Isotope shortage delays testing for thousands

By National Post


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Just one day after Canada announced it would abandon the production of medial isotopes, Quebec's top nuclear medicine specialist warned that as many as 12,000 in his province have had their cancer and cardiac tests put off because of the isotope shortage.

What's more, scores of thyroid cancer patients have been deprived of radiotherapy involving isotopes that are no longer available.

"No one has died in Quebec because of this crisis, but if it continues, that could happen," warned François Lamoureux, president of the Association de medecins specialistes en medecine nucleaire.

On average, Quebec hospitals carry out 12,000 diagnostic tests for cancer and cardiac disease each week using Technetium-99 and other isotopes. However, since Ontario's Chalk River nuclear reactor - the world's biggest producer of medical isotopes - shut down in the middle of May because of a leak, that supply has dwindled steadily.

"We can safely say that 50 to 60 per cent of tests have been put off since the beginning of the crisis, which would be the start of June," Mr. Lamoureux said.

In fact, Quebec's supply of isotopes is now down to about 20%. Experts in nuclear medicine have said that if a jurisdiction's supply drops to below 50%, deaths are inevitable.

Hospitals in Ottawa and Manitoba have also said they will soon run out of medical isotopes, with high-priority patients expecting lengthy delays and low-priority patients being bumped even further down the list.

Fortunately for patients served by Northern Health in British Columbia, the organization of roughly 20 hospitals recently started getting its isotopes from a supplier based in The Netherlands just before the Chalk River shutdown.

"We have been able to maintain services and haven't had to cancel any patients," said Ken Winnig, director of diagnostics for Northern Health. "We switched to the Netherlands supplier just before the Chalk River incident. We've been told that we'll be able to get another generator for next week, which means we'll be fine for the next while," he said, adding that the province also has a working group which manages the supply and ensures that any extra isotopes are transferred to facilities in need.

Hospitals in bigger cities, such as the University of Alberta Hospital, are faring better than those in areas with smaller populations. A spokesperson for the university hospital said that while the facility has been affected, the shortage has not been as drastic because the hospital is in a big centre and produces its own isotopes.

Facilities in smaller centres face geographic barriers to access of isotopes produced by nearby generators, and are forced to improvise by doing alternate exams that do not require isotopes, or use a different kind of isotope altogether, Mr. Winnig explained.

Prime Minister Stephen Harper says Canada plans to leave the production of medical isotopes to other countries.

"Eventually, we anticipate Canada will be out of the business," Mr. Harper said.

Related News

Medicine Hat Grant Winners to Upgrade Grid and Use AI for Energy Savings

Medicine Hat Smart Grid AI modernizes electricity distribution with automation, sensors, and demand response, enhancing energy efficiency and renewable integration while using predictive analytics and real-time data to reduce consumption and optimize grid operations.

 

Key Points

An initiative using smart grid tech and AI to optimize energy use, cut waste, and improve renewable integration.

✅ Predictive analytics forecast demand to balance load and prevent outages.

✅ Automation, sensors, and meters enable dynamic, resilient distribution.

✅ Integrates solar and wind with demand response to cut emissions.

 

The city of Medicine Hat, Alberta, is taking bold steps toward enhancing its energy infrastructure and reducing electricity consumption with the help of innovative technology. Recently, several grant winners have been selected to improve the city's electricity grid distribution and leverage artificial intelligence (AI) to adapt to electricity demands while optimizing energy use. These projects promise to not only streamline energy delivery but also contribute to more sustainable practices by reducing energy waste.

Advancing the Electricity Grid

Medicine Hat’s electricity grid is undergoing a significant transformation, thanks to a new set of initiatives funded by government grants that advance a smarter electricity infrastructure vision for the region. The city has long been known for its commitment to sustainable energy practices, and these new projects are part of that legacy. The winners of the grants aim to modernize the city’s electricity grid to make it more resilient, efficient, and adaptable to the changing demands of the future, aligning with macrogrid strategies adopted nationally.

At the core of these upgrades is the integration of smart grid technologies. A smart grid is a more advanced version of the traditional power grid, incorporating digital communications and real-time data to optimize the delivery and use of electricity. By connecting sensors, meters, and control systems across the grid, along with the integration of AI data centers where appropriate, the grid can detect and respond to changes in demand, adjust to faults or outages, and even integrate renewable energy sources more efficiently.

One of the key aspects of the grant-funded projects involves automating the grid. Automation allows for the dynamic adjustment of power distribution in response to changes in demand or supply, reducing the risk of blackouts or inefficiencies. For instance, if an area of the city experiences a surge in energy use, the grid can automatically reroute power from less-used areas or adjust the distribution to avoid overloading circuits. This kind of dynamic response is crucial for maintaining a stable and reliable electricity supply.

Moreover, the enhanced grid will be able to better incorporate renewable energy sources such as solar and wind power, reflecting British Columbia's clean-energy shift as well, which are increasingly important in Alberta’s energy mix. By utilizing a more flexible and responsive grid, Medicine Hat can make the most of renewable energy when it is available, reducing reliance on non-renewable sources.

Using AI to Reduce Energy Consumption

While improving the grid infrastructure is an essential first step, the real innovation comes in the form of using artificial intelligence (AI) to reduce energy consumption. Several of the grant winners are focused on developing AI-driven solutions that can predict energy demand patterns, optimize energy use in real-time, and encourage consumers to reduce unnecessary energy consumption.

AI can be used to analyze vast amounts of data from across the electricity grid, such as weather forecasts, historical energy usage, and real-time consumption data. This analysis can then be used to make predictions about future energy needs. For example, AI can predict when the demand for electricity will peak, allowing the grid operators to adjust supply ahead of time, ensuring a more efficient distribution of power. By predicting high-demand periods, AI can also assist in optimizing the use of renewable energy sources, ensuring that solar and wind power are utilized when they are most abundant.

In addition to grid management, AI can help consumers save energy by making smarter decisions about how and when to use electricity. For instance, AI-powered smart home devices can learn household routines and adjust heating, cooling, and appliance usage to reduce energy consumption without compromising comfort. By using data to optimize energy use, these technologies not only reduce costs for consumers but also decrease overall demand on the grid, leading to a more sustainable energy system.

The AI initiatives are also expected to assist businesses in reducing their carbon footprints. By using AI to monitor and optimize energy use, industrial and commercial enterprises can cut down on waste and reduce energy-related operational costs, while anticipating digital load growth signaled by an Alberta data centre agreement in the province. This has the potential to make Medicine Hat a more energy-efficient city, benefiting both residents and businesses alike.

A Sustainable Future

The integration of smart grid technology and AI-driven solutions is positioning Medicine Hat as a leader in sustainable energy practices. The city’s approach is focused not only on improving energy efficiency and reducing waste but also on making electricity consumption more manageable and adaptable in a rapidly changing world. These innovations are a crucial part of Medicine Hat's long-term strategy to reduce carbon emissions and meet climate goals while ensuring reliable and affordable energy for its residents.

In addition to the immediate benefits of these projects, the broader impact is likely to influence other municipalities across Canada, including insights from Toronto's electricity planning for rapid growth, and beyond. As the technology matures and proves successful, it could set a benchmark for other cities looking to modernize their energy grids and adopt sustainable, AI-driven solutions.

By investing in these forward-thinking technologies, Medicine Hat is not only future-proofing its energy infrastructure but also taking decisive steps toward a greener, more energy-efficient future. The collaboration between local government, technology providers, and the community marks a significant milestone in the city’s commitment to innovation and sustainability.

 

Related News

View more

Australia PM rules out taxpayer funded power plants amid energy battle

ACCC energy underwriting guarantee proposes government-backed certainty for new generation, cutting electricity prices and supporting gas, pumped hydro, renewables, batteries, and potentially coal-fired power, addressing market failure without direct subsidies.

 

Key Points

A tech-neutral, government-backed plan underwriting new generation revenue to increase certainty and cut power prices.

✅ Government guarantee provides a revenue floor for new generators.

✅ Technology neutral: coal, gas, renewables, pumped hydro, batteries.

✅ Intended to reduce bills by up to $400 and address market failure.

 

Australian Taxpayers won't directly fund any new power plants despite some Coalition MPs seizing on a new report to call for a coal-fired power station.

The Australian Competition and Consumer Commission recommended the government give financial certainty to new power plants, guaranteeing energy will be bought at a cheap price if it can't be sold, as part of an electricity market plan to avoid threats to supply.

It's part of a bid to cut up to $400 a year from average household power prices.

Prime Minister Malcolm Turnbull said the finance proposal had merit, but he ruled out directly funding specific types of power generation.

"We are not in the business of subsidising one technology or another," he told reporters in Queensland today.

"We've done enough of that. Frankly, there's been too much of that."

Renewable subsidies, designed in the 1990s to make solar and wind technology more affordable, have worked and will end in 2020.

Some Coalition MPs claim the ACCC's recommendation to underwrite power generation is vindication for their push to build new coal-fired power plants.

But ACCC chair Rod Sims said no companies had proposed building new coal plants - instead they're trying to build new gas projects, pumped hydro or renewable projects.

Opposition Leader Bill Shorten said Mr Turnbull was offering solutions years away, having overseen a rise in power prices over the past year.

"You don't just go down to K-Mart and get a coal-fired power station off the shelf," Mr Shorten told reporters, admitting he had not read the ACCC report.

Energy Minister Josh Frydenberg said the recommendation to underwrite new power generators had a lot of merit, as it would address a market failure highlighted by AEMO warnings about reduced reserves.

"What they're saying is the government needs to step in here to provide some sort of assurance," Mr Frydenberg told 9NEWS today.

He said that could include coal, gas, renewable energy or battery storage.

Deputy Nationals leader Bridget McKenzie said science should determine which technology would get the best outcomes for power bills, with a scrapping coal report suggesting it can be costly.

Mr Turnbull said there was strong support for the vast majority of the ACCC's 56 recommendations, but the government would carefully consider the report, which sets out a blueprint to cut electricity bills by 25 percent.

Acting Greens leader Adam Bandt said Australia should exit coal-fired power in favour of renewable energy to cut pollution.

In contrast, Canada has seen the Stop the Shock campaign advocate a return to coal power in some provinces.

The Australian Energy Council, which represents 21 major energy companies, said the government should consult on changes to avoid "unintended consequences".

 

Related News

View more

Gas-electric hybrid vehicles get a boost in the US from Ford, others

U.S. Hybrid Vehicle Sales Outlook highlights rising hybrid demand as an EV bridge, driven by emissions rules, range anxiety, charging infrastructure gaps, and automaker strategies from Ford, Toyota, and Stellantis across U.S. markets.

 

Key Points

Forecast of U.S. hybