Wind farm plans given green light

By The Visitor


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
A wind farm capable of supplying power to 32,000 homes has been given the green light by ministers.

The 20-turbine Carraig Gheal wind farm will be located near Kilchrenan, Argyll.

The go-ahead was given by finance secretary John Swinney - as the location falls within the constituency of energy minister Jim Mather.

The original application was for a 24-turbine 72 megawatt wind farm.

But it was scaled back to 20 turbines and 60 megawatts after a consultation exercise and the go-ahead comes with strings attached.

These include an approved monitoring programme to protect the local bird population.

Mr Swinney said: "Carraig Gheal wind farm will provide a significant amount of electricity used in Argyll and Bute's homes and is another step towards making Scotland the green energy capital of Europe.

"We already have the comparative advantage of a vast array of potentially cheap, renewable energy sources in Scotland."

Related News

NRC Makes Available Turkey Point Renewal Application

Turkey Point Subsequent License Renewal seeks NRC approval for FP&L to extend Units 3 and 4, three-loop pressurized water reactors near Homestead, Miami; public review, docketing, and an Atomic Safety and Licensing Board hearing.

 

Key Points

The NRC is reviewing FP&L's request to extend Turkey Point Units 3 and 4 operating licenses by 20 years.

✅ NRC will docket if application is complete

✅ Public review and opportunity for adjudicatory hearing

✅ Units commissioned in 1972 and 1973, near Miami

 

The U.S. Nuclear Regulatory Commission said Thursday that it had made available the first-ever "subsequent license renewal application," amid milestones at nuclear power projects worldwide, which came from Florida Power and Light and applies to the company's Turkey Point Nuclear Generating Station's Units 3 and 4.

The Nuclear Regulatory Commission recently made available for public review the first-ever subsequent license renewal application, which Florida Power & Light Company submitted on Jan. 1.

In the application, FP&L requests an additional 20 years for the operating licenses of Turkey Point Nuclear Generating Units 3 and 4, three-loop, pressurized water reactors located in Homestead, Florida, where the Florida PSC recently approved a municipal solid waste energy purchase, approximately 40 miles south of Miami.

The NRC approved the initial license renewal in June 2002, as new reactors at Georgia's Vogtle plant continue to take shape nationwide. Unit 3 is currently licensed to operate through July 19, 2032. Unit 4 is licensed to operate through April 10, 2033.

#google#

NRC staff is currently reviewing the application, while a new U.S. reactor has recently started up, underscoring broader industry momentum. If the staff determines the application is complete, they will docket it and publish a notice of opportunity to request an adjudicatory hearing before the NRC’s Atomic Safety and Licensing Board.

The first-ever subsequent license renewal application, submitted by Florida Power & Light Company asks for an additional 20 years for the already-renewed operating licenses of Turkey Point, even as India moves to revive its nuclear program internationally, which are currently set to expire in July of 2032 and April of 2033. The two thee-loop, pressurized water reactors, located about 40 miles south of Miami, were commissioned in July 1972 and April 1973.

If the application is determined to be complete, the staff will docket it and publish a notice of opportunity to request an adjudicatory hearing before the NRC’s Atomic Safety and Licensing Board, the agency said.

The application is available for public review on the NRC website. Copies of the application will be available at the Homestead Branch Library in Homestead, the Naraja Branch Library in Homestead and the South Dade Regional Library in Miami.

 

 

Related News

View more

Taiwan's economic minister resigns over widespread power outage

Taiwan Power Blackout disrupts Taipei and commercial hubs after a Taoyuan natural gas plant error, triggering nationwide outage, grid failure, elevator rescues, power rationing, and the economic minister's resignation, as CPC Corporation restores supply.

 

Key Points

A nationwide Taiwan outage from human error at a Taoyuan gas plant, triggering rationing and a minister's resignation.

✅ Human error disrupted natural gas supply at Taoyuan plant

✅ 6.68 million users affected; grid failure across cities

✅ Minister Lee resigned; President Tsai ordered a review

 

Taiwan's economic minister resigned after power was knocked out in many parts of Taiwan, with regional parallels such as China power cuts highlighting grid vulnerabilities, including capital Taipei's business and high-end shopping district, due to an apparent "human error" at a key power plant.

Economic Affairs minister Lee Chih-kung tendered his resignation verbally to Premier Lin Chuan, United Daily News reported, citing a Cabinet spokesman. Lin accepted the resignation, the spokesman said according to the daily.

As many as 6.68 million households and commercial units saw their power supply cut or disrupted on Tuesday after "human error" disrupted natural gas supply at a power plant in northern Taiwan's Taoyuan, the semi-official Central News Agency reported, citing the government-controlled oil company CPC Corporation as saying.

The company added that power at the plant, Taiwan's biggest natural gas power plant, resumed two minutes later.

In New Taipei City, there were at least 27,000 reported cases of people being stuck in lifts. Photos in social media also showed huge crowds stranded in lift lobby in Taipei's iconic 101-storey Taipei 101 building.

Power rationing was implemented beginning 6pm, and, as seen in the National Grid short supply warning in other markets, such steps aim to stabilize supply, Central News Agency said. Power supply was gradually being restored beginning at about 9:40pm. news reports said.

President Tsai Ing-wen apologised for the blackout, noting parallels with Japan's near-blackouts that underscored grid resilience, and said that she has ordered all relevant departments to produce clear report in the shortest time possible.

"Electricity is not just a problem about people's livelihoods but also a national security issue. A comprehensive review must be carried out to find out how the electric power system can be so easily paralysed by human error," said Ms Tsai in a Facebook post.

Taiwan has been at risk of a power shortage after a recent typhoon knocked down a power transmission tower in Hualien county along the eastern coast of Taiwan, rather than a demand-driven slowdown like the China power demand drop during pandemic factory shutdowns. This reduced the electricity supply by 1.3million kilowatts, or about 4 per cent of the operating reserve.

That was followed by the breakdown of a power generator at Taiwan's largest power plant, which further reduced the operating reserve by 1.5 per cent.

The situation is worsened by the ongoing heatwave that has hit Taiwan, with temperatures soaring to 38 degrees Celsius over the past week.

As a result, the government had imposed the rationing of electricity, and, highlighting how regional strains such as China's power woes can ripple into global markets, switched off all air-conditioning in many of its Taipei offices, a move that drew some public backlash.

 

Related News

View more

Indian government takes steps to get nuclear back on track

India Nuclear Generation Shortfall highlights missed five-year plan targets due to uranium fuel scarcity, commissioning delays at Kudankulam, PFBR slippage, and PHWR equipment bottlenecks under IAEA safeguards and domestic supply constraints.

 

Key Points

A gap between planned and actual nuclear output due to fuel shortages, reactor delays, and first-of-a-kind hurdles.

✅ Fuel scarcity pre-2009-10 constrained unsafeguarded reactors.

✅ Kudankulam delays from protests, litigation, and remobilisation.

✅ FOAK PHWR equipment bottlenecks and PFBR slippage.

 

A lack of available domestically produced nuclear fuel and delays in constructing and commissioning nuclear power plants, including first-of-a-kind plants and the Prototype Fast Breeder Reactor (PFBR), meant that India failed to meet its nuclear generation targets under the governmental plans over the decade to 2017, even as global project milestones were being recorded elsewhere.

India's nuclear generation target under its 11th five-year plan, covering the period 2007-2012, was 163,395 million units (MUs) and the 12th five-year Plan (2012-17) was 241,748 MUs, Minister of state for the Department of Atomic Energy and the Prime Minister's Office Jitendra Singh told parliament on 6 February. Actual nuclear generation in those periods was 109,642 MUs and 183,488 MUs respectively, Singh said in a written answer to questions in the Lok Sabah.

Singh attributed the shortfall in generation to a lack of availability of the necessary quantities of domestically produced fuel during the three years before 2009-2010; delays to the commissioning of two 1000 MWe nuclear power plants at Kudankulam due to local protests and legal challenges; and delays in the completion of two indigenously designed pressurised heavy water reactors and the PFBR.

Kudankulam 1 and 2 are VVER-1000 pressurised water reactors (PWRs) supplied by Russia's Atomstroyexport under a Russian-financed contract. The units were built by Nuclear Power Corporation of India Ltd (NPCIL) and were commissioned and are operated by NPCIL under International Atomic Energy Agency (IAEA) safeguards, with supervision from Russian specialists, while China's nuclear program advanced on a steady development track in the same period. Construction of the units - the first PWRs to enter operation in India - began in 2002.

Singh said local protests resulted in the halt of commissioning work at Kudankulam for nine months from September 2011 to March 2012, when he said project commissioning had been at its peak. As a consequence, additional time was needed to remobilise the workforce and contractors, he said. Litigation by anti-nuclear groups, and compliance with supreme court directives, impacted commissioning in 2013, he said. Unit 1 entered commercial operation in December 2014 and unit 2 in April 2017.

Delays in the manufacture and supply by domestic industry of critical equipment for first-of-a-kind 700 MWe pressurised heavy water reactors -  Kakrapar units 3 and 4, and Rajasthan units 7 and 8 - has led to delays in the completion of those units, the minister said, as well as noting the delay in completion of the PFBR, which is being built at Kalpakkam by Bhavini. In answer to a separate question, Singh said the PFBR is in an "advance stage of integrated commissioning" and is "expected to approach first criticality by the year 2020."

Eight of India's operating nuclear power plants are not under IAEA safeguards and can therefore only use indigenously-sourced uranium. The other 14 units operate under IAEA safeguards and can use imported uranium. The Indian government has taken several measures to secure fuel supplies for reactors in operation and under construction, amid coal supply rationing pressures elsewhere in the power sector, concluding fuel supply contracts with several countries for existing and future reactors under IAEA Safeguards and by "augmentation" of fuel supplies from domestic sources, Singh said.

Kakrapar 3 and 4, with Kakrapar 3 criticality already reported, and Rajasthan 7 and 8 are all currently expected to enter service in 2022, according to World Nuclear Association information.

 

Joint venture discussions

In February 2016 the government amended the Atomic Energy Act to allow NPCIL to form joint venture companies with other public sector undertakings (PSUs) for involvement in nuclear power generation and possibly other aspects of the fuel cycle, reflecting green industrial strategies shaping future reactor waves globally. In answer to another question, Singh confirmed that NPCIL has entered into joint ventures with NTPC Limited (National Thermal Power Corporation, India's largest power company) and Indian Oil Corporation Limited. Two joint venture companies - Anushakti Vidhyut Nigam Limited and NPCIL-Indian Oil Nuclear Energy Corporation Limited - have been incorporated, and discussions on possible projects to be set up by the joint venture companies are in progress.

An exploratory discussion had also been held with Oil & Natural Gas Corporation, Singh said. Indian Railways - which has in the past been identified as a potential joint venture partner for NPCIL - had "conveyed that they were not contemplating entering into an MoU for setting up of nuclear power plants," Singh said.

 

Related News

View more

IAEA reactor simulators get more use during Covid-19 lockdown

IAEA Nuclear Reactor Simulators enable virtual nuclear power plant training on IPWR/PWR systems, load-following operations, baseload dynamics, and turbine coupling, supporting advanced reactor education, flexible grid integration, and low-carbon electricity skills development during remote learning.

 

Key Points

IAEA Nuclear Reactor Simulators are tools for training on reactor operations, safety, and flexible power management.

✅ Simulates IPWR/PWR systems with real-time parameter visualization.

✅ Practices load-following, baseload, and grid flexibility scenarios.

✅ Supports remote training on safety, controls, and turbine coupling.

 

Students and professionals in the nuclear field are making use of learning opportunities during lockdown made necessary by the Covid-19 pandemic, drawing on IAEA low-carbon electricity lessons for the future.

Requests to use the International Atomic Energy Agency’s (IAEA’s) basic principle nuclear reactor simulators have risen sharply in recent weeks, IAEA said on 1 May, as India takes steps to get nuclear back on track. New users will have the opportunity to learn more about operating them.

“This suite of nuclear power plant simulators is part of the IAEA education and training programmes on technology development of advanced reactors worldwide. [It] can be accessed upon request by interested parties from around the world,” said Stefano Monti, head of the IAEA’s Nuclear Power Technology Development Section.

Simulators include several features to help users understand fundamental concepts behind the behaviour of nuclear plants and their reactors. They also provide an overview of how various plant systems and components work to power turbines and produce low-carbon electricity, while illustrating roles beyond electricity as well.

In the integral pressurised water reactor (IPWR) simulator, for instance, a type of advanced nuclear power design, users can navigate through several screens, each containing information allowing them to adjust certain variables. One provides a summary of reactor parameters such as primary pressure, flow and temperature. Another view lays out the status of the reactor core.

The “Systems” screen provides a visual overview of how the plant’s main systems, including the reactor and turbines, work together. On the “Controls” screen, users can adjust values which affect reactor performance and power output.

This simulator provides insight into how the IPWR works, and also allows users to see how the changes they make to plant variables alter the plant’s operation. Operators can also perform manoeuvres similar to those that would take place in the course of real plant operations e.g. in load following mode.

“Currently, most nuclear plants operate in ‘baseload’ mode, continually generating electricity at their maximum capacity. However, there is a trend of countries, aligned with green industrial revolution strategies, moving toward hybrid energy systems which incorporate nuclear together with a diverse mix of renewable energy sources. A greater need for flexible operations is emerging, and many advanced power plants offer standard features for load following,” said Gerardo Martinez-Guridi, an IAEA nuclear engineer who specialises in water-cooled reactor technology.

Prospective nuclear engineers need to understand the dynamics of the consequences of reducing a reactor’s power output, for example, especially in the context of next-generation nuclear systems and emerging grids, and simulators can help students visualise these processes, he noted.

“Many reactor variables change when the power output is adjusted, and it is useful to see how this occurs in real-time,” said Chirayu Batra, an IAEA nuclear engineer, who will lead the webinar on 12 May.

“Users will know that the operation is complete once the various parameters have stabilised at their new values.”

Observing and comparing the parameter changes helps users know what to expect during a real power manoeuvre, he added.

 

Related News

View more

TotalEnergies to Acquire German Renewables Developer VSB for US$1.65 Billion

TotalEnergies VSB Acquisition accelerates renewable energy growth, expanding wind and solar portfolios across Germany and Europe, advancing decarbonization, net-zero targets, and the energy transition through a US$1.65 billion strategic clean power investment.

 

Key Points

A US$1.65B deal: TotalEnergies acquires VSB to scale wind and solar in Europe and advance net-zero goals.

✅ US$1.65B purchase expands wind and solar pipeline

✅ Strengthens presence in Germany and wider Europe

✅ Advances net-zero, energy transition objectives

 

In a major move to expand its renewable energy portfolio, French energy giant TotalEnergies has announced its decision to acquire German renewable energy developer VSB for US$1.65 billion. This acquisition represents a significant step in TotalEnergies' strategy to accelerate its transition from fossil fuels to greener energy sources, aligning with the global push towards sustainability and carbon reduction, as reflected in Europe's green surge across key markets.

Strengthening TotalEnergies’ Renewable Energy Portfolio

TotalEnergies has long been one of the largest players in the global energy market, historically known for its oil and gas operations. However, in recent years, the company has made a concerted effort to diversify its portfolio and shift its focus toward renewable energy. The purchase of VSB, a leading developer of wind and solar energy projects, occurs amid rising European wind investment trends and is a clear reflection of TotalEnergies' commitment to this green energy transition.

VSB, based in Dresden, Germany, specializes in the development, construction, and operation of renewable energy projects, particularly wind and solar power. The company has a significant presence in Europe, with a growing portfolio of projects in countries like Germany, where clean energy accounts for 50% of electricity today, Poland, and the Czech Republic. The acquisition will allow TotalEnergies to bolster its renewable energy capacity, particularly in the wind and solar sectors, which are key components of its long-term sustainability goals.

By acquiring VSB, TotalEnergies is not only increasing its renewable energy output but also gaining access to a highly experienced team with a proven track record in energy project development. This move is expected to expedite TotalEnergies’ renewable energy ambitions, enabling the company to build on VSB’s strong market presence and established partnerships across Europe.

VSB’s Strategic Role in the Energy Transition

VSB’s expertise in the renewable energy sector makes it a valuable addition to TotalEnergies' green energy strategy. The company has been at the forefront of the energy transition in Europe, particularly in wind energy development, as offshore wind is set to become a $1 trillion business over the coming decades. Over the years, VSB has completed numerous large-scale wind projects, including both onshore and offshore installations.

The acquisition also positions TotalEnergies to better compete in the rapidly growing European renewable energy market, including the UK, where offshore wind is powering up alongside strong demand due to increased governmental focus on achieving net-zero emissions by 2050. Germany, in particular, has set ambitious renewable energy targets as part of its Energiewende initiative, which aims to reduce the country’s carbon emissions and increase the share of renewables in its energy mix. By acquiring VSB, TotalEnergies is not only enhancing its capabilities in Germany but also gaining a foothold in other European markets where VSB has operations.

With Europe increasingly shifting toward wind and solar power as part of its decarbonization efforts, including emerging solutions like offshore green hydrogen that complement wind buildouts, VSB’s track record of developing large-scale, sustainable energy projects provides TotalEnergies with a strong competitive edge. The acquisition will further TotalEnergies' position as a leader in the renewable energy space, especially in wind and solar power generation.

Financial and Market Implications

The US$1.65 billion deal marks TotalEnergies' largest renewable energy acquisition in recent years and underscores the growing importance of green energy investments within the company’s broader business strategy. TotalEnergies plans to use this acquisition to scale up its renewable energy assets and move closer to its target of achieving net-zero emissions by 2050. The deal also positions TotalEnergies to capitalize on the expected growth of renewable energy across Europe, particularly in countries with aggressive renewable energy targets and incentives.

The transaction is also expected to boost TotalEnergies’ presence in the global renewable energy market. As the world increasingly turns to wind, solar, and other sustainable energy sources, TotalEnergies is positioning itself to be a major player in the global energy transition. The acquisition of VSB complements TotalEnergies' previous investments in renewable energy and further aligns its portfolio with international sustainability trends.

From a financial standpoint, TotalEnergies’ purchase of VSB reflects the growing trend of large energy companies investing heavily in renewable energy. With wind and solar power becoming more economically competitive with fossil fuels, this investment is seen as a prudent long-term strategy, one that is likely to yield strong returns as demand for clean energy continues to rise.

Looking Ahead: TotalEnergies' Green Transition

TotalEnergies' acquisition of VSB is part of the company’s broader strategy to diversify its energy offerings and shift away from its traditional reliance on oil and gas. The company has already made significant strides in renewable energy, with investments in solar, wind, and battery storage projects across the globe, as developments like France's largest battery storage platform underline this momentum. The VSB acquisition will only accelerate these efforts, positioning TotalEnergies as one of the foremost leaders in the clean energy revolution.

By 2030, TotalEnergies plans to allocate more than 25% of its total capital expenditure to renewable energies and electricity. The company has already set ambitious goals to reduce its carbon footprint and shift its business model to align with the global drive toward sustainability. The integration of VSB into TotalEnergies’ portfolio signals a firm commitment to these goals, ensuring the company remains at the forefront of the energy transition.

In conclusion, TotalEnergies’ purchase of VSB for US$1.65 billion marks a significant milestone in the company’s renewable energy journey. By acquiring a company with deep expertise in wind and solar power development, TotalEnergies is taking decisive steps to strengthen its position in the renewable energy market and further its ambitions of achieving net-zero emissions by 2050. This acquisition will not only enhance the company’s growth prospects but also contribute to the ongoing global shift toward clean, sustainable energy sources.

 

Related News

View more

Negative Electricity Prices Amid Renewable Energy Surplus

France Negative Electricity Prices highlight surplus renewables as solar and wind output exceeds demand, driving grid flexibility, demand response, and storage signals while reshaping energy markets, lowering emissions, and improving economic efficiency and energy security.

 

Key Points

They occur when surplus solar and wind push wholesale power prices below zero, signaling flexible, low-carbon grids.

✅ Surplus solar and wind outpace demand, flipping price signals

✅ Incentivizes demand response, storage, and flexible loads

✅ Enhances decarbonization, energy security, and market efficiency

 

In a remarkable feat for renewable energy, France has recently experienced negative electricity prices due to an abundant supply of solar and wind power. This development highlights the country's progress towards sustainable energy solutions and underscores the potential of renewables to reshape global energy markets.

The Surge in Renewable Energy Supply

France's electricity grid benefited from a surplus of renewable energy generated by solar panels and wind turbines. During periods of peak production, such as sunny and windy days, the supply of electricity exceeded demand, leading to negative prices and reflecting how solar is reshaping price dynamics in Northern Europe.

Implications for Energy Markets

The occurrence of negative electricity prices reflects a shift towards a more flexible and responsive energy system. It demonstrates the capability of renewables to meet substantial portions of electricity demand reliably and economically, with evidence of falling wholesale prices in many markets, challenging traditional notions of energy supply and pricing dynamics.

Technological Advancements and Policy Support

Technological advancements in renewable energy infrastructure, coupled with supportive government policies and incentives, have played pivotal roles in France's achievement. Investments in solar farms, wind farms, and grid modernization, including the launch of France's largest battery storage platform by TagEnergy, have enhanced the efficiency and reliability of renewable energy integration into the national grid.

Economic and Environmental Benefits

The adoption of renewable energy sources not only reduces greenhouse gas emissions but also fosters economic growth and energy independence. By harnessing abundant solar and wind resources, France strengthens its energy security and reduces reliance on fossil fuels, contributing to long-term sustainability goals and reflecting a continental shift as renewable power has surpassed fossil fuels for the first time.

Challenges and Future Outlook

While France celebrates the success of negative electricity prices, challenges remain in scaling renewable energy deployment and optimizing grid management. Balancing supply and demand, integrating intermittent renewables, and investing in energy storage technologies are critical for ensuring grid stability and maximizing the benefits of renewable energy, particularly in addressing clean energy's curtailment challenge across modern grids.

Global Implications

France's experience with negative electricity prices serves as a model for other countries striving to transition to clean energy economies. It underscores the potential of renewables to drive economic prosperity, mitigate climate change impacts, and reshape global energy markets towards sustainability, as seen in Germany where solar-plus-storage is now cheaper than conventional power in several contexts.

Conclusion

France's achievement of negative electricity prices driven by renewable energy surplus marks a significant milestone in the global energy transition. By leveraging solar and wind power effectively, France demonstrates the feasibility and economic viability of renewable energy integration at scale. As countries worldwide seek to reduce carbon emissions and enhance energy resilience, France's example provides valuable insights and inspiration for advancing renewable energy agendas and accelerating towards a sustainable energy future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified