Wind energy — too much of a good thing

By GLG News


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
A surfeit of wind energy is pushing down the price of all electricity.

The real time price of electricity in West Texas, where almost all generation is wind, was negative for 23% of April. The negative prices spilled over to the rest of Texas for about 1% of the month. This may be the future of the electric industry, with negative prices for a substantial amount of time each month.

Various government programs are promoting renewable energy production schemes, such as wind machines, solar cells, and geothermal. These schemes include:

• Tax Credits — Developers receive a discount on their income taxes for investment in renewable energy projects. The tax credits can be based on the amount invested in the project or in the amount of energy produced by the project.

• Renewable Portfolio Standards (RPS) — States require their utilities to produce a stated fraction of their electricity using various types of renewable energy. The definition of utility varies, sometimes including municipally owned utilities, cooperatively owned utilities, marketers, and consumers who produce their own electricity. The definition of renewable varies, sometimes including nuclear, conventional hydro, trash burners, etc.

RPS generally includes a provision for a Renewable Energy Credit (REC) where a utility with a surplus of renewable can sell their compliance to others with a shortage. Some states value one form of renewable at multiples of other forms of renewable, such that RECs may not be fungible across state lines.

The effect of these government programs is a surfeit of renewable energy projects, especially wind projects. Since electricity is fungible, the surfeit of renewable energy projects is creating a surplus of electricity capacity, and sometimes a surplus of the actual production of electricity. Since electricity cannot be easily stored, the surplus can cause operating problems and is driving down the market price for electricity in the competitive markets such as ERCOT, the Electricity Reliability Council Of Texas, which operates the electricity facilities in most of Texas.

ERCOT has identified four different market areas based on the likelihood of transmission constraints between these market areas. The smallest market area is the West market area, which is dominated by wind generation. The capacity of wind generators in the West market area is so great that they occasionally swamp the transmission lines connecting the West market area with the rest of ERCOT. During such times, ERCOT calls upon the generators in the West market area to reduce generation, essentially to dump wind.

Until recently the ERCOT procedure was to actually tell generators in the West market area to dump wind. The wind generators apparently were unhappy with the command and control attitude of ERCOT and sought an economic approach. The current ERCOT approach allows generators in the West market area to bid for access to the transmission lines connecting the West market area to the rest of ERCOT. At least that was effectively the situation for 23% of the time in April 2009. During 664 of the quarter hour periods in April, the price for generation in the West market area was less than zero, with generators paying for the right to dump electricity into the grid. During 28 of those quarter hour periods the negative prices spilled over to other parts of ERCOT.

Renewable energy projects are able to bid negative prices due to the substantial revenue streams they obtain from sources other than ERCOT. A close analogy exists in another renewable energy market, the burning of trash in incinerators to make electricity.

Some incinerators do not have a sufficient volume of trash to produce all of the electricity for which they might be under contractual obligation to produce. The incinerators at such time will buy fossil fuels, such as coal, oil, or natural gas. As much as possible, the incinerators will instead burn trash, charging the trash hauler a tipping fee. Thus, the incinerators will see their fuel cost go from positive to negative depending upon the abundance of trash.

The trash hauler is willing to pay the tipping fee to the incinerator as opposed to the higher cost of owning a sanitary land fill or paying a higher tipping feel at an independently owned land fill. The trash hauler would prefer to be paid by the incinerator for the fuel provided by the trash hauler, but is able to afford the tipping fee because the trash hauler has other sources of revenue in the form of pickup fees. Similarly, renewable energy projects would prefer to be paid for their electricity but can afford to pay for the right to dump their electricity onto ERCOT since they have other sources of revenue.

The migration of extreme electricity prices from one region to another region has been seen in the past. While the ERCOT example is the spread of low prices from the West market area to the rest of ERCOT, the West Coast of North America provided the opposite example in 2000/2001.

