture have stayed level or increased over the past 10 years, even amid $5 gas not spurring a green shift in consumer behavior. The United States is not on pace to meet its international climate commitments, to say nothing of the reductions necessary to stave off the worst potential outcomes of global warming.”

Grassley reacted to the letter, noting that he had worked to get tax extenders legislation passed, even as some states consider bans on clean energy use by utilities. "I begged Democrats for a year to help me get an extenders package passed, about half of which were green energy policies, so this rings hollow," he said in a statement Tuesday. "We wouldn’t have a wind energy credit or a biodiesel credit but for me, let alone an extension of either. Democrats were holding up these green energy provisions in an attempt to get a big expansion of taxpayer subsidies for rich Tesla owners."

 

Related News

View more

'Pakistan benefits from nuclear technology'

Pakistan Nuclear Energy advances clean power with IAEA guidance, supporting SDGs via electricity generation, nuclear security, and applications in healthcare, agriculture, and COVID-19 testing, as new 1,100 MW reactors near grid connection.

 

Key Points

Pakistan Nuclear Energy is the nation's atomic program delivering clean electricity, SDGs gains, and IAEA-guided safety.

✅ Two 1,100 MW reactors nearing grid connection

✅ IAEA-aligned safety and nuclear security regime

✅ Nuclear tech supports healthcare, agriculture, COVID-19 tests

 

Pakistan is utilising its nuclear technology to achieve its full potential by generating electricity, aligning with China's steady nuclear development trends, and attaining socio-economic development goals outlined by the United Nations Sustainable Development Goals.

This was stated by Pakistan Atomic Energy Commission (PAEC) Chairperson Muhammad Naeem on Tuesday while addressing the 64th International Atomic Energy Agency (IAEA) General Conference (GC) which is being held in Vienna from September 21, a forum taking place amid regional milestones like the UAE's first Arab nuclear plant startup as well.

Regarding nuclear security, the PAEC chief stated that Pakistan considered it as a national responsibility and that it has developed a comprehensive and stringent safety and security regime, echoing IAEA praise for China's nuclear security in the region, which is regularly reviewed and upgraded in accordance with IAEA's guidelines.

Many delegates are attending the event through video link due to the novel coronavirus (Covid-19) pandemic.

On the first day of the conference, IAEA Director General Rafael Mariano Grossi highlighted the role of the nuclear watchdog in the monitoring and verification of nuclear activities across the globe, as seen in Barakah Unit 1 at 100% power milestones reported worldwide.

He also talked about the various steps taken by the IAEA to help member states contain the spread of coronavirus such as providing testing kits etc.

In a recorded video statement, the PAEC chairperson said that Pakistan has a mutually beneficial relationship with IAEA, similar to IAEA assistance to Bangladesh on nuclear power development efforts. He also congratulated Ambassador Azzeddine Farhane on his election to become the President of the 64th GC and assured him of Pakistan's full support and cooperation.

Naeem stated that as a clean, affordable and reliable source, nuclear energy can play a key role, with India's nuclear program moving back on track, in fighting climate change and achieving the Sustainable Development Goals (SDGs).

The PAEC chief informed the audience that two 1,100-megawatt (MW) nuclear power plants are near completion and, like the UAE grid connection milestone, are expected to be connected to the national grid next year.

He also highlighted the role of PAEC in generating electricity through nuclear power plants, while also helping the country achieve the socio-economic development goals outlined under the United Nations SDGs through the application of nuclear technology in diverse fields like agriculture, healthcare, engineering and manufacturing, human resource development and other sectors.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.