Time for an east-west power corridor

By Montreal Gazette


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
"If I want to export energy, but I have a choice between exporting it to the United States or a fellow Canadian neighbour, I'm going to sell it to a Canadian neighbour." - Jean Charest

This is a whole new game of Canadian federalism. And it's all about electricity. Quebec, Newfoundland and Manitoba have undeveloped hydroelectric capacity. And Ontario needs it.

A trans-Canadian power corridor could be as visionary and vital in this century as the trans-Canada highway and communications corridors proved to be in the last one.

What Charest has signalled, in a wide-ranging interview with Policy Options magazine, is a definite departure from Quebec's traditional hydro politics and policies, dating from the Bourassa years, of exporting surplus capacity primarily to the northeastern United States. Bourassa's famous "project of the century," at James Bay, was financed and built with U.S. markets very much in mind.

But Charest has launched Hydro-Québec along an expansion path that will add thousands of additional megawatts to its 36,000 MW network, the largest electrical utility in North America (if only prices were allowed to rise to market values, Quebec would be rich. I digress.)

What's new and different is that Quebec is now building additional infrastructure to Ontario, rather than the U.S. Northeast. For openers, Quebec is completing a new 1,200-MW interconnection to Ontario.

And that could be just the beginning of an east-west power corridor.

There's no doubt of Ontario's needs. Its hydro sources are essentially fully developed. Its nuclear capacity has been partly off-line for some time. And its coal-fired thermal power, which Premier Dalton McGuinty once promised to decommission by 2007, will remain in service for the foreseeable future. Ontario remains extremely vulnerable to brownouts, and desperately in need of new and reliable electricity sources to power Canada's industrial heartland (we're talking about 40 per cent of the Canadian economy here).

Ontario's neighbouring states, notably New York, Ohio and Michigan, are looking at many of the same challenges of capacity and sustainable development. Quebec, Manitoba and Newfoundland, on the other hand, are blessed with an abundance of hydroelectric resources - renewable, reliable and green.

Newfoundland and Labrador, for example, have about 3,000 MW of undeveloped capacity in the Lower Churchill, which could easily be linked to the 5,000-MW connection between the Upper Churchill Falls power station and the Hydro-Québec transmission network.

This is a dream, unrealized for decades, because of uncertain demand and a legacy of bitterness in Newfoundland over the bad deal it made in selling Upper Churchill power to Quebec at 1969 prices that are locked in until 2041. You can imagine the profit margins Hydro-Québec makes on that, and reminding Newfoundland that "a contract is a contract," as successive Quebec governments have done, only rubs salt into an old wound.

Newfoundland is actively seeking to develop the Lower Churchill, but its own needs, even including an aluminum smelter at Voisey's Bay, are far short of the undeveloped capacity. Newfoundland is even looking at undersea transmission to Cape Breton, and thence to New England, as one export option.

But selling to Ontario, through Quebec, has always made the most sense. Yet it has always been a problem of creating the right mood between the leading political actors - the premiers of the respective two provinces, who can set an appropriate tone for their utilities.

In the magazine interview, Charest was extremely respectful, saying "I would have liked to have been able to work with Newfoundland and Labrador, but they decided - and that's their right to do that - to go into a process of trying to determine which would be the best way to develop it, and we're fine with that."

He was careful to add: "The relationship with Newfoundland and Labrador has been very good."

In truth, any relationship with Danny Williams is going to be a work in progress. All Newfoundland premiers have sensibilities, and his are more highly developed than the historical average.

But here's the thing: It's all about relationships and opportunities. Charest is very good at relationships. His strongest ally at the premiers' table is Gary Doer of Manitoba, who has electrical power. He has been building a strong relationship with McGuinty, who needs power. He's very sensitive to Williams, who has power but needs a corridor to sell it.

As for opportunities, there's a major one this week on the margins of the meeting of the Council of the Federation, hosted by Charest in Quebec City.

Guys, maybe it's time you talked.

Related News

Berlin Electric Utility Wins National Safety Award

Berlin Electric Utility APPA Safety Award recognizes Gold Designation performance in public power, highlighting OSHA-aligned incident rates, robust safety culture, worker safety training, and operational reliability that keeps the community's electric service resilient.

 

Key Points

A national honor for Berlin's Gold Designation recognizing safety performance, worker protection, and reliable service.

✅ Gold Designation in 15,000-29,999 worker hours APPA category

✅ OSHA-based incident rate and robust safety culture

✅ Training, PPE, and reliability focus in public power operations

 

The Town of Berlin Electric Utility Department has been recognized for its outstanding safety practices with the prestigious Safety Award of Excellence from the American Public Power Association (APPA), a distinction also reflected in Medicine Hat Electric Utility for health and safety excellence, highlighting industry-wide commitment to worker protection.

Recognition for Excellence

In an era when workplace safety is a critical concern, with organizations highlighting leadership in worker safety across the sector, the Town of Berlin Electric Utility Department’s achievement stands out. The department earned the Gold Designation award in the category for utilities with 15,000 to 29,999 worker hours of annual worker exposure. This category is part of the APPA’s annual Safety Awards, which are designed to recognize the safety performance of public power utilities across the United States.

Out of more than 200 utilities that participated in the 2024 Safety Awards, Berlin's Electric Utility Department distinguished itself with an exemplary safety record. The utility’s ranking was based on its low incidence of work-related injuries and illnesses, alongside its robust safety programs and strong safety culture.

What the Award Represents

The Safety Award of Excellence is given to utilities that demonstrate effective safety protocols and practices over the course of the year. The APPA evaluates utilities based on their incident rate, which is calculated using the number of work-related reportable injuries or illnesses relative to worker hours. This measurement adheres to guidelines established by the Occupational Safety and Health Administration (OSHA), ensuring a standardized approach to assessing safety.

For the Town of Berlin Electric Utility Department, achieving the Gold Designation award signifies a year of outstanding safety performance. The award reflects the department’s dedication to preventing accidents and creating a work environment where safety is prioritized at every level.

Why Safety Matters

For utilities like the one in Berlin, safety is not just about preventing injuries—it's about fostering a culture of care and responsibility. Electric utility workers face unique and significant risks, ranging from the dangers of working with high-voltage systems, including hazards near downed power lines that require extreme caution, to the physical demands of the job. A utility’s ability to minimize these risks and keep its workforce safe is a direct reflection of its safety practices, training, and overall management.

The commitment to safety extends beyond just the immediate work environment. Utilities that place a high value on safety typically invest in ongoing training, safety gear, and processes, and even contingency measures like staff living on site during outbreaks, that ensure all employees are well-prepared to handle the challenges of their roles. The Town of Berlin Electric Utility Department has taken these steps seriously, providing its workers with the resources they need to stay safe while maintaining the power supply for the local community.

The Importance of Worker Safety in Public Power

The American Public Power Association’s Safety Award program highlights the best practices in public utilities, which, as the U.S. grid overseer's pandemic warning reminded the sector, play a crucial role in providing essential services to communities across the country. Public power utilities, like Berlin’s, are governed by local or municipal entities rather than for-profit corporations, which often allows them to have a closer relationship with their communities. As a result, these utilities often go above and beyond when it comes to worker safety, understanding that the well-being of employees directly impacts the quality of service provided to residents.

For the Town of Berlin, this award not only highlights the utility's commitment to its employees but also reinforces the importance of the work that public utilities do in keeping communities safe and powered. Berlin's recognition underscores the significance of maintaining a safe work environment, especially when the safety of first responders and utility workers, as seen when nuclear plant workers raised concerns over virus precautions, directly impacts the public’s access to reliable services.

What’s Next for Berlin’s Electric Utility Department

Receiving the Safety Award of Excellence is a remarkable achievement, but for the Town of Berlin Electric Utility Department, it’s not the end of their safety journey—it’s just one more step in their ongoing commitment to improvement. The department’s leadership, including the safety team, has emphasized the importance of continually evaluating and enhancing safety protocols to stay ahead of potential risks. This includes adopting new safety technologies, refining training programs, and ensuring that all employees are involved in the process of safety.

As the Town of Berlin looks forward to the future, its focus on worker safety will remain a top priority. Maintaining this level of safety is not only crucial for the health and well-being of employees but also for ensuring the continued success of the community’s utility services.

Community Impact

This recognition also serves as an example for other utilities in the region and across the country. By prioritizing safety, the Town of Berlin Electric Utility Department sets a standard that other utilities can aspire to. In a time when worker safety is more important than ever, Berlin’s commitment to best practices provides a model for others to follow.

Ultimately, the safety of utility workers is a reflection of a community’s dedication to its workforce and its commitment to providing reliable, uninterrupted services. For the residents of Berlin, the recognition of their local electric utility department’s safety practices means that they can continue to rely on a safe, secure, and resilient power infrastructure, while staying mindful of home risks such as overheated power strips that can spark fires.

 

Related News

View more

Portland General Electric Program Will Transform Hundreds of Homes Into a Virtual Power Plant

PGE Residential Energy Storage Pilot aggregates 525 home batteries into a virtual power plant, enabling distributed energy resources, smart grid control, renewable energy optimization, demand response, and backup power across Portland General Electric's area.

 

Key Points

A PGE program aggregating 525 batteries into a utility-run virtual power plant for renewables support and backup power.

✅ Up to 4 MW aggregated capacity from 525 residential batteries

✅ Monthly credits: $40 ($20 with solar) for grid services

✅ Enhances smart grid, DERs, resilience, and outage backup

 

Portland General Electric Company is set to launch a pilot program that will incentivize installation and connection of 525 residential energy storage batteries that PGE will dispatch, contributing up to four megawatts of energy to PGE's grid. The distributed assets will create a virtual power plant made up of small units that can be operated individually or combined to serve the grid, adding flexibility that supports PGE's transition to a clean energy future. When the program launches this fall, incentives will be available to residential customers across PGE's service area. Rebates will be available to customers within three neighborhoods participating in PGE's Smart Grid Test Bed, and income-qualified customers participating in Energy Trust of Oregon's Solar Within Reach offer.

PGE will study the full benefits of energy storage that these distributed energy assets can provide the grid while also increasing resiliency for each participating customer. PGE will operate and test the benefits of using homes' batteries, each capable of storing 12 to 16 kWh of energy, to optimize the use of renewable energy and grid capabilities. In the event of a power outage, participating customers can rely on them as a backup power resource.

"Our vision for clean energy relies on a smart, integrated grid. One of the ways that we'll achieve that is through creative partnerships and diversified energy resources, including those behind-the-meter," said Larry Bekkedahl, vice president of Grid Architecture, Integration and Systems Operation. "This pilot project will allow PGE to integrate even more intermittent renewable energy and enhance grid capabilities while also giving participating customers peace of mind in the event of an outage."

Energy storage maximizes renewables and the grid, improves power quality

Energy storage, including long-duration energy storage solutions, is vital to help capture and store energy from renewable power sources, such as wind and solar, that are more variable. As a virtual power plant, the residential battery storage pilot will create a single resource that can help the grid balance energy production with energy demand, freeing up the generation resources that are typically held on standby, ready to kick in when the wind doesn't blow or the sun doesn't shine. As a clean energy option that takes the place of standby resources, the virtual power plant also gives customers access to reliable energy, even in the event of system outages.

The test program will also allow PGE to test new smart-grid control devices across its distribution system that will more effectively allow a two-way exchange between PGE and pilot participants. The new controls will more actively manage the way that electricity is distributed across PGE's system to incorporate energy that customers generate, such as through solar panels, while also meeting power demand that is less predictable, such as for charging electric vehicles, supporting EVs for grid stability strategies. The controls will allow PGE to more actively manage power distribution to improve power quality for all customers.

Select rebates and incentives will be available to participants, aligned with electric vehicle programs that encourage transportation electrification

When it launches in fall 2020, participation in the program will be available to residential customers, including:

* Those across PGE's service area who already have or are installing a qualifying battery. Participation will require an application, and in exchange for allowing PGE to operate their battery for grid services, similar to programs where EV owners selling power back for compensation, participating customers will receive a monthly bill credit of $40, or $20 if the battery is charged with solar power.

* Customers across PGE's service area who are participating in the Solar Within Reach offering from Energy Trust of Oregon. Participants will be eligible for a $5,000 instant rebate in addition to the monthly bill credits.

* Those living within the PGE Smart Grid Test Bed who purchase a battery will be eligible for an instant rebate, in addition to the monthly bill credit of $40 or $20, which will allow PGE to test the localized grid impact of having a large concentration of battery storage devices available on one substation and explore interfaces with vehicle-to-grid pilots in the region.

PGE is working with Energy Trust to cost-effectively procure the residential battery storage systems, as utilities invest in advanced storage solutions across the region, by leveraging the existing Solar incentive program infrastructure and trade ally contractor network. Customers who participate in the program will own their battery systems, and rebates will only be available for systems installed by an Energy Trust solar trade ally. The program may also accept customers with a qualifying battery that is was previously installed, following a process to ensure safe operation.

More information about Portland General Electric's energy storage program is available at PortlandGeneral.com/energystorage and will be updated with details about the residential battery storage pilot program.

 

Related News

View more

Scientists generate 'electricity from thin air.' Humidity could be a boundless source of energy.

Air Humidity Energy Harvesting converts thin air into clean electricity using air-gen devices with nanopores, delivering continuous renewable energy from ambient moisture, as demonstrated by UMass Amherst researchers in Advanced Materials.

 

Key Points

A method using nanoporous air-gen devices to harvest continuous clean electricity from ambient atmospheric moisture.

✅ Nanopores drive charge separation from ambient water molecules

✅ Works across materials: silicon, wood, bacterial films

✅ Predictable, continuous power unlike intermittent solar or wind

 

Sure, we all complain about the humidity on a sweltering summer day. But it turns out that same humidity could be a source of clean, pollution-free energy, aligning with efforts toward cheap, abundant electricity worldwide, a new study shows.

"Air humidity is a vast, sustainable reservoir of energy that, unlike wind and solar power resources, is continuously available," said the study, which was published recently in the journal Advanced Materials.

While humidity harvesting promises constant output, advances like a new fuel cell could help fix renewable energy storage challenges, researchers suggest.

“This is very exciting,” said Xiaomeng Liu, a graduate student at the University of Massachusetts-Amherst, and the paper’s lead author. “We are opening up a wide door for harvesting clean electricity from thin air.”

In fact, researchers say, nearly any material can be turned into a device that continuously harvests electricity from humidity in the air, a concept echoed by raindrop electricity demonstrations in other contexts.

“The air contains an enormous amount of electricity,” said Jun Yao, assistant professor of electrical and computer engineering at the University of Massachusetts-Amherst and the paper’s senior author. “Think of a cloud, which is nothing more than a mass of water droplets. Each of those droplets contains a charge, and when conditions are right, the cloud can produce a lightning bolt – but we don’t know how to reliably capture electricity from lightning.

"What we’ve done is to create a human-built, small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”

The heart of the human-made cloud depends on what Yao and his colleagues refer to as an air-powered generator, or the "air-gen" effect, which relates to other atmospheric power concepts like night-sky electricity studies in the field.

In broader renewable systems, flexible resources such as West African hydropower can support variable wind and solar output, complementing atmospheric harvesting concepts as they mature.

The study builds on research from a study published in 2020. That year, scientists said this new technology "could have significant implications for the future of renewable energy, climate change and in the future of medicine." That study indicated that energy was able to be pulled from humidity by material that came from bacteria; related bio-inspired fuel cell design research explores better electricity generation, the new study finds that almost any material, such as silicon or wood, also could be used.

The device mentioned in the study is the size of a fingernail and thinner than a single hair. It is dotted with tiny holes known as nanopores, it was reported. "The holes have a diameter smaller than 100 nanometers, or less than a thousandth of the width of a strand of human hair."

 

Related News

View more

New England takes key step to 1.2 GW of Quebec hydro as Maine approves transmission line

NECEC Clean Energy Connect advances with Maine DEP permits, Hydro-Québec contracts, and rigorous transmission line mitigation, including tapered vegetation, culvert upgrades, and forest conservation, delivering low-carbon power, broadband fiber, and projected ratepayer savings.

 

Key Points

A Maine transmission project delivering Hydro-Québec power with strict DEP mitigation, lower bills, and added broadband.

✅ DEP permits mandate tapered vegetation, culvert upgrades, land conservation

✅ Hydro-Québec to supply 9.55 TWh/yr via MA contracts; bill savings 2-4%

✅ Added broadband fiber in Somerset and Franklin; local tax benefits

 

The Maine DEP reviewed the Clean Energy Connect project for more than two years, while regional interest in cross-border transmission continued to grow, before issuing permits that included additional environmental mitigation elements.

"Collectively, the requirements of the permit require an unprecedented level of environmental protection and compensatory land conservation for the construction of a transmission line in the state of Maine," DEP said in a May 11 statement.

Requirements include limits on transmission corridor width, forest preservation, culvert replacement and vegetation management projects, while broader grid programs like vehicle-to-grid integration enhance clean energy utilization across the region.

"In our original proposal we worked hard to develop a project that provided robust mitigation measures to protect the environment," NECEC Transmission CEO Thorn Dickinson said in a statement. "And through this permitting process, we now have made an exceedingly good project even better for Maine."

NECEC will be built on land owned or controlled by Central Maine Power. The 53 miles of new corridor on working forest land will use a new clearing technique for tapered vegetation, while the remainder of the project follows existing power lines.

Environmentalists said they agreed with the decision, and the mitigation measures state regulators took, noting similar momentum behind new wind investments in other parts of Canada.

"Building new ways to deliver low-carbon energy to our region is a critical piece of tackling the climate crisis," CLF Senior Attorney Phelps Turner said in a statement. "DEP was absolutely right to impose significant environmental conditions on this project and ensure that it does not harm critical wildlife areas."

Once complete, Turner said the transmission line will allow the region "to retire dirty fossil fuel plants in the coming years, which is a win for our health and our climate."

The Massachusetts Department of Public Utilities in June 2019 advanced the project by approving contracts for the state's utilities to purchase 9,554,940 MWh annually from Hydro-Quebec. Officials said the project is expected to provide approximately 2% to 4% savings on monthly energy bills.

Total net benefits to Massachusetts ratepayers over the 20-year contract, including both direct and indirect benefits, are expected to be approximately $4 billion, according to the state's estimates.

NECEC "will also deliver significant economic benefits to Maine and the region, including lower electricity prices, increased local real estate taxes and reduced energy costs with examples like battery-backed community microgrids demonstrating local resilience, expanded fiber optic cable for broadband service in Somerset and Franklin counties and funding of economic development for Western Maine," project developers said in a statement.​

 

Related News

View more

Heating and Electricity Costs in Germany Set to Rise

Germany 2025 Energy Costs forecast electricity and heating price trends amid gas volatility, renewables expansion, grid upgrades, and policy subsidies, highlighting impacts on households, industries, efficiency measures, and the Energiewende transition dynamics.

 

Key Points

Electricity stabilizes, gas-driven heating stays high; renewables, subsidies, and efficiency measures moderate costs.

✅ Power prices stabilize above pre-crisis levels

✅ Gas volatility keeps heating bills elevated

✅ Subsidies and efficiency upgrades offset some costs

 

As Germany moves into 2025, the country is facing significant shifts in heating and electricity costs. With a variety of factors influencing energy prices, including geopolitical tensions, government policies, and the ongoing transition to renewable energy sources, consumers and businesses alike are bracing for potential changes in their energy bills. In this article, we will explore how heating and electricity costs are expected to evolve in Germany in the coming year and what that means for households and industries.

Energy Price Trends in Germany

In recent years, energy prices in Germany have experienced notable fluctuations, particularly due to the aftermath of the global energy crisis, which was exacerbated by the Russian invasion of Ukraine. This geopolitical shift disrupted gas supplies, which in turn affected electricity prices and strained local utilities across the country. Although the German government introduced measures to mitigate some of the price increases, many households have still felt the strain of higher energy costs.

For 2024, experts predict that electricity prices will likely stabilize but remain higher than pre-crisis levels. While electricity prices nearly doubled in 2022, they have gradually started to decline, and the market has adjusted to the new realities of energy supply and demand. Despite this, the cost of electricity is expected to stay elevated as Germany continues to phase out coal and nuclear energy while ramping up the use of renewable sources, which often require significant infrastructure investments.

Heating Costs: A Mixed Outlook

Heating costs in Germany are heavily influenced by natural gas prices, which have been volatile since the onset of the energy crisis. Gas prices, although lower than the peak levels seen in 2022, are still considerably higher than in the years before. This means that households relying on gas heating can expect to pay more for warmth in 2024 compared to previous years.

The government has implemented measures to cushion the impact of these increased costs, such as subsidies for vulnerable households and efforts to support energy efficiency upgrades. Despite these efforts, consumers will still feel the pinch, particularly in homes that use older, less efficient heating systems. The transition to more sustainable heating solutions, such as heat pumps, remains a key goal for the German government. However, the upfront cost of such systems can be a barrier for many households.

The Role of Renewable Energy and the Green Transition

Germany has set ambitious goals for its energy transition, known as the "Energiewende," which aims to reduce reliance on fossil fuels and increase the share of renewable energy sources in the national grid. In 2024, Germany is expected to see further increases in renewable energy generation, particularly from wind and solar power. While this transition is essential for reducing carbon emissions and improving long-term energy security, the shift comes with its own challenges already documented in EU electricity market trends reports.

One of the main factors influencing electricity costs in the short term is the intermittency of renewable energy sources. Wind and solar power are not always available when demand peaks, requiring backup power generation from fossil fuels or stored energy. Additionally, the infrastructure needed to accommodate a higher share of renewables, including grid upgrades and energy storage solutions, is costly and will likely contribute to rising electricity prices in the near term.

On a positive note, Germany's growing investment in renewable energy is expected to make the country less reliant on imported fossil fuels, particularly natural gas, which has been a major source of price volatility. Over time, as the share of renewables in the energy mix grows, the energy system should become more stable and less susceptible to geopolitical shocks, which could lead to more predictable and potentially lower energy costs in the long run.

Government Interventions and Subsidies

To help ease the burden on consumers, the German government has continued to implement various measures to support households and businesses. One of the key programs is the reduction in VAT (Value Added Tax) on electricity, which has been extended in some regions. This measure is designed to make electricity more affordable for all households, particularly those on fixed incomes facing EU energy inflation pressures that have hit the poorest hardest.

Moreover, the government has been providing financial incentives for households and businesses to invest in energy-efficient technologies, such as insulation and energy-saving heating systems, complementing the earlier 200 billion euro energy shield announced to buffer surging prices. These incentives are intended to reduce overall energy consumption, which could offset some of the rising costs.

The outlook for heating and electricity costs in Germany for 2024 is mixed, even as energy demand hit a historic low amid economic stagnation. While some relief from the extreme price spikes of 2022 may be felt, energy costs will still be higher than they were in previous years. Households relying on gas heating will likely see continued elevated costs, although those who invest in energy-efficient solutions or renewable heating technologies may be able to offset some of the increases. Similarly, electricity prices are expected to stabilize but remain high due to the country’s ongoing transition to renewable energy sources.

While the green transition is crucial for long-term sustainability, consumers must be prepared for potentially higher energy costs in the short term. Government subsidies and incentives will help alleviate some of the financial pressure, but households should consider strategies to reduce energy consumption, such as investing in more efficient heating systems or adopting renewable energy solutions like solar panels.

As Germany navigates these changes, the country’s energy future will undoubtedly be shaped by a delicate balance between environmental goals and the economic realities of transitioning to a greener energy system.

 

Related News

View more

Utility giant Electricite de France acquired 50pc stake in Irish offshore wind farm

Codling Bank Offshore Wind Project will deliver a 1.1 GW offshore wind farm off the Wicklow coast, as EDF Renewables and Fred Olsen Renewables invest billions to support Ireland's CAP 2030 and cut carbon emissions.

 

Key Points

A 1.1 GW offshore wind farm off Co Wicklow, led by EDF and Fred Olsen, advancing Ireland's CAP 2030 targets.

✅ Up to 1.1 GW capacity; hundreds of turbines off Co Wicklow

✅ EDF Renewables partners with Fred Olsen Renewables

✅ Investment well over €2bn, supporting 70% electricity by 2030

 

It’s been previously estimated that the entire Codling Bank project, which will eventually see hundreds of wind turbines, such as a huge offshore wind turbine now coming to market, erected about 13km off the Co Wicklow coast, could be worth as much as €100m. The site is set to generate up to 1.1 gigawatts of electricity when it’s eventually operational.

It’s likely to cost well over €2bn to develop, and with new pipelines abroad where Long Island offshore turbine proposals are advancing, scale economies are increasingly relevant.

The other half of the project is owned by Norway’s Fred Olsen Renewables, with tens of millions of euro already reportedly spent on surveys and other works associated with the scheme. Initial development work started in 2003.

Mr Barrett will now continue to focus on his non-Irish renewable projects, at a time when World Bank wind power support is accelerating in developing countries, said Hazel Shore, the company that sold the stake. It added that Johnny Ronan and Conor Ronan, the developer’s brother, will retain an equity interest in the Codling project.

“The Hazel Shore shareholders remain committed to continuing their renewable and forestry businesses,” noted the firm, whose directors include Paddy Teahon, a former secretary of the Department of the Taoiseach and chairman of the National Offshore Wind Association of Ireland.

The French group’s EDF Renewables subsidiary will now partner with the Norwegian firm to develop and build the Codling Bank project, in a sector widely projected to become a $1 trillion business over the coming decades.

EDF pointed out that the acquisition of the Codling Bank stake comes after the government committed to reducing carbon emissions. A Climate Action Plan launched last year will see renewable projects generating 70pc of Ireland’s electricity by 2030, with more than a third of Irish electricity to be green within four years according to recent analysis. Offshore wind is expected to deliver at least 3.5GW of power in support of the objective.

Bruno Bensasson, EDF Group senior executive vice-president of renewable energies and the CEO of EDF Renewables said the French group is “committed to contributing to the Irish government’s renewables goals”.

“This important project clearly strengthens our strong ambition to be a leading global player in the offshore wind industry,” he added. “This is consistent with the CAP 2030 strategy that aims to double EDF’s renewable energy generation by 2030 and increase it to 50GW net.”

Matthieu Hue, the CEO of EDF Renewables UK and Ireland said the firm already has an office in Dublin and is looking for further renewable projects, as New York's biggest offshore wind farm moves ahead, underscoring momentum.

Last November, the ESB teamed up with EDF in Scotland, reflecting how UK offshore wind is powering up, with the Irish utility buying a 50pc stake in the Neart na Gaoithe offshore wind project. The massive wind farm is expected to generate up to 450MW of electricity and will cost about €2.1bn to develop.

EDF said work on that project is “well under way”.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified