N.S., Maine to work on generation research

By Winnipeg Free Press


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Nova Scotia and Maine have agreed to co-operate on research involving renewable ocean electricity generation.

Premier Darrell Dexter and Gov. John Baldacci signed a memorandum of understanding, allowing the province and state to jointly investigate opportunities in offshore wind and tidal energy technology and application.

Both governments have agreed to share research information on renewable electricity and assemble experts to participate in a meeting in October of an organization called Offshore Energy Environmental Research.

They will also look at including other provinces and states in the agreement.

Related News

Quebec premier inaugurates La Romaine hydroelectric complex

La Romaine Hydroelectric Complex anchors Quebec's hydropower expansion, showcasing Hydro-Québec ingenuity, clean energy, electrification, and grid capacity gains along the North Shore's Romaine River to power industry and nearly 470,000 homes.

 

Key Points

A four-station, $7.4B hydro project on Quebec's Romaine River producing 8 TWh a year for electrification and industry.

✅ Generates 8 TWh yearly, powering about 470,000 homes

✅ Largest Quebec hydro build since James Bay project

✅ Key to clean energy, grid capacity, and electrification

 

Quebec Premier François Legault has inaugurated the la Romaine hydroelectric complex on the province's North Shore.

The newly inaugurated Romaine hydroelectric complex could serve as a model for future projects, such as the Carillon Generating Station investment now planned in the province, Legault said.

"It brings me a lot of pride. It is truly the symbol of Quebec ingenuity," he said as he opened the vast power plant.

Legault was accompanied at today's event by Jean Charest, who was Quebec premier when construction began in 2009, as well as Hydro-Québec president and CEO Michael Sabia. 

La Romaine is comprised of four power stations and is the largest hydro project constructed in the province since the Robert Bourassa generation facility, which was commissioned in 1979. It is the biggest hydro installation since the James Bay project, bolstering Hydro-Québec's hydropower capacity across the grid today.

The construction work for Romaine-4 was supposed to finish in 2020, but it was delayed the COVID-19 pandemic, the death of four workers due to security flaws and soil decomposition problems. 

The $7.4-billion la Romaine complex can produce eight terawatt hours of electricity per year, enough to power nearly 470,000 homes.

It generates its power from the Romaine River, located north of Havre-St-Pierre, Que., near the Labrador border, where long-standing Newfoundland and Labrador tensions over Quebec's projects sometimes resurface today.

Legault said that Quebec still doesn't have enough electricity to meet demand from industry, including recent allocations of electricity for industrial projects across the province, and Quebecers need to consider more ways to boost the province's ability to power future projects. The premier has said previously that demand is expected to surge by an additional 100 terawatt-hours by 2050 — half the current annual output of the provincially owned utility.

Legault's environmental plan of reducing greenhouse gases and achieving carbon neutrality by 2050 hinges on increased electrification and a strategy to wean off fossil fuels provincewide, so the electricity needs for transport and industry will be massive.

An updated strategic plan from Hydro-Quebec will be presented in November outlining those needs, president and CEO Michael Sabia told reporters on Thursday, after recent deals with NB Power underscored interprovincial demand.

Legault said the report will trigger a broader debate on energy transition and how the province can be a leader in the green economy. He said he wasn't ruling out any potential power sources — except for a return to nuclear power at this stage.

 

Related News

View more

Basin Electric and Clenera Renewable Energy Announce Power Purchase Agreement for Montana Solar Project

Cabin Creek Solar Project Montana delivers 150 MW of utility-scale solar under a Power Purchase Agreement, with Basin Electric and Clenera supplying renewable energy, enhancing grid reliability, and reducing carbon emissions for 30,000 homes.

 

Key Points

A 150 MW solar PPA near Baker by Basin Electric and Clenera, delivering reliable renewable power and carbon reduction.

✅ 150 MW across two 75 MW sites near Baker, Montana

✅ PPA supports Basin Electric's diverse, cost-effective portfolio

✅ Cuts 265,000 tons CO2 and powers 30,000 homes

 

A new solar project in Montana will provide another 150 megawatts (MW) of affordable, renewable power to Basin Electric customers and co-op members across the region.

Basin Electric Power Cooperative (Basin Electric) and Clenera Renewable Energy, announced today the execution of a Power Purchase Agreement (PPA) for the Cabin Creek Solar Project. Cabin Creek is Basin Electric's second solar PPA, and the result of the cooperative's continuing goal of providing a diverse mix of energy sources that are cost-effective for its members.

When completed, Cabin Creek will consist of two, 75-MW projects in southeastern Montana, five miles west of Baker. According to Clenera, the project will eliminate 265,000 tons of carbon dioxide per year and power 30,000 homes, while communities such as the Ermineskin First Nation advance their own generation efforts.

"Renewable technology has advanced dramatically in recent years, with rapid growth in Alberta underscoring broader trends, which means even more affordable power for Basin Electric's customers," said Paul Sukut, CEO and general manager of Basin Electric. "Basin Electric is excited to purchase the output from this project to help serve our members' growing energy needs. Adding solar further promotes our all-of-the-above energy solution as we generate energy using a diverse resource portfolio including coal, natural gas, and other renewable resources to provide reliable, affordable, and environmentally safe generation.

"Clenera is proud to partner with Basin Electric Power Cooperative to support the construction of the Cabin Creek Solar projects in Montana," said Jared McKee, Clenera's director of Business Development. "We truly believe that Basin Electric will be a valuable partner as we aim to deliver today's new era of reliable, battery storage increasingly enabling round-the-clock service, affordable, and clean energy."

"We're pleased that Southeast Electric will be home to the Cabin Creek Solar Project," said Jack Hamblin, manager of Southeast Electric Cooperative, a Basin Electric Class C member headquartered in Ekalaka, Montana. "This project is one more example of cooperatives working together to use economies of scale to add affordable generation for all their members - similar to what was done 70 years ago when cooperatives were first built."

Basin Electric Class A member Upper Missouri Power Cooperative, headquartered in Sidney, Montana, provides wholesale power to Southeast Electric and 10 other distribution cooperatives in western North Dakota and eastern Montana. "It is encouraging to witness the development of cost-competitive energy, including projects in Alberta contracted at lower cost than natural gas that demonstrate market shifts, like the Cabin Creek Solar Project, which will be part of the energy mix we purchase from Basin Electric for our member systems, said Claire Vigesaa, Upper Missouri's general manager. "The energy needs in our region are growing and this project will help us serve both our members, and our communities as a whole."

Cabin Creek will bring significant economic benefits to the local area. According to Clenera, the project will contribute $8 million in property taxes to Fallon County and $5 million for the state of Montana over 35 years. They say it will also create approximately 300 construction jobs and two to three full-time jobs.

"This project underscores the efforts by Montana's electric cooperatives to continue to embrace more carbon-free technology," said Gary Wiens, CEO of Montana Electric Cooperatives' Association. "It also demonstrates Basin Electric's commitment to seek development of renewable energy projects in our state. It's exciting that these two projects combined are 50 times larger than our current largest solar array in Montana."

Cabin Creek is anticipated to begin operations in late 2023.

 

Related News

View more

Was there another reason for electricity shutdowns in California?

PG&E Wind Shutdown and Renewable Reliability examines PSPS strategy, wildfire risk, transmission line exposure, wind turbine cut-out speeds, grid stability, and California's energy mix amid historic high-wind events and supply constraints across service areas.

 

Key Points

An overview of PG&E's PSPS decisions, wildfire mitigation, and how wind cut-out limits influence grid reliability.

✅ Wind turbines reach cut-out near 55 mph, reducing generation.

✅ PSPS mitigates ignition from damaged transmission infrastructure.

✅ Baseload diversity improves resilience during high-wind events.

 

According to the official, widely reported story, Pacific Gas & Electric (PG&E) initiated power shutoffs across substantial portions of its electric transmission system in northern California as a precautionary measure.

Citing high wind speeds they described as “historic,” the utility claims that if it didn’t turn off the grid, wind-caused damage to its infrastructure could start more wildfires.

Perhaps that’s true. Perhaps. This tale presumes that the folks who designed and maintain PG&E’s transmission system are unaware of or ignored the need to design it to withstand severe weather events, and that the Federal Energy Regulatory Commission (FERC) and North American Electric Reliability Corp. (NERC) allowed the utility to do so.

Ignorance and incompetence happens, to be sure, but there’s much about this story that doesn’t smell right—and it’s disappointing that most journalists and elected officials are apparently accepting it without question.

Take, for example, this statement from a Fox News story about the Kincade Fires: “A PG&E meteorologist said it’s ‘likely that many trees will fall, branches will break,’ which could damage utility infrastructure and start a fire.”

Did you ever notice how utilities cut wide swaths of trees away when transmission lines pass through forests? There’s a reason for that: When trees fall and branches break, the grid can still function, and even as the electric rhythms of New York City shifted during COVID-19, operators planned for variability.

So, if badly designed and poorly maintained infrastructure isn’t the reason PG&E cut power to millions of Californians, what might have prompted them to do so? Could it be that PG&E’s heavy reliance on renewable energy means they don’t have the power to send when a “historic” weather event occurs, especially as policymakers weigh the postponed closure of three power plants elsewhere in California?

 

Wind Speed Limits

The two most popular forms of renewable energy come with operating limitations, which is why some energy leaders urge us to keep electricity options open when planning the grid. With solar power, the constraint is obvious: the availability of sunlight. One doesn’t generate solar power at night and energy generation drops off with increasing degrees of cloud cover during the day.

The main operating constraint of wind power is, of course, wind speed, and even in markets undergoing 'transformative change' in wind generation, operators adhere to these technical limits. At the low end of the scale, you need about a 6 or 7 miles-per-hour wind to get a turbine moving. This is called the “cut-in speed.” To generate maximum power, about a 30 mph wind is typically required. But, if the wind speed is too high, the wind turbine will shut down. This is called the “cut-out speed,” and it’s about 55 miles per hour for most modern wind turbines.

It may seem odd that wind turbines have a cut-out speed, but there’s a very good reason for it. Each wind turbine rotor is connected to an electric generator housed in the turbine nacelle. The connection is made through a gearbox that is sized to turn the generator at the precise speed required to produce 60 Hertz AC power.

The blades of the wind turbine are airfoils, just like the wings of an airplane. Adjusting the pitch (angle) of the blades allows the rotor to maintain constant speed, which, in turn, allows the generator to maintain the constant speed it needs to safely deliver power to the grid. However, there’s a limit to blade pitch adjustment. When the wind is blowing so hard that pitch adjustment is no longer possible, the turbine shuts down. That’s the cut-out speed.

Now consider how California’s power generation profile has changed. According to Energy Information Administration data, the state generated 74.3 percent of its electricity from traditional sources—fossil fuels and nuclear, amid debates over whether to classify nuclear as renewable—in 2001. Hydroelectric, geothermal, and biomass-generated power accounted for most of the remaining 25.7 percent, with wind and solar providing only 1.98 percent of the total.

By 2018, the state’s renewable portfolio had jumped to 43.8 percent of total generation, with clean power increasing and wind and solar now accounting for 17.9 percent of total generation. That’s a lot of power to depend on from inherently unreliable sources. Thus, it wouldn’t be at all surprising to learn that PG&E didn’t stop delivering power out of fear of starting fires, but because it knew it wouldn’t have power to deliver once high winds shut down all those wind turbines

 

Related News

View more

Pandemic causes drop in electricity demand across the province: Manitoba Hydro

Manitoba Electricity Demand Drop reflects COVID-19 effects, lowering peak demand about 6% as businesses and offices close, impacting the regional grid; recession-like patterns emerge while Winnipeg water consumption stays steady and peak usage shifts later.

 

Key Points

An observed 6% decline in Manitoba peak electricity during COVID-19 due to closures; Winnipeg water use remains steady.

✅ Daily peak load down roughly 6% provincewide

✅ Business and office shutdowns drive lower consumption

✅ Winnipeg peak water time shifts to 9 a.m., volume steady

 

The COVID-19 pandemic has caused a drop in the electricity demand across the province, according to Manitoba Hydro, mirroring the Ontario electricity usage decline reported elsewhere in Canada.

On Tuesday, Manitoba Hydro said it has tracked overall electrical use, which includes houses, farms and businesses both large and small, while also cautioning customers about pandemic-related scam calls in recent weeks.

Hydro said it has seen about a six per cent reduction in the daily peak electricity demand, adding this is due to the many businesses and downtown offices which are temporarily closed, even as residential electricity use has increased in many regions.


"Currently, the impact on Manitoba electricity demand appears to be consistent with what we saw during the 2008 recession," Bruce Owen, the media relations officer for Manitoba Hydro, noting a similar Ottawa demand decline during the pandemic, said in an email to CTV News.

Owen added this trend of reduced electricity demand is being seen across North America, with BC Hydro pandemic load patterns reported and the regional grid in the American Midwest – an area where Manitoba Hydro is a member.

While electricity demand is down, BC Hydro expects holiday usage to rise and water usage in Winnipeg has remained the same.

The City of Winnipeg said it has not seen any change in overall water consumption, but as Hydro One kept peak rates in Ontario, peak demand times have moved from 7 – 8 a.m. to 9 a.m.

 

Related News

View more

B.C. Commercial electricity consumption plummets during COVID-19 pandemic

BC Hydro COVID-19 Relief Fund enables small businesses to waive electricity bills for commercial properties during the pandemic, offering credits, rate support, and applications for eligible customers forced to temporarily close.

 

Key Points

A program that lets eligible small businesses waive up to three months of BC Hydro bills during COVID-19 closures.

✅ Eligible small general service BC Hydro accounts

✅ Up to 3 months of waived electricity charges

✅ Must be temporarily closed due to the pandemic

 

Businesses are taking advantage of a BC Hydro relief fund that allows electricity bills for commercial properties to be waived during the COVID-19 pandemic.

More than 3,000 applications have already been filed since the program launched on Wednesday, allowing commercial properties forced to shutter during the crisis to waive the expense for up to three months, while Ontario rate reductions are taking effect for businesses under separate measures. 

“To be eligible for the COVID-19 Relief Fund, business customers must be on BC Hydro’s small general service rate and have temporarily closed or ceased operation due to the COVID-19 pandemic,” BC Hydro said in a statement. “BC Hydro estimates that around 40,000 small businesses in the province will be eligible for the program.”

The program builds off a similar initiative BC Hydro launched last week for residential customers who have lost employment or income because of COVID-19, and parallels Ontario's subsidized hydro plan introduced to support ratepayers. So far, 57,000 B.C. residents have applied for the relief fund, which amounts to an estimated $16 million in credits, amid scrutiny over deferred BC Hydro operating costs reported by the auditor general.

Electricity use across B.C. has plummeted since the outbreak began. 

According to BC Hydro, daily consumption has fallen 13% in the first two weeks of April, aligning with electricity demand down 10% reports, compared to the three-year average for the same time period.

Electricity use has fallen 30% for recreation facilities, 29% in the restaurant sector and 27% in hotels, while industry groups such as Canadian Manufacturers & Exporters have supported steps to reduce prices. 

For more information about the COVID-19 Relief Fund and advice on avoiding BC Hydro scam attempts, go to bchydro.com/covid19relief.

 

Related News

View more

Florida says no to $400M in federal solar energy incentives

Florida Solar for All Opt-Out highlights Gov. DeSantis rejecting EPA grant funds under the Inflation Reduction Act, limiting low-income households' access to solar panels, clean energy programs, and promised electricity savings across disadvantaged communities.

 

Key Points

Florida Solar for All Opt-Out is the state declining EPA grants, restricting low-income access to solar energy savings.

✅ EPA grant under IRA aimed at low-income solar

✅ Estimated 20% electricity bill savings missed

✅ Florida lacks PPAs and renewable standards

 

Florida has passed up on up to $400 million in federal money that would have helped low-income households install solar panels.

A $7 billion grant “competition” to promote clean energy in disadvantaged communities by providing low-income households with access to affordable solar energy was introduced by President Joe Biden earlier this year, and despite his climate law's mixed results in practice, none of that money will reach Florida households.

The Environmental Protection Agency announced the competition in June as part of Biden’s Inflation Reduction Act. However, Florida Gov. Ron DeSantis has decided to pass on the $400 million up for grabs by choosing to opt out of the opportunity.

Inflation Reduction Act:What is the Inflation Reduction Act? Everything to know about one of Biden's big laws

The program would have helped Florida households reduce their electricity costs by a minimum of 20% during a key time when Floridians are leaving in droves due to a rising cost of living associated with soaring insurance costs, inflation, and proposed FPL rate hikes statewide.

Florida was one of six other states that chose not to apply for the money.

President Joe Biden announced a $7 billion “competition” to promote clean energy in disadvantaged communities.

The opportunity, named “Solar for All,” was announced by the EPA in June and promised to provide up to $7 billion in grants to states, territories, tribal governments, municipalities, and nonprofits to expand the number of low-income and disadvantaged communities primed for residential solar investment — enabling millions of low-income households to access affordable, resilient and clean solar energy.

The grant is intended to help lower energy costs for families, create jobs and help reduce greenhouse effects that accelerate global climate change by providing financial support and incentives to communities that were previously locked out of investments.


How much money would Floridians save under the ‘Solar for All’ solar panel grant?

The program aims to reduce household electricity costs by at least 20%. Florida households paid an average of $154.51 per month for electricity in 2022, just over 14% of the national average of $135.25, and debates over hurricane rate surcharges continue to shape customer bills, according to the U.S. Energy Information Administration. A 20% savings would drop those bills down to around $123 per month.

On the campaign trail, DeSantis has pledged to unravel Biden’s green energy agenda if elected president, amid escalating solar policy battles nationwide, slamming the Inflation Reduction Act and what he called “a concerted effort to ramp up the fear when it comes to things like global warming and climate change.”

His energy agenda includes ending Biden’s subsidies for electric cars while pushing policies that he says would ramp up domestic oil production.

“The subsidies are going to drive inflation higher,” DeSantis said at an event in September. “It’s not going to help with interest rates, and it is certainly not going to help with our unsustainable debt levels.”

DeSantis heading to third debate:As he enters third debate, Ron DeSantis has a big Nikki Haley problem

DeSantis’ plan to curb clean energy usage in Florida seems to be at odds with the state as a whole, and the region's evolving strategy for the South underscores why it has been ranked among the top three states to go solar since 2019, according to the Solar Energy Industries Association (SEIA).

SEIA also shows, however, that Florida lags behind many other states when it comes to solar policies, as utilities tilt the solar market in ways that influence policy outcomes statewide. Florida, for instance, has no renewable energy standards, which are used to increase the use of renewable energy sources for electricity by requiring or encouraging suppliers to provide customers with a stated minimum share of electricity from eligible renewable resources, according to the EIA.

Power purchase agreements, which can help lower the cost of going solar through third-party financing, are also not allowed in Florida, with court rulings on monopolies reinforcing the existing market structure. And there have been other policies implemented that drove other potential solar investments to other states.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.