The high prices faced by California were passed on by the market to Oregon, Washington, and Canada. Consumers in that area responded, most famously by shutting down aluminum smelters to sell their electrical rights into the California market. This led to higher world prices of aluminum ingots and to higher electricity prices in Venezuela. The electricity supply agreements to the smelters in Venezuela had net back pricing, with the price of electricity determined by the price the smelters received for their ingots.

Related News

Energy storage poised to tackle grid challenges from rising EVs as mobile chargers bring new flexibility

EV Charging Grid Readiness addresses how rising EV adoption, larger batteries, and fast charging affect electric utilities, using vehicle-to-grid, energy storage, mobile and temporary chargers, and smart charging to mitigate distribution stress.

 

Key Points

Planning and tech to manage EV load growth with V2G, storage and smart charging to avoid overloads on distribution grids.

✅ Lithium-ion costs may drop 60%, enabling new charger models

✅ Mobile and temporary chargers buffer local distribution peaks

✅ Smart charging and V2G defer transformer and feeder upgrades

 

The impacts of COVID-19 likely mean flat electric vehicle (EV) sales this year, but a trio of new reports say the long-term outlook is for strong growth — which means the electric grid and especially state power grids will need to respond.

As EV adoption grows, newer vehicles will put greater stress on the electric grid due to their larger batteries and capacity for faster charging, according to Rhombus Energy Solutions, while a DOE lab finds US electricity demand could rise 38% as EV adoption scales. A new white paper from the company predicts the cost of lithium-ion batteries will drop by 60% over the next decade, helping enable a new set of charging solutions.

Meanwhile, mobile and temporary EV charging will grow from 0.5% to 2% of the charging market by 2030, according to new Guidehouse research. The overall charging market is expected to reach reach almost $16 billion in revenues in 2020 and more than $60 billion by 2030. ​A third report finds long-range EVs are growing their share of the market as well, and charging them could cause stress to electric distribution systems. 

"One can expect that the number of EVs in fleets will grow very rapidly over the next ten years," according to Rhombus' report. But that means many fleet staging areas will have trouble securing sufficient charging capacity as electric truck fleets scale up.

"Given the amount of time it takes to add new megawatt-level power feeds in most cities (think years), fleet EVs will run into a significant 'power crisis' by 2030," according to Rhombus.

"Grid power availability will become a significant problem for fleets as they increase the number of electric vehicles they operate," Rhombus CEO Rick Sander said in a statement. "Integrating energy storage with vehicle-to-grid capable chargers and smart [energy management system] solutions as seen in California grid stability efforts is a quick and effective mitigation strategy for this issue."

Along with energy storage, Guidehouse says a new, more flexible approach to charger deployment enabled by grid coordination strategies will help meet demand. That means chargers deployed by a van or other mobile stations, and "temporary" chargers that can help fleets expand capacity. 

According to Guidehouse, the temporary units "are well positioned to de-risk large investments in stationary charging infrastructure" while also providing charge point networks and service providers "with new capabilities to flexibly supply predictable changes in EV transportation behaviors and demand surges."

"Mobile charging is a bit of a new area in the EV charging scene. It primarily leverages batteries to make chargers mobile, but it doesn't necessarily have to," Guidehouse Senior Research Analyst Scott Shepard told Utility Dive. 

"The biggest opportunity is with the temporary charging format," said Shepard. "The bigger units are meant to be located at a certain site for a period of time. Those units are interesting because they create a little more scale-ability for sites and a little risk mitigation when it comes to investing in a site."

"Utilities could use temporary chargers as a way to provide more resilient service, using these chargers in line with on-site generation," Shepard said.

Increasing rates of EV adoption, combined with advances in battery size and charging rates, "will impact electric utility distribution infrastructure at a higher rate than previously projected," according to new analysis from FleetCarma.

The charging company conducted a study of over 3,900 EVs, illustrating the rapid change in vehicle capabilities in just the last five years. According to FleetCarma, today's EVs use twice as much energy and draw it at twice the power level. The long-range EV has increased as a proportion of new electric vehicle sales from 14% in 2014 to 66% in 2019 in the United States, it found.

Long-range EVs "are very different from older electric vehicles: they are driven more, they consume more energy, they draw power at a higher level and they are less predictable," according to FleetCarma.

Guidehouse analysts say grid modernization efforts and energy storage can help smooth the impacts of charging larger vehicles. 

Mobile and temporary charging solutions can act as a "buffer" to the distribution grid, according to Guidehouse's report, allowing utilities to avoid or defer some transmission and distribution upgrade costs that could be required due to stress on the grid from newer vehicles.

"At a high level, there's enough power and energy to supply EVs with proper management in place," said Shepard. "And in a lot of different locations, those charging deployments will be built in a way that protects the grid. Public fast charging, large commercial sites, they're going to have the right infrastructure embedded."

"But for certain areas of the grid where there is low visibility, there is the potential for grid disruption and questions about whether the UK grid can cope with EV demand," said Shepard. "This has been on the mind of utilities but never realized: overwhelming residential transformers."

As EVs with higher charging and energy capacities are connected to the grid, Shepard said, "you are going to start to see some of those residential systems come under pressure, and probably see increased incidences of having to upgrade transformers." Some residential upgrades can be deferred through smarter charging programs, he added.

 

Related News

View more

Federal Government announces funding for Manitoba-Saskatchewan power line

Birtle Transmission Line connects Manitoba Hydro to SaskPower, enabling 215 MW of clean hydroelectricity, improving grid reliability, supporting affordable rates, and advancing Green Infrastructure goals under the Investing in Canada Plan across Manitoba and Saskatchewan.

 

Key Points

A 46 km line moving up to 215 MW from Manitoba Hydro to SaskPower, improving reliability and supplying cleaner power.

✅ Enables interprovincial grid tie between Manitoba and Saskatchewan

✅ Delivers up to 215 MW of renewable hydroelectricity

✅ Supports affordable rates and lower GHG emissions

 

The federal government announced funding for the Birtle Transmission Line Monday morning.

The project will help Manitoba Hydro build a transmission line from Birtle South Station in the Municipality of Prairie View to the Manitoba–Saskatchewan border 46 kilometres northwest. Once completed, the new line will allow up to 215 megawatts of hydroelectricity to flow from the Manitoba Hydro power grid to the SaskPower power grid, similar to the Great Northern Transmission Line connecting Manitoba and Minnesota today.

The government said the transmission line would create a more stable energy supply, keep energy rates affordable and help Saskatchewan's efforts to reduce cumulative greenhouse-gas emissions in that province.

"The Government of Canada is proud to be working with Manitoba to support projects that create jobs and improve people's lives across the province. The Birtle Transmission Line will provide the region with reliable and greener energy, as seen with Canadian hydropower to New York projects, that will help protect our environment while laying the groundwork for clean economic growth," said Jim Carr, member of Parliament for Winnipeg South Centre, on behalf of Catherine McKenna, minister of infrastructure and communities.

The Government of Canada is investing more than $18.7 million, and the government of Manitoba is contributing more than $42 million in this project through the Green Infrastructure Stream of the Investing in Canada Plan, which also supports Atlantic grid improvements nationwide.

"The Province of Manitoba has one of the cleanest electricity grids in Canada and the world with over 99 per cent of our electricity generated from clean, renewable sources, rooted in Manitoba's hydro history," said Central Services Minister Reg Helwer. "The Made-in-Manitoba Climate and Green Plan is good not only for Manitoba but for Canada and globally."

Jay Grewal, president, and CEO of Manitoba Hydro said the funding is a great example of co-operation between the provincial and federal governments, including investments in smart grid technology that modernize local networks.

"We are very pleased that Manitoba Hydro's Birtle Transmission Project is among the first projects to receive funding under the Canada Infrastructure Program, and we would like to thank both levels of governments for recognizing the importance of the project as we strengthen ties with our neighbours in Saskatchewan, as U.S.-Canada transmission approvals advance elsewhere," said Grewal.

A spokesperson for Manitoba Hydro said it’s too early to say how many jobs will be created during construction, as final contracts have not yet been awarded.

 

Related News

View more

How Bitcoin's vast energy use could burst its bubble

Bitcoin Energy Consumption drives debate on blockchain mining, proof-of-work, carbon footprint, and emissions, with CCAF estimates in terawatt hours highlighting electricity demand, fossil fuel reliance, and sustainability concerns for data centers and cryptocurrency networks.

 

Key Points

Electricity used by Bitcoin proof-of-work mining, often fossil-fueled, estimated by CCAF in terawatt hours.

✅ CCAF: 40-445 TWh, central estimate ~130 TWh

✅ ~66% of mining electricity sourced from fossil fuels

✅ Proof-of-work increases hash rate, energy, and emissions

 

The University of Cambridge Centre for Alternative Finance (CCAF) studies the burgeoning business of cryptocurrencies.

It calculates that Bitcoin's total energy consumption is somewhere between 40 and 445 annualised terawatt hours (TWh), with a central estimate of about 130 terawatt hours.

The UK's electricity consumption is a little over 300 TWh a year, while Argentina uses around the same amount of power as the CCAF's best guess for Bitcoin, as countries like New Zealand's electricity future are debated to balance demand.

And the electricity the Bitcoin miners use overwhelmingly comes from polluting sources, with the U.S. grid not 100% renewable underscoring broader energy mix challenges worldwide.

The CCAF team surveys the people who manage the Bitcoin network around the world on their energy use and found that about two-thirds of it is from fossil fuels, and some regions are weighing curbs like Russia's proposed mining ban amid electricity deficits.

Huge computing power - and therefore energy use - is built into the way the blockchain technology that underpins the cryptocurrency has been designed.

It relies on a vast decentralised network of computers.

These are the so-called Bitcoin "miners" who enable new Bitcoins to be created, but also independently verify and record every transaction made in the currency.

In fact, the Bitcoins are the reward miners get for maintaining this record accurately.

It works like a lottery that runs every 10 minutes, explains Gina Pieters, an economics professor at the University of Chicago and a research fellow with the CCAF team.

Data processing centres around the world, including hotspots such as Iceland's mining strain, race to compile and submit this record of transactions in a way that is acceptable to the system.

They also have to guess a random number.

The first to submit the record and the correct number wins the prize - this becomes the next block in the blockchain.

Estimates for bitcoin's electricity consumption
At the moment, they are rewarded with six-and-a-quarter Bitcoins, valued at about $50,000 each.

As soon as one lottery is over, a new number is generated, and the whole process starts again.

The higher the price, says Prof Pieters, the more miners want to get into the game, and utilities like BC Hydro suspending new crypto connections highlight grid pressures.

"They want to get that revenue," she tells me, "and that's what's going to encourage them to introduce more and more powerful machines in order to guess this random number, and therefore you will see an increase in energy consumption," she says.

And there is another factor that drives Bitcoin's increasing energy consumption.

The software ensures it always takes 10 minutes for the puzzle to be solved, so if the number of miners is increasing, the puzzle gets harder and the more computing power needs to be thrown at it.

Bitcoin is therefore actually designed to encourage increased computing effort.

The idea is that the more computers that compete to maintain the blockchain, the safer it becomes, because anyone who might want to try and undermine the currency must control and operate at least as much computing power as the rest of the miners put together.

What this means is that, as Bitcoin gets more valuable, the computing effort expended on creating and maintaining it - and therefore the energy consumed - inevitably increases.

We can track how much effort miners are making to create the currency.

They are currently reckoned to be making 160 quintillion calculations every second - that's 160,000,000,000,000,000,000, in case you were wondering.

And this vast computational effort is the cryptocurrency's Achilles heel, says Alex de Vries, the founder of the Digiconomist website and an expert on Bitcoin.

All the millions of trillions of calculations it takes to keep the system running aren't really doing any useful work.

"They're computations that serve no other purpose," says de Vries, "they're just immediately discarded again. Right now we're using a whole lot of energy to produce those calculations, but also the majority of that is sourced from fossil energy, and clean energy's 'dirty secret' complicates substitution."

The vast effort it requires also makes Bitcoin inherently difficult to scale, he argues.

"If Bitcoin were to be adopted as a global reserve currency," he speculates, "the Bitcoin price will probably be in the millions, and those miners will have more money than the entire [US] Federal budget to spend on electricity."

"We'd have to double our global energy production," he says with a laugh, even as some argue cheap abundant electricity is getting closer to reality today. "For Bitcoin."

He says it also limits the number of transactions the system can process to about five per second.

This doesn't make for a useful currency, he argues.

Rising price of bitcoin graphic
And that view is echoed by many eminent figures in finance and economics.

The two essential features of a successful currency are that it is an effective form of exchange and a stable store of value, says Ken Rogoff, a professor of economics at Harvard University in Cambridge, Massachusetts, and a former chief economist at the International Monetary Fund (IMF).

He says Bitcoin is neither.

"The fact is, it's not really used much in the legal economy now. Yes, one rich person sells it to another, but that's not a final use. And without that it really doesn't have a long-term future."

What he is saying is that Bitcoin exists almost exclusively as a vehicle for speculation.

So, I want to know: is the bubble about to burst?

"That's my guess," says Prof Rogoff and pauses.

"But I really couldn't tell you when."

 

Related News

View more

Sustainable Marine now delivering electricity to Nova Scotia grid from tidal energy

Sustainable Marine tidal energy delivers in-stream power to Nova Scotia's grid from Grand Passage, proving low-impact, renewable generation and advancing a floating tidal array at FORCE and Minas Passage in the Bay of Fundy.

 

Key Points

The first in-stream tidal project supplying clean power to Nova Scotia's grid, proven at Grand Passage.

✅ First to deliver in-stream tidal power to Canada's grid

✅ Demonstration at Grand Passage informs FORCE deployments

✅ Low-impact design and environmental monitoring validated

 

Sustainable Marine has officially powered up its tidal energy operation in Canada and is delivering clean electricity to the power system in Nova Scotia, on the country’s Atlantic coast, as the province moves to increase wind and solar projects in the years ahead. The company’s system in Grand Passage is the first to deliver in-stream tidal power to the grid in Canada, following provincial approval to harness Bay of Fundy tides that is spurring further development.

The system start-up is the culmination of more than a decade of research, development and testing, including lessons from Scottish tidal projects in recent years and a powerful tidal turbine feeding onshore grids, managing the technical challenges associated with operating in highly energetic environments and proving the ultra-low environmental impact of the tidal technology.

Sustainable Marine is striving to deliver the world’s first floating tidal array at FORCE (Fundy Ocean Research Centre for Energy). This project will be delivered in phases, drawing upon the knowledge gained and lessons learned in Grand Passage, and insights from offshore wind pilots like France’s first offshore wind turbine in Europe. In the coming months the company will continue to operate the platform at its demonstration site at Grand Passage, gradually building up power production, while New York and New England clean energy demand continues to rise, to further prove the technology and environmental monitoring systems, before commencing deployments in the Minas Passage – renowned as the Everest of tidal energy.

The Bay of Fundy’s huge tidal energy resource contains more than four times the combined flow of every freshwater river in the world, with the potential to generate approximately 2,500 MW of green energy, underscoring why independent electricity planning will be important for integrating marine renewables.

 

Related News

View more

N.L. premier says Muskrat Falls costs are too great for optimism about benefits

Muskrat Falls financial impact highlights a hydro megaproject's cost overruns, rate mitigation challenges, and inquiry findings in Newfoundland and Labrador, with power exports, Churchill River generation, and subsea cables shaping long-term viability.

 

Key Points

It refers to the project's burden on provincial finances, driven by cost overruns, rate hikes, and debt risks.

✅ Costs rose to $12.7B from $6.2B; inquiry cites suppressed risks.

✅ Rate mitigation needed to offset power bill shocks.

✅ Exports via subsea cables may improve long-term viability.

 

Newfoundland and Labrador's premier says the Muskrat Falls hydro megaproject is currently too much of a massive financial burden for him to be optimistic about its long-term potential.

"I am probably one of the most optimistic people in this room," Liberal Premier Dwight Ball told the inquiry into the project's runaway cost and scheduling issues, echoing challenges at Manitoba Hydro that have raised similar concerns.

"I believe the future is optimistic for Newfoundland Labrador, of course I do. But I'm not going to sit here today and say we have an optimistic future because of the Muskrat Falls project."

Ball, who was re-elected on May 16, has been critical of the project since he was opposition leader around the time it was sanctioned by the former Tory government.

He said Friday that despite his criticism of the Labrador dam, which has seen costs essentially double to more than $12.7 billion, he didn't set out to celebrate a failed project.

He said he still wants to see Muskrat Falls succeed someday through power sales outside the province, but there are immediate challenges -- including mitigating power-rate hikes once the dam starts providing full power and addressing winter reliability risks for households.

"We were told the project would be $6.2 billion, we're at $12.7 (billion). We were never told this project would be nearly 30 per cent of the net debt of this province just six, seven years later," the premier said.

"I wanted this to be successful, and in the long term I still want it to be successful. But we have to deal with the next 10 years."

The nearly complete dam will harness Labrador's lower Churchill River to provide electricity to the province as well as Nova Scotia and potentially beyond through subsea cables, while the legacy of Churchill Falls continues to shape regional power arrangements.

Ball's testimony wraps up a crucial phase of hearings in the extensive public inquiry.

The inquiry has heard from dozens of witnesses, with current and former politicians, bureaucrats, executives and consultants, amid debates over Quebec's electricity ambitions in the region, shedding long-demanded light on what went on behind closed doors that made the project go sideways.

Some witnesses have suggested that estimates were intentionally suppressed, and many high-ranking officials, including former premiers, have denied seeing key information about risk.

On Thursday, Ball testified to his shock when he began to understand the true financial state of the project after he was elected premier in 2015.

On Friday, Ball said he has more faith in future of the offshore oil and gas industry, and emerging options like small nuclear reactors, for example, than a mismanaged project that has put immense pressure on residents already struggling to make ends meet.

After his testimony, Ball said he takes some responsibility for a missed opportunity to mitigate methylmercury risks downstream from the dam through capping the reservoir, in parallel with debates over biomass power in electricity generation, something he had committed to doing before it is fully flooded this summer.

Still to come is a third phase of hearings on future best practices for issues like managing large-scale projects and independent electricity planning, two public feedback sessions and closing submissions from lawyers.

The final report from the inquiry is due before Dec. 31.

 

Related News

View more

New York Finalizes Contracts for 23 Renewable Projects Totaling 2.3 GW

New York Renewable Energy Contracts secure 23 projects totaling 2.3 GW, spanning offshore wind, solar, and battery storage under CLCPA goals, advancing 70% by 2030, a carbon-free 2040 grid, grid reliability, and green jobs.

 

Key Points

State agreements securing 23 wind, solar, and storage projects (2.3 GW) to meet CLCPA clean power targets.

✅ 2.3 GW across 23 wind, solar, and storage projects statewide

✅ Supports 70% renewables by 2030; carbon-free grid by 2040

✅ Drives emissions cuts, grid reliability, and green jobs

 

In a significant milestone for the state’s clean energy ambitions, New York has finalized contracts with 23 renewable energy projects, as part of large-scale energy projects underway in New York, totaling a combined capacity of 2.3 gigawatts (GW). This move is part of the state’s ongoing efforts to accelerate its transition to renewable energy, reduce carbon emissions, and meet the ambitious targets set under the Climate Leadership and Community Protection Act (CLCPA), which aims to achieve a carbon-free electricity grid by 2040.

A Strong Commitment to Renewable Energy

The 23 projects secured under these contracts represent a diverse range of renewable energy sources, including wind, solar, and battery storage. Together, these projects are expected to contribute significantly to New York’s energy grid, generating enough clean electricity to power millions of homes. The deal is a key component of New York’s broader strategy to achieve a 70% renewable energy share in the state’s electricity mix by 2030 and to reduce greenhouse gas emissions by 85% by 2050.

Governor Kathy Hochul celebrated the agreements as a major step forward in the state’s commitment to combating climate change while creating green jobs and economic opportunities. “New York is leading the nation in its clean energy goals, and these projects will help us meet our bold climate targets while delivering reliable and affordable energy to New Yorkers,” Hochul said in a statement.

The Details of the Contracts

The 23 projects span across various regions of the state, with an emphasis on areas that are well-suited for renewable energy development, such as upstate New York, which boasts vast open spaces ideal for large-scale solar and wind installations and the state is investigating sites for offshore wind projects along the coast. The contracts finalized by the state will ensure a steady supply of clean power from these renewable sources, helping to stabilize the grid and reduce reliance on fossil fuels.

A significant portion of the new renewable capacity will come from offshore wind projects, which have become a cornerstone of New York’s renewable energy strategy. Offshore wind has the potential to provide large amounts of electricity, and the state recently greenlighted the country's biggest offshore wind farm to date, taking advantage of the state's proximity to the Atlantic Ocean. Several of the contracts finalized include offshore wind farm projects, which are expected to be operational within the next few years.

In addition to wind energy, solar power continues to be a critical component of the state’s renewable energy strategy. The state has already made substantial investments in solar energy, having achieved solar energy goals ahead of schedule recently, and these new contracts will further expand the state’s solar capacity. The inclusion of battery storage projects is another important element, as energy storage solutions are vital to ensuring that renewable energy can be effectively utilized, even when the sun isn’t shining or the wind isn’t blowing.

Economic and Job Creation Benefits

The finalization of these 23 contracts will not only bring significant environmental benefits but also create thousands of jobs in the renewable energy sector. Construction, maintenance, and operational jobs will be generated throughout the life of the projects, benefiting communities across the state, including areas near Long Island's South Shore wind proposals that stand to gain from new investment. The investment in renewable energy is expected to support New York’s recovery from the economic impacts of the COVID-19 pandemic, contributing to the state’s clean energy economy and providing long-term economic stability.

The state's focus on clean energy also provides opportunities for local businesses, highlighted by the first Clean Energy Community designation in the state, as many of these projects will require services and materials from within New York State. Additionally, Governor Hochul’s administration has made efforts to ensure that disadvantaged communities and workers from underrepresented backgrounds will have access to job training and employment opportunities within the renewable energy sector.

The Path Forward: A Clean Energy Future

New York’s aggressive move toward renewable energy is indicative of the state’s commitment to addressing climate change and leading the nation in clean energy innovation. By locking in contracts for these renewable energy projects, the state is not only securing a cleaner future but also ensuring that the transition is fair and just for all communities, particularly those that have been historically impacted by pollution and environmental degradation.

While the finalized contracts mark a major achievement, the state’s work is far from over. The completion of these 23 projects is just one piece of the puzzle in New York’s broader strategy to decarbonize its energy system. To meet its ambitious targets under the CLCPA, New York will need to continue investing in renewable energy, energy storage, grid modernization, and energy efficiency programs.

As New York moves forward with its clean energy transition, and as BOEM receives wind power lease requests in the Northeast, the state will likely continue to explore new technologies and innovative solutions to meet the growing demand for renewable energy. The success of the 23 finalized contracts serves as a reminder of the state’s leadership in the clean energy space and its ongoing efforts to create a sustainable, low-carbon future for all New Yorkers.

New York’s decision to finalize contracts with 23 renewable energy projects totaling 2.3 gigawatts represents a bold step toward meeting the state’s clean energy and climate goals. These projects, which include a mix of wind, solar, and energy storage, will contribute significantly to reducing the state’s reliance on fossil fuels and lowering greenhouse gas emissions. With the additional benefits of job creation and economic growth, this move positions New York as a leader in the nation’s transition to renewable energy and a sustainable future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified