Going green tough on legislature in down economy

By Associated Press


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The state that invented the bottle bill couldn't get an ambitious expansion through the Legislature this year, and the governor's grand plans for creating a Western carbon market to combat global warming flopped.

With money tight in a down economy, it was tough for even a strong Democratic majority to make the state greener than it already is — unless someone else was paying.

In those cases, environmental interests thrived — winning creation of Oregon's first marine reserves after years of bitter conflict, a new low-carbon fuel standard to reduce greenhouse gas emissions from cars and trucks, and a trust fund to remove Klamath River dams that have blocked salmon for a century.

"Last session we had a lot of low-hanging fruit," said Sen. Jackie Dingfelder, D-Portland, who shepherded many of the bills as chairwoman of the Senate environment committee. "This year we had to take on some more challenging issues."

One that was not ripe was Gov. Ted Kulongoski's ambitious attempt to expand the bottle bill — first enacted in 1971 with a nickel deposit on beer and soft drinks cans and bottles — to include wine, liquor, coffee, tea, juice and sports drinks, and boost the deposit to a dime.

Eleven states now demand deposits on beverage containers, and 13 considered legislation the past two years, according to the National Congress of State Legislatures.

Many were looking for new sources of revenue in tough economic times, and Connecticut cashed in, making unclaimed deposits the property of the state.

In Oregon, grocers didn't like the idea, and concessions made to appease them turned supporters against it.

Look for it to come back when the Legislature convenes in February, said Dingfelder.

The bills that succeeded tended to not rely on the beleaguered state budget, said Mike Carrier, natural resources adviser to the governor.

Legislatures across the nation faced the same tight budgets, with similar results, said Emily Templin at the National Conference of State Legislatures, which tracks legislative trends. Forty states debated 299 bills related to climate change, and only 20 of them in 10 states were enacted.

In Oregon, the $1 million for research and regulation that will go into the two small fishing-free marine reserves created inside the state's 3-mile limit came from a lawsuit against the owners of the wrecked cargo ship New Carissa, whose rusting hulk was removed from the beach near the entrance to Coos Bay last year.

The trust fund to pay $180 million toward removal of aging hydroelectric dams on the Klamath River to help struggling salmon runs comes from a surcharge on electricity customers of PacifiCorp, the dams' owners.

The $15 million to start buying 95,000 acres of private timberland near Gilchrist, establishing the first new state forest since 1946, comes from lottery-backed bonds.

Environmentalists overcame a strong push from the chemical industry to win a ban on the sale of consumer goods containing the latest form of flame retardants made from the chemical bromine, known as deca-BDEs, by the year 2011. Oregon joins Vermont, Maine and Washington with laws regulating the chemical.

But a companion effort to ban the plastic additive bisphenol B from baby bottles and children's toys failed in Oregon, and did not fare well nationwide. Legislation was introduced in 20 states, but only Minnesota and Connecticut enacted bills, according to the National Conference of State Legislatures.

Evan Manvel, legislative director for the Oregon League of Conservation Voters, said the 20 environmental bills passed was "an impressive record," but progress on global warming was not strong enough. The biggest disappointment was Kulongoski's plan to put Oregon in the forefront of a regional cap and trade system endorsed by Western governors to drive down greenhouse gases.

No other state did any better. The effort was deflated by Congress, where the House passed a national cap and trade bill, whose future remains uncertain in the Senate.

Discounting cap and trade, Kulongoski sustainability adviser David Van't Hof said their climate agenda was successful. Besides the low-carbon fuel standard, which could accelerate development of ethanol from forest thinnings, people who put solar panels on their homes will be paid by utilities for excess electricity, and building codes will reduce home energy use.

"This session keeps Oregon very much in the forefront of almost anyone in the country on energy and climate policy," he said.

Business interests did not oppose higher fines for polluters, figuring that cheaters should have to pay to keep the playing field level, said John Ledger, a lobbyist for Associated Oregon Industries. The fines go into the general fund.

"The main focus going into the session was to avoid job losses, on environmental issues especially," said Ledger, and they joined forces with unions and Republicans. "I think we were successful avoiding things that would cause an economic downturn."

Going into the session with no environmental agenda of their own, Republicans worked on "damage control." They feel they succeeded on their top priority, scuttling cap and trade, said Senate Minority Leader Ted Ferrioli, R-John Day, though they could not stop a ban on a destination resort in the Metolius River Basin.

Ferrioli said he is hoping that when the costs of environmental legislation this session come home to roost — particularly the costs of reducing greenhouse gas emissions when the state already ranks 41st in the nation on carbon footprint — voters will look to the GOP to send the pendulum swinging the other way.

"I think we have swung so far to one side, that I think the whole electorate will help us push it back toward the middle," he said.

Related News

Brand New Renewable Technology Harnesses Electricity From The Cold, Dark Night

Nighttime Thermoelectric Generator converts radiative cooling into renewable energy, leveraging outer space cold; a Stanford-UCLA prototype complements solar, serving off-grid loads with low-power output during peak evening demand, using simple materials on a rooftop.

 

Key Points

A device converting nighttime radiative cooling into electricity, complementing solar for low-power evening needs.

✅ Uses thermocouples to convert temperature gradients to voltage.

✅ Exploits radiative cooling to outer space for night power.

✅ Complements solar; low-cost parts suit off-grid applications.

 

Two years ago, one freezing December night on a California rooftop, a tiny light shone weakly with a little help from the freezing night air. It wasn't a very bright glow. But it was enough to demonstrate the possibility of generating renewable power after the Sun goes down.

Working with Stanford University engineers Wei Li and Shanhui Fan, University of California Los Angeles materials scientist Aaswath Raman put together a device that produces a voltage by channelling the day's residual warmth into cooling air, effectively generating electricity from thin air with passive heat exchange.

"Our work highlights the many remaining opportunities for energy by taking advantage of the cold of outer space as a renewable energy resource," says Raman.

"We think this forms the basis of a complementary technology to solar. While the power output will always be substantially lower, it can operate at hours when solar cells cannot."

For all the merits of solar energy, it's just not a 24-7 source of power, although research into nighttime solar cells suggests new possibilities for after-dark generation. Sure, we can store it in a giant battery or use it to pump water up into a reservoir for later, but until we have more economical solutions, nighttime is going to be a quiet time for renewable solar power. 

Most of us return home from work as the Sun is setting, and that's when energy demands spike to meet our needs for heating, cooking, entertaining, and lighting.

Unfortunately, we often turn to fossil fuels to make up the shortfall. For those living off the grid, it could require limiting options and going without a few luxuries.

Shanhui Fan understands the need for a night time renewable power source well. He's worked on a number of similar devices, including carbon nanotube generators that scavenge ambient energy, and a recent piece of technology that flipped photovoltaics on its head by squeezing electricity from the glow of heat radiating out of the planet's Sun-warmed surface.

While that clever item relied on the optical qualities of a warm object, this alternative device makes use of the good old thermoelectric effect, similar to thin-film waste-heat harvesting approaches now explored.

Using a material called a thermocouple, engineers can convert a change in temperature into a difference in voltage, effectively turning thermal energy into electricity with a measurable voltage. This demands something relatively toasty on one side and a place for that heat energy to escape to on the other.

The theory is the easy part – the real challenge is in arranging the right thermoelectric materials in such a way that they'll generate a voltage from our cooling surrounds that makes it worthwhile.

To keep costs down, the team used simple, off-the-shelf items that pretty much any of us could easily get our hands on.

They put together a cheap thermoelectric generator and linked it with a black aluminium disk to shed heat in the night air as it faced the sky. The generator was placed inside a polystyrene enclosure sealed with a window transparent to infrared light, and linked to a single tiny LED.


 

For six hours one evening, the box was left to cool on a roof-top in Stanford as the temperature fell just below freezing. As the heat flowed from the ground into the sky, the small generator produced just enough current to make the light flicker to life.

At its best, the device generated around 0.8 milliwatts of power, corresponding to 25 milliwatts of power per square metre.

That might just be enough to keep a hearing aid working. String several together and you might just be able to keep your cat amused with a simple laser pointer. So we're not talking massive amounts of power.

But as far as prototypes go, it's a fantastic starting point. The team suggests that with the right tweaks and the right conditions, 500 milliwatts per square metre isn't out of the question.

"Beyond lighting, we believe this could be a broadly enabling approach to power generation suitable for remote locations, and anywhere where power generation at night is needed," says Raman.

While we search for big, bright ideas to drive the revolution for renewables, it's important to make sure we don't let the smaller, simpler solutions like these slip away quietly into the night.

This research was published in Joule.

 

Related News

View more

Hungary's Quiet Alliance with Russia in Europe's Energy Landscape

Hungary's Russian Energy Dependence underscores EU tensions, as TurkStream gas flows, discounted imports, and pipeline reliance challenge sanctions, energy security, diversification, and decoupling goals amid Ukraine war pressures and bloc unity concerns.

 

Key Points

It is Hungary's reliance on Russian gas and oil via TurkStream, complicating EU sanctions and energy independence.

✅ 85% gas, 60% oil imports from Russia via TurkStream pipelines.

✅ Discounted contracts seldom cut bills; security cited by Budapest.

✅ EU decoupling targets hampered; sanctions leverage and unity erode.

 

Hungary's energy policies have positioned it as a notable outlier within the European Union, particularly in the context of the ongoing geopolitical tensions stemming from Russia's invasion of Ukraine. While the EU has been actively working to reduce its dependence on Russian energy sources through an EU $300 billion plan to dump Russian energy, Hungary has maintained and even strengthened its energy ties with Moscow, raising concerns about EU unity and the effectiveness of sanctions.

Strategic Energy Dependence

Hungary's energy infrastructure is heavily reliant on Russian supplies. Approximately 85% of Hungary's natural gas and more than 60% of its oil imports originate from Russia. This dependence is facilitated through pipelines such as TurkStream, which delivers Russian gas to Hungary via Turkey and the Balkans amid Europe's energy nightmare over price volatility and security. In 2025, Hungary's gas imports through TurkStream are projected to reach 8 billion cubic meters, a significant increase from previous years. These imports are often secured at discounted rates, although such savings may not always be passed on to Hungarian consumers.

Political and Economic Considerations

Prime Minister Viktor Orbán has been a vocal critic of EU sanctions against Russia and has consistently blocked EU initiatives aimed at providing military aid to Ukraine, even as Ukraine leans on power imports to keep the lights on. His government argues that Russia's military capabilities make it an unyielding adversary and that a ceasefire would only solidify its territorial gains. Orbán's stance has led to Hungary's isolation within the EU on matters related to the conflict in Ukraine.

Economically, Hungary's reliance on Russian energy has been justified by the government as a means to maintain low energy prices for consumers and ensure energy security. However, critics argue that this strategy undermines EU efforts to achieve energy independence and reduces the bloc's leverage over Russia amid a global energy war marked by price hikes and instability.

EU's Response and Challenges

The European Union has set ambitious goals to reduce its reliance on Russian energy, aiming to halt imports of Russian natural gas by the end of 2027 and prohibit new contracts starting in 2025 while exploring gas price cap strategies to contain market volatility. However, Hungary's continued imports of Russian energy complicate these efforts. The TurkStream pipeline, in particular, has become a focal point in discussions about the EU's energy strategy, as it enables ongoing Russian gas exports to Europe despite the bloc's broader decoupling initiatives.

Hungary's actions have raised concerns among other EU member states about the effectiveness of the sanctions regime and the potential for other countries to exploit similar loopholes. There are calls for stricter policies, including banning spot gas purchases and enforcing traceability of gas origins, and consideration of emergency measures to limit electricity prices to ensure genuine energy independence and reduce overreliance on external suppliers.

Hungary's steadfast energy relationship with Russia presents a significant challenge to the European Union's collective efforts to reduce dependence on Russian energy sources. While Hungary argues that its energy strategy is in the national interest, it risks undermining EU solidarity and the bloc's broader geopolitical objectives. As the EU continues to navigate its energy transition and response to the ongoing conflict in Ukraine, including energy ceasefire violations reported by both sides, Hungary's position will remain a critical point of contention within the union.

 

Related News

View more

UK net zero policies: What do changes mean?

UK Net Zero Policy Delay shifts EV sales ban to 2035, eases boiler phase-outs, keeps ZEV mandate, backs North Sea oil and gas, accelerates onshore wind and grid upgrades while targeting 2050 emissions goals.

 

Key Points

Delay moves EV and heating targets to 2035, tweaks mandates, and shifts energy policy, keeping the 2050 net zero goal.

✅ EV sales ban shifts to 2035; ZEV mandate trajectory unchanged

✅ Heat pump grants rise to £7,500; boiler phase-out eased

✅ North Sea oil, onshore wind, grid and nuclear plans advance

 

British Prime Minister Rishi Sunak has said he would delay targets for changing cars and domestic heating to maintain the consent of the British people in the switch to net zero as part of the global energy transition under way.

Sunak said Britain was still committed to achieving net zero emissions by 2050, similar to Canada's race to net zero goals, and denied watering down its climate targets.

Here are some of the current emissions targets for Britain's top polluting sectors and how the announcement impacts them.


TRANSPORTATION
Transport accounts for more than a third (34%) of Britain's total carbon dioxide (CO2) emissions, the most of any sector.

Sunak announced a delay to introducing a ban on new petrol and diesel cars and vans. It will now come into force in 2035 rather than in 2030.

There were more than 1.1 million electric cars in use on UK roads as of April - up by more than half from the previous year to account for roughly one in every 32 cars, according to the country's auto industry trade body.

The current 2030 target was introduced in November 2020 as a central part of then-Prime Minister Boris Johnson's plans for a "green revolution". As recently as Monday, transport minister Mark Harper restated government support for the policy.

Britain’s independent climate advisers, the Climate Change Committee, estimated a 2030 phase out of petrol, diesel and hybrid vehicles could save up to 110 million tons of carbon dioxide equivalent emissions compared with a 2035 phase out.

ohnson's policy already allowed for the continued sale of hybrid cars and vans that can drive long stretches without emitting carbon until 2035.

The transition is governed by a zero-emission vehicle (ZEV) mandate, a shift echoed by New Zealand's electricity transition debates, which means manufacturers must ensure an increasing proportion of the vehicles they sell in the UK are electric.

The current proposal is for 22% of a car manufacturer's sales to be electric in 2024, rising incrementally each year to 100% in 2035.

The government said on Wednesday that all sales of new cars from 2035 would still be zero emission.

Sunak said that proposals that would govern how many passengers people should have in a car, or proposals for new taxes to discourage flying, would be scrapped.


RESIDENTIAL
Residential emissions, the bulk of which come from heating, make up around 17% of the country's CO2 emissions.

The government has a target to reduce Britain's energy consumption from buildings and industry by 15% by 2030, and had set a target to phase out installing new and replacement gas boilers from 2035, as the UK moves towards heat pumps, amid an IEA report on Canada's power needs noting more electricity will be required.

Sunak said people would have more time to transition, and the government said that off-gas-grid homes could continue to install oil and liquefied petroleum gas boilers until 2035, rather than being phased out from 2026.

However, his announcements that the government would not force anyone to rip out an existing boiler and that people would only have to make the switch when replacing one from 2035 restated existing policy.

He also said there would be an exemption so some households would never have to switch, but the government would increase an upgrade scheme that gives people cash to replace their boilers by 50% to 7,500 pounds ($9,296.25).

Currently almost 80% of British homes are heated by gas boilers. In 2022, 72,000 heat pumps were installed. The government had set a target of 600,000 heat pump installations per year by 2028.

A study for Scottish Power and WWF UK in June found that 6 million homes would need to be better insulated by 2030 to meet the government's target to reduce household energy consumption, but current policies are only expected to deliver 1.1 million.

The study, conducted by Frontier Economics, added that 1.5 million new homes would still need heat pumps installed by 2030.

Sunak said that the government would subsidise people who wanted to make their homes energy efficient but never force a household to do it.

The government also said it was scrapping policies that would force landlords to upgrade the energy efficiency of their properties.


ENERGY
The energy sector itself is a big emitter of greenhouse gases, contributing around a quarter of Britain's emissions, though the UK carbon tax on coal has driven substantial cuts in coal-fired electricity in recent years.

In July, Britain committed to granting hundreds of licences for North Sea oil and gas extraction as part of efforts to become more energy independent.

Sunak said he would not ban new oil and gas in the North Sea, and that future carbon budgets for governments would have to be considered alongside the plans to meet them.

He said the government would shortly bring forward new plans for energy infrastructure to improve Britain's grid, including the UK energy plan, while speeding up planning.

Offshore wind power developers warned earlier this month that Britain's climate goals could be at risk, even as efforts like cleaning up Canada's electricity highlight the importance of power-sector decarbonization, after a subsidy auction for new renewable energy projects did not attract any investment in those planned off British coasts.

Britain is aiming to develop 50 gigawatts (GW) of offshore wind capacity by 2030, up from around 14 GW now.

Sunak highlighted that Britain is lifting a ban on onshore wind, investing in carbon capture and building new nuclear power stations.

 

Related News

View more

U.S Bans Russian Uranium to Bolster Domestic Industry

U.S. Russian Uranium Import Ban reshapes nuclear fuel supply, bolstering energy security, domestic enrichment, and sanctions policy while diversifying reactor-grade uranium sources and supply chains through allies, waivers, and funding to sustain utilities and reliability.

 

Key Points

A U.S. law halting Russian uranium imports to boost energy security diversify nuclear fuel and revive U.S. enrichment.

✅ Cuts Russian revenue; reduces geopolitical risk.

✅ Funds U.S. enrichment; supports reactor fuel supply.

✅ Enables waivers to prevent utility shutdowns.

 

In a move aimed at reducing reliance on Russia and fostering domestic energy security for the long term, the United States has banned imports of Russian uranium, a critical component of nuclear fuel. This decision, signed into law by President Biden in May 2024, marks a significant shift in the U.S. nuclear fuel supply chain and has far-reaching economic and geopolitical implications.

For decades, Russia has been a major supplier of enriched uranium, a processed form of uranium used to power nuclear reactors. The U.S. relies on Russia for roughly a quarter of its enriched uranium needs, feeding the nation's network of 94 nuclear reactors operated by utilities which generate nearly 20% of the country's electricity. This dependence has come under scrutiny in recent years, particularly following Russia's invasion of Ukraine.

The ban on Russian uranium is a multifaceted response. First and foremost, it aims to cripple a key revenue stream for the Russian government. Uranium exports are a significant source of income for Russia, and by severing this economic tie, the U.S. hopes to weaken Russia's financial capacity to wage war.

Second, the ban serves as a national energy security measure. Relying on a potentially hostile nation for such a critical resource creates vulnerabilities. The possibility of Russia disrupting uranium supplies, either through political pressure or in the event of a wider conflict, is a major concern. Diversifying the U.S. nuclear fuel supply chain mitigates this risk.

Third, the ban is intended to revitalize the domestic uranium mining and enrichment industry, building on earlier initiatives such as Trump's uranium order announced previously. The U.S. has historically been a major uranium producer, but environmental concerns and competition from cheaper foreign sources led to a decline in domestic production. The ban, coupled with $2.7 billion in federal funding allocated to expand domestic uranium enrichment capacity, aims to reverse this trend.

The transition away from Russian uranium won't be immediate. The law includes a grace period until mid-August 2024, and waivers can be granted to utilities facing potential shutdowns if alternative suppliers aren't readily available. Finding new sources of enriched uranium will require forging partnerships with other uranium-producing nations like Kazakhstan, Canada on minerals cooperation, and Australia.

The long-term success of this strategy hinges on several factors. First, successfully ramping up domestic uranium production will require overcoming regulatory hurdles and addressing environmental concerns, alongside nuclear innovation to modernize the fuel cycle. Second, securing reliable alternative suppliers at competitive prices is crucial, and supportive policy frameworks such as the Nuclear Innovation Act now in law can help. Finally, ensuring the continued safe and efficient operation of existing nuclear reactors is paramount.

The ban on Russian uranium is a bold move with significant economic and geopolitical implications. While challenges lie ahead, the potential benefits of a more secure and domestically sourced nuclear fuel supply chain are undeniable. The success of this initiative will be closely watched not only by the U.S. but also by other nations seeking to lessen their dependence on Russia for critical resources.

 

Related News

View more

Will Israeli power supply competition bring cheaper electricity?

Israel Electricity Reform Competition opens the supply segment to private suppliers, challenges IEC price controls, and promises consumer choice, marginal discounts, and market liberalization amid natural gas generation and infrastructure remaining with IEC.

 

Key Points

Policy opening 40% of supply to private vendors, enabling consumer choice and small discounts while IEC retains the grid.

✅ 40% of retail supply opened to private electricity suppliers

✅ IEC keeps meters, lines; tariffs still regulated by the authority

✅ Expected discounts near 7%, not dramatic price cuts initially

 

"See the pseudo-reform in the electricity sector: no lower prices, no opening the market to competition, and no choice of electricity suppliers, with a high rate for consumers despite natural gas." This is an advertisement by the Private Power Producers Forum that is appearing everywhere: Facebook, the Internet, billboards, and the press.

Is it possible that the biggest reform in the economy with a cost estimated by Israel Electric Corporation (IEC) (TASE: ELEC.B22) at NIS 7 billion is really a pseudo-reform? In contrast to the assertions by the private electricity producers, who are supposedly worried about our wallets and want to bring down the cost of electricity for us, the reform will open a segment of electricity supply to competition, as agreed in the final discussions about the reform. No less than 40% of this segment will be removed from IEC's exclusive responsibility and pass to private hands.

This means that in the not-too-distant future, one million households in Israel will be able to choose between different electricity suppliers. IEC will retain the infrastructure, with its meter and power lines, but for the first time, the supplier who sends the monthly bill to our home can be a private concern.

Up until now, the only regulatory agency determining the electricity rate in Israel was the Public Utilities Authority (electricity), i.e. the state. Now, in the framework of the reform, as a result of opening the supply segment to competition, private electricity producers will be able to offer a lower rate than IEC's, with mechanisms like electricity auctions shown to cut costs in some markets, while IEC's rate will still be controlled by the Public Utilities Authority (electricity).

This situation differs from the situation in almost all European countries, where the electricity market is fully open to competition and the EU is pursuing an electricity market revamp to address pricing challenges, with no electricity price controls and free switching by consumers between electricity producers, just as in the mobile phone market. This measure has not lowered electricity prices in Europe, where rates are higher than in Israel, which is in the bottom third of OECD countries in its electricity rate.

Regardless of reports, supply will be opened to competition and we will be able to choose between electricity suppliers in the future. Are the private electricity producers nevertheless right when they say that the electricity sector will not be opened to "real competition"?

 

What is obviously necessary is for the private producers to offer a substantially lower rate than IEC in order to attract as many new customers as possible and win their trust. Can the private producers offer a significantly lower rate than IEC? The answer is no, at least not in the near future. The teams handling the negotiations are aware of this. "The private supplier's price will not be significantly cheaper than IEC's controlled price; there will be marginal discounts," a senior government source explains. "What is involved here is another electricity intermediary, so it will not contribute to competition and lowering the price," he added.

There are already private electricity producers supplying electricity to large business customers - factories, shopping malls, and so forth - at a 7% discount. The rest of the electricity that they produce is sold to the system manager. When supply is opened to competition, it can be assumed that the private suppliers will also be able to offer a similar discount to private consumers.

Will a 7% discount cause a home consumer to leave reliable and familiar IEC for a private producer, given evidence from retail electricity competition in other markets? This is hard to know.

#google#

Why cannot private electricity producers offer a larger discount that will really break the monopoly, as their advertisement says they want to do? Chen Herzog, chief economist and partner at BDO Consulting, which is advising the Private Power Producers Forum, says, "Competition in supply requires the construction of competitive power plants that can compete and offer cheaper electricity.

"The power plants that IEC will sell in the reform, which will go on selling electricity to IEC, are outmoded, inefficient, and non-competitive. In addition, the producer will have to continue employing IEC workers in the purchased plants for at least five years. The producer will generate electricity in IEC power stations with IEC employees and additional overhead of a private producer, with factors such as cost allocation further shaping end-user rates. This amounts to being an IEC subcontractor in production. There is no saving on costs, so there will be no surplus to deduct from the consumer price," he adds.

The idea of opening supply to electricity market competition on such a large scale sounds promising, but saving on electricity for consumers still looks a long way off.

 

Related News

View more

IAEA Reviews Belarus’ Nuclear Power Infrastructure Development

Belarus Nuclear Power Infrastructure Review evaluates IAEA INIR Phase 3 readiness at Ostrovets NPP, VVER-1200 reactors, legal and regulatory framework, commissioning, safety, emergency preparedness, and energy diversification in a low-carbon program.

 

Key Points

An IAEA INIR Phase 3 assessment of Belarus readiness to commission and operate the Ostrovets NPP with VVER-1200 units.

✅ Reviews legal, regulatory, and institutional arrangements

✅ Confirms Phase 3 readiness for safe commissioning and operation

✅ Highlights good practices in peer reviews and emergency planning

 

An International Atomic Energy Agency (IAEA) team of experts today concluded a 12-day mission to Belarus to review its infrastructure development for a nuclear power programme. The Integrated Nuclear Infrastructure Review (INIR) was carried out at the invitation of the Government of Belarus.

Belarus, seeking to diversify its energy production with a reliable low-carbon source, and aware of the benefits of energy storage for grid flexibility, is building its first nuclear power plant (NPP) at the Ostrovets site, about 130 km north-west of the capital Minsk. The country has engaged with the Russian Federation to construct and commission two VVER-1200 pressurised water reactors at this site and expects the first unit to be connected to the grid this year.

The INIR mission reviewed the status of nuclear infrastructure development using the Phase 3 conditions of the IAEA’s Milestones Approach. The Ministry of Energy of Belarus hosted the mission.

The INIR team said Belarus is close to completing the required nuclear power infrastructure for starting the operation of its first NPP. The team made recommendations and suggestions aimed at assisting Belarus in making further progress in its readiness to commission and operate it, including planning for integration with variable renewables, as advances in new wind turbines are being deployed elsewhere to strengthen the overall energy mix.

“This mission marks an important step for Belarus in its preparations for the introduction of nuclear power,” said team leader Milko Kovachev, Head of the IAEA’s Nuclear Infrastructure Development Section. “We met well-prepared, motivated and competent professionals ready to openly discuss all infrastructure issues. The team saw a clear drive to meet the objectives of the programme and deliver benefits to the Belarusian people, such as supporting the country’s economic development, including growth in EV battery manufacturing sectors.”

The team comprised one expert from Algeria and two experts from the United Kingdom, as well as seven IAEA staff. It reviewed the status of 19 nuclear infrastructure issues using the IAEA evaluation methodology for Phase 3 of the Milestones Approach, noting that regional integration via an electricity highway can shape planning assumptions as well. It was the second INIR mission to Belarus, who hosted a mission covering Phases 1 and 2 in 2012.

Prior to the latest mission, Belarus prepared a Self-Evaluation Report covering all infrastructure issues and submitted the report and supporting documents to the IAEA.

The team highlighted areas where further actions would benefit Belarus, including the need to improve institutional arrangements and the legal and regulatory framework, drawing on international examples of streamlined licensing for advanced reactors to ensure a stable and predictable environment for the programme; and to finalize the remaining arrangements needed for sustainable operation of the nuclear power plant.

The team also identified good practices that would benefit other countries developing nuclear power in the areas of programme and project coordination, the use of independent peer reviews, cooperation with regulators from other countries, engagement with international stakeholders and emergency preparedness, and awareness of regional initiatives such as new electricity interconnectors that can enhance system resilience.

Mikhail Chudakov, IAEA Deputy Director General and Head of the Department of Nuclear Energy attended the Mission’s closing meeting. “Developing the infrastructure required for a nuclear power programme requires significant financial and human resources, and long lead times for preparation and the approval of major transmission projects that support clean power flows, and the construction activities,” he said. “Belarus has made commendable progress since the decision to launch a nuclear power programme 10 years ago.”

“Hosting the INIR mission, Belarus demonstrated its transparency and genuine interest to receive an objective professional assessment of the readiness of its nuclear power infrastructure for the commissioning of the country’s first nuclear power plant,” said Mikhail Mikhadyuk, Deputy Minister of Energy of the Republic of Belarus. ”The recommendations and suggestions we received will be an important guidance for our continuous efforts aimed at ensuring the highest level of safety and reliability of the Belarusian NPP."
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified