Direct Energy Forms Alliance to Make Canadian Buildings Energy Efficient

By Electricity Forum


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Owners and operators of buildings in Canada now have a new partner to help make their commercial, residential and industrial manufacturing buildings more energy efficient, and ultimately - more environmentally friendly.

The Canadian Environmental Equipment Manufacturers Alliance (CEEMA) is being formed to help building owners and operators reduce energy consumption and costs by reviewing their buildingsÂ’ central heating and cooling systems.

  CEEMA’s partners comprise of five Canadian companies - Direct Energy, GasMaster, SMARDT, Abbott’s and The Cooling Tower Company. Together, the alliance partners offer an all encompassing service to help reduce greenhouse gas emissions, by offering innovative products and service to aging chillers, boilers, cooling towers, to energy consulting and more.

  “Often it’s light fixtures and leaky taps that are top-of-mind, but there is a huge opportunity for real savings and efficiency in the heart of a building that is often overlooked,” said Bob Huggard, President, Canadian Operations, Direct Energy.  “CEEMA was born because of what we’ve been hearing from building owners and operators across the country – the need for a one-stop-service for energy solutions. Our goal is to help building owners and operators make significant changes in their building’s energy usage, while helping their bottom line and ultimately - the environment.”

  By working together, CEEMA will be able to help building owners and operators understand the energy consumption patterns of their buildings, and work with them to develop the right strategy and find the right products and solutions for conserving energy.

  The alliance brings together a wealth of knowledge and experience.  Direct Energy has been involved with retrofit projects at the University of Calgary and CFB Kingston.  Recently, the Ontario Conservation Bureau awarded Direct Energy a certificate for their work on a multi-million dollar energy management program at CFB Kingston, where the Smardt chillers have been accepted and installed.  In fact, Direct Energy has over 70 Smardt chillers installed or about to be installed. These installations include commercial buildings, hospitals, as well as federal and municipal buildings.

Related News

Britain's National Grid Drops China-Based Supplier Over Cybersecurity Fears

National Grid Cybersecurity Component Removal signals NCSC and GCHQ oversight of critical infrastructure, replacing NR Electric and Nari Technology grid control systems to mitigate supply chain risk, cyber threats, and blackout risk.

 

Key Points

A UK move to remove China-linked grid components after NCSC/GCHQ advice, reducing cyber and blackout risks.

✅ NCSC advice to remove NR Electric components

✅ GCHQ-linked review flags critical infrastructure risks

✅ Aims to cut blackout risk and supply chain exposure

 

Britain's National Grid has started removing components supplied by a unit of China-backed Nari Technology's from the electricity transmission network over cybersecurity fears, reflecting a wider push on protecting the power grid across critical sectors.

The decision came in April after the utility sought advice from the National Cyber Security Center (NCSC), a branch of the nation's signals intelligence agency, Government Communications Headquarters (GCHQ), amid campaigns like the Dragonfly campaign documented by Symantec, the newspaper quoted a Whitehall official as saying.

National Grid declined to comment citing "confidential contractual matters." "We take the security of our infrastructure very seriously and have effective controls in place to protect our employees and critical assets, while preparing for an independent operator transition in Great Britain, to ensure we can continue to reliably, safely and securely transmit electricity," it said in a statement.

The report said an employee at the Nari subsidiary, NR Electric Company-U.K., had said the company no longer had access to sites where the components were installed, at a time when utilities worldwide have faced control-room intrusions by state-linked hackers, and that National Grid did not disclose a reason for terminating the contracts.

It quoted another person it did not name as saying the decision was based on NR Electric Company-U.K.'s components that help control and balance the grid, respond to work-from-home demand shifts, and minimize the risk of blackouts.

It was unclear whether the components remained in the electricity transmission network, the report said, amid reports of U.S. power plant breaches that have heightened vigilance.

NR Electric Company-U.K., GCHQ and the Chinese Embassy in London did not immediately respond to requests for comment outside of business hours.

Britain's Department for Energy Security and Net Zero said that it did not comment on the individual business decisions taken by private organizations. "As a government department we work closely with the private sector to safeguard our national security, and to support efforts to fast-track grid connections across the network," it said in a statement.
 

 

Related News

View more

Modular nuclear reactors a 'long shot' worth studying, says Yukon gov't

Yukon SMR Feasibility Study examines small modular reactors as low-emissions nuclear power for Yukon's grid and remote communities, comparing costs, safety, waste, and reliability with diesel generation, renewables, and energy efficiency.

 

Key Points

An official assessment of small modular reactors as low-emission power options for Yukon's grid and remote sites.

✅ Compares SMR costs vs diesel, hydro, wind, and solar

✅ Evaluates safety, waste, fuel logistics, decommissioning

✅ Considers remote community loads and grid integration

 

The Yukon government is looking for ways to reduce the territory's emissions, and wondering if nuclear power is one way to go.

The territory is undertaking a feasibility study, and, as some developers note, combining multiple energy sources can make better projects, to determine whether there's a future for SMRs — small modular reactors — as a low-emissions alternative to things such as diesel power.

The idea, said John Streicker, Yukon's minister of energy, mines and resources, is to bring the SMRs into the Yukon to generate electricity.

"Even the micro ones, you could consider in our remote communities or wherever you've got a point load of energy demand," Streicker said. "Especially electricity demand."

For remote coastal communities elsewhere in Canada, tidal energy is being explored as a low-emissions option as well.

SMRs are nuclear reactors that use fission to produce energy, similar to existing large reactors, but with a smaller power capacity. The International Atomic Energy Agency (IAEA) defines reactors as "small" if their output is under 300 MW. A traditional nuclear power plant produces about three times as much power or more.

They're "modular" because they're designed to be factory-assembled, and then installed where needed. 

Several provinces have already signed an agreement supporting the development of SMRs, and in Alberta's energy mix that conversation spans both green and fossil power, and Canada's first grid-scale SMRs could be in place in Ontario by 2028 and Saskatchewan by 2032.

A year ago, the government of Yukon endorsed Canada's SMR action plan, at a time when analysts argue that zero-emission electricity by 2035 is practical and profitable, agreeing to "monitor the progress of SMR technologies throughout Canada with the goal of identifying potential for applicability in our northern jurisdiction."

The territory is now following through by hiring someone to look at whether SMRs could make sense as a cleaner-energy alternative in Yukon. 

The territorial government has set a goal of reducing emissions by 45 per cent by 2030, excluding mining emissions, even as some analyses argue that zero-emissions electricity by 2035 is possible, and "future emissions actions for post-2030 have not yet been identified," reads the government's request for proposals to do the SMR study. 

Streicker acknowledges the potential for nuclear power in Yukon is a bit of "long shot" — but says it's one that can't be ignored.

"We need to look at all possible solutions," he said, as countries such as New Zealand's electricity sector debate their future pathways.

"I don't want to give the sense like we're putting all of our emphasis and energy towards nuclear power. We're not."

According to Streicker, it's nothing more than a study at this point.

Don't bother, researcher says
Still, M.V. Ramana, a professor at the School of Public Policy and Global Affairs at the University of British Columbia, said it's a study that's likely a waste of time and money. He says there's been plenty of research already, and to him, SMRs are just not a realistic option for Yukon or anywhere in Canada.

"I would say that, you know, that study can be done in two weeks by a graduate student, essentially, all right? They just have to go look at the literature on SMRs and look at the critical literature on this," Ramana said.

Ramana co-authored a research paper last year, looking at the potential for SMRs in remote communities or mine sites. The conclusion was that SMRs will be too expensive and there won't be enough demand to justify investing in them.

He said nuclear reactors are expensive, which is why their construction has "dried up" in much of the world.

"They generate electricity at very high prices," he said.

'They just have to go look at the literature,' said M.V. Ramana, a professor at the School of Public Policy and Global Affairs at the University of British Columbia. (Paul Joseph)
"[For] smaller reactors, the overall costs go down. But the amount of electricity that they will generate goes down even further."

The environmental case is also shaky, according to a statement signed last year by dozens of Canadian environmental and community groups, including the Sierra Club, Greenpeace, the Council of Canadians and the Canadian Environmental Law Associaton (CELA). The statement calls SMRs a "dirty, dangerous distraction" from tackling climate change and criticized the federal government for investing in the technology.

"We have to remember that the majority of the rhetoric we hear is from nuclear advocates. And so they are promoting what I would call, and other legal scholars and academics have called, a nuclear fantasy," said Kerrie Blaise of CELA.

Blaise describes the nuclear industry as facing an unknown future, with some of North America's larger reactors set to be decommissioned in the coming years. SMRs are therefore touted as the future.

"They're looking for a solution. And so that I would say climate change presents that timely solution for them."

Blaise argues the same safety and environmental questions exist for SMRs as for any nuclear reactors — such as how to produce and transport fuel safely, what to do with waste, and how to decommission them — and those can't be glossed over in a single-minded pursuit of lower carbon emissions.  

Main focus is still renewables, minister says
Yukon's energy minister agrees, and he's eager to emphasize that the territory is not committed to anything right now beyond a study.

"Every government has a responsibility to do diligence around this," Streicker said.

A solar farm in Old Crow, Yukon. The territory's energy minister says Yukon is still primarily focussed on renewables, and energy efficiency. (Caleb Charlie)
He also dismisses the idea that studying nuclear power is any sort of distraction from his government's response to climate change right now. Yukon's main focus is still renewable energy such as solar and wind power, though Canada's solar progress is often criticized as lagging, increasing efficiency, and connecting Yukon's grid to the hydro project in Atlin, B.C., he said.

Streicker has been open to nuclear energy in the past. As a federal Green Party candidate in 2008, Streicker broke with the party line to suggest that nuclear could be a viable energy alternative. 

He acknowledges that nuclear power is always a hot-button issue, and Yukoners will have strong feelings about it. A lot will depend on how any future regulatory process works, he says.

In taking action on climate, this Arctic community wants to be a beacon to the world
Cameco signs agreement with nuclear reactor company
"There's some people that think it's the 'Hail Mary,' and some people that think it's evil incarnate," he said. 

"Buried deep within Our Clean Future [Yukon's climate change strategy], there's a line in there that says we should keep an eye on other technologies, for example, nuclear. That's what this [study] is — it's to keep an eye on it."

 

Related News

View more

Western Canada drought impacting hydropower production as reservoirs run low

Western Canada Hydropower Drought strains British Columbia and Manitoba as reservoirs hit historic lows, cutting hydroelectric output and prompting power imports, natural gas peaking, and grid resilience planning amid climate change risks this winter.

 

Key Points

Climate-driven reservoir lows cut hydro in B.C. and Manitoba, prompting imports and backup gas to maintain reliability.

✅ Reservoirs at multi-year lows cut hydro generation capacity

✅ BC Hydro and Manitoba Hydro import electricity for reliability

✅ Natural gas turbines used; climate change elevates drought risk

 

Severe drought conditions in Western Canada are compelling two hydroelectricity-dependent provinces, British Columbia and Manitoba, to import power from other regions. These provinces, known for their reliance on hydroelectric power, are facing reduced electricity production due to low water levels in reservoirs this autumn and winter as energy-intensive customers encounter temporary connection limits.

While there is no immediate threat of power outages in either province, experts indicate that climate change is leading to more frequent and severe droughts. This trend places increasing pressure on hydroelectric power producers in the future, spurring interest in upgrading existing dams as part of adaptation strategies.

In British Columbia, several regions are experiencing "extreme" drought conditions as classified by the federal government. BC Hydro spokesperson Kyle Donaldson referred to these conditions as "historic," and a first call for power highlights the strain, noting that the corporation's large reservoirs in the north and southeast are at their lowest levels in many years.

To mitigate this, BC Hydro has been conserving water by utilizing less affected reservoirs and importing additional power from Alberta and various western U.S. states. Donaldson confirmed that these measures would persist in the upcoming months.

Manitoba is also facing challenges with below-normal levels in reservoirs and rivers. Since October, Manitoba Hydro has occasionally relied on its natural gas turbines to supplement hydroelectric production as electrical demand could double over the next two decades, a measure usually reserved for peak winter demand.

Bruce Owen, a spokesperson for Manitoba Hydro, reassured that there is no imminent risk of a power shortage. The corporation can import electricity from other regions, similar to how it exports clean energy in high-water years.

However, the cost implications are significant. Manitoba Hydro anticipates a financial loss for the current fiscal year, with more red ink tied to emerging generation needs, the second in a decade, with the previous one in 2021. That year, drought conditions led to a significant reduction in the company's power production capabilities, resulting in a $248-million loss.

The 2021 drought also affected hydropower production in the United States. The U.S. Department of Energy reported a 16% reduction in overall generation, with notable decreases at major facilities like Nevada's Hoover Dam, where production dropped by 25%.

Drought has long been a major concern for hydroelectricity producers, and they plan their operations with this risk in mind. Manitoba's record drought in 1940-41, for example, is a benchmark for Manitoba Hydro's operational planning to ensure sufficient electricity supply even in extreme low-water conditions.

Climate change, however, is increasing the frequency of such rare events, highlighting the need for more robust backup systems such as new turbine investments to enhance reliability. Blake Shaffer, an associate professor of economics at the University of Calgary specializing in electricity markets, emphasized the importance of hydroelectric systems incorporating the worsening drought forecasts due to climate change into their energy production planning.

 

Related News

View more

Romania enhances safety at Cernavoda, IAEA reports

IAEA OSART Cernavoda highlights strengthened operational safety at Romania’s Cernavoda NPP, citing improved maintenance practices, simulator training, and deficiency reporting, with ongoing actions on spare parts procurement, procedure updates, and chemical control for nuclear compliance.

 

Key Points

An IAEA follow-up mission confirming improved operational safety at Cernavoda NPP, with remaining actions tracked.

✅ Enhanced simulator training and crew performance

✅ Improved field deficiency identification and reporting

✅ Ongoing upgrades to procedures, spares, and chemical control

 

The International Atomic Energy Agency (IAEA) said yesterday that the operator of Romania’s Cernavoda nuclear power plant had demonstrated "strengthened operational safety" by addressing the findings of an initial IAEA review in 2016. The Operational Safety Review Team (OSART) concluded a five-day follow-up mission on 8 March to the Cernavoda plant, which is on the Danube-Black Sea Canal, about 160 km from Bucharest.

The plant's two 706 MWe CANDU pressurised heavy water reactors, reflecting Canadian nuclear projects, came online in 1996 and 2007, respectively.

The OSART team was led by Fuming Jiang, a senior nuclear safety officer at the IAEA, which recently commended China's nuclear security in separate assessments.

"We saw improvements in key areas, such as the procurement of important spare parts, the identification and reporting of some deficiencies, and some maintenance work practices, as evidenced by relevant performance indicators," Jiang said, noting milestones at nuclear projects worldwide this year.

The team observed that several findings from the 2016 review had been fully addressed, including: enhanced operator crew performance during simulator training; better identification and reporting of deficiencies in the field; and improvement in maintenance work practices.

More time is required, it said, to fully implement some actions, including: further improvements in the procurement of important spare parts with relevance to safety; further enhancement in the revision and update of some operating procedures, drawing on lessons from Pickering NGS life extensions undertaken in Ontario; and control and labelling of some plant chemicals.

Dan Bigu, site vice president of Cernavoda NPP, said the 2016 mission had "proven to be very beneficial", adding that the current follow-up mission would "provide further catalyst support to our journey to nuclear excellence".

The team provided a draft report of the mission to the plant's management and a final report will be submitted to the Romanian government, which recently moved to terminate talks with a Chinese partner on a separate nuclear project, within three months.

OSART missions aim to improve operational safety by objectively assessing safety performance, even as the agency reports mines at Ukraine's Zaporizhzhia plant amid ongoing risks, using the IAEA's safety standards and proposing recommendations and suggestions for improvement where appropriate. The follow-up missions are standard components of the OSART programme and, as the IAEA has warned of risks from attacks on Ukraine's power grids, are typically conducted within two years of the initial mission.

 

Related News

View more

First US coal plant in years opens where no options exist

Alaska Coal-Fired CHP Plant opens near Usibelli mine, supplying electricity and district heat to UAF; remote location without gas pipelines, low wind and solar potential, and high heating demand shaped fuel choice.

 

Key Points

A 17 MW coal CHP at UAF producing power and campus heat, chosen for remoteness and lack of gas pipelines.

✅ 17 MW generator supplying electricity and district heat

✅ Near Usibelli mine; limited pipeline access shapes fuel

✅ Alternative options like LNG, wind, solar not cost-effective

 

One way to boost coal in the US: Find a spot near a mine with no access to oil or natural gas pipelines, where it’s not particularly windy and it’s dark much of the year.

That’s how the first coal-fired plant to open in the U.S. since 2015 bucked the trend in an industry that’s seen scores of facilities close in recent years. A 17-megawatt generator, built for $245 million, is set to open in April at the University of Alaska Fairbanks, just 100 miles from the state’s only coal mine.

“Geography really drove what options are available to us,” said Kari Burrell, the university’s vice chancellor for administrative services, in an interview. “We are not saying this is ideal by any means.”

The new plant is arriving as coal fuels about 25 percent of electrical generation in the U.S., down from 45 percent a decade earlier, even as some forecasts point to a near-term increase in coal-fired generation in 2021. A near-record 18 coal plants closed in 2018, and 14 more are expected to follow this year, according to BloombergNEF.

The biggest bright spot for U.S. coal miners recently has been exports to overseas power plants. At home, one of the few growth areas has been in pizza ovens.

There are a handful of other U.S. coal power projects that have been proposed, including plans to build an 850 megawatt facility in Georgia and an 895 megawatt plant in Kansas, even as a Minnesota utility reports declining coal returns across parts of its portfolio. But Ashley Burke, a spokeswoman for the National Mining Association, said she’s unaware of any U.S. plants actively under development besides the one in Alaska.

 

Future of power

“The future of power in the U.S. does not include coal,” Tessie Petion, an analyst for HSBC Holdings Plc, said in a research note, a view echoed by regions such as Alberta retiring coal power early in their transition.

Fairbanks sits on the banks of the Chena River, amid the vast subarctic forests in the heart of Alaska. The oil and gas fields of the state’s North slope are 500 miles north. The nearest major port is in Anchorage, 350 miles south.

The university’s new plant is a combined heat and power generator, which will create steam both to generate electricity and heat campus buildings. Before opting for coal, the school looked into using liquid natural gas, wind and solar, bio-mass and a host of other options, as new projects in Southeast Alaska seek lower electricity costs across the region. None of them penciled out, said Mike Ruckhaus, a senior project manager at the university.

The project, financed with university and state-municipal bonds, replaces a coal plant that went into service in 1964. University spokeswoman Marmian Grimes said it’s worth noting that the new plant will emit fewer emissions.

The coal will come from Usibelli Coal Mine Inc., a family-owned business that produces between 1.2 and 2 million tons per year from a mine along the Alaska railroad, according to the company’s website.

While any new plant is good news for coal miners, Clarksons Platou Securities Inc. analyst Jeremy Sussman said this one is "an isolated situation."

“We think the best producers can hope for domestically is a slow down in plant closures,” he said, even as jurisdictions like Alberta close their last coal plant entirely.

 

Related News

View more

Maritime Link almost a reality, as first power cable reaches Nova Scotia

Maritime Link Subsea Cable enables HVDC grid interconnection across the Cabot Strait, linking Nova Scotia with Newfoundland and Labrador to import Muskrat Falls hydroelectric power and expand renewable energy integration and reliability.

 

Key Points

A 170-km HVDC subsea link connecting Nova Scotia and Newfoundland and Labrador for Muskrat Falls power and renewables

✅ 170-km HVDC subsea route across Cabot Strait

✅ Connects Nova Scotia and Newfoundland and Labrador grids

✅ Enables Muskrat Falls hydro and renewable energy trade

 

The longest sub-sea electricity cable in North America now connects Nova Scotia and Newfoundland and Labrador, according to the company behind the $1.7-billion Maritime Link project.  

The first of the project's two high-voltage power transmission cables was anchored at Point Aconi, N.S., on Sunday. 

The 170-kilometre long cable across the Cabot Strait will connect the power grids in the two provinces. The link will allow power to flow between the two provinces, as demonstrated by its first electricity transfer milestone, and bring to Nova Scotia electricity generated by the massive Muskrat Falls hydroelectric project in Labrador. 

Ultimately, the Maritime Link will help Nova Scotia reach the renewable energy goals set out by the federal government, said Rick Janega, the president and CEO of Emera Newfoundland and Labrador, whose subsidiary owns the Maritime Link.

"If not for the Maritime Link then really the province would not have the ability to meet those requirements because we're pretty much tapped out of all the hydro in province and all the wind generation without creating new interconnections like the Maritime Link," said Janega. 

Not everyone wanted the link 

Fishermen in Cape Breton had objected to the Maritime Link. They were concerned about how the undersea cable might affect fish in the area. 

The laying of the cable and other construction closed a three-kilometre long and 600-metre wide swath of ocean bottom to fishermen for the entire 2017 lobster season.  

But the company came to an agreement to compensate a group of 60 Cape Breton lobster and crab fishermen affected by the project this season. The terms of the compensation deal were not released. 

 

Long cable, big job

The transmission cable runs northwest of the Marine Atlantic ferry route between North Sydney, N.S., and Port aux Basques, N.L. 

Installation of the second cable is set to begin in June, a major step comparable to BC Hydro's Site C transmission milestone achieved recently. The entire link should be completed by late 2017 and should go into full service by January 2018.

"We're quite confident as soon as the Maritime Link is in service there will be energy transactions between Nova Scotia Power and Newfoundland Hydro. Both utilities have already identified opportunities to save money and exchange energy between the two provinces," said Janega.

That's two years before power is expected to flow from the Muskrat Falls hydro project. The Labrador-based power generating facility has been hampered by delays.

Those kinds of transmission project delays are expected for such a large project, said Janega, and won't stop the Maritime Link from being used. 

"With the Maritime Link going in service this year providing Nova Scotia the opportunity that it needs to be able to reach carbon reductions and to adapt to climate change and to increase renewable energy content and we're very pleased to be at this state today," said Janega.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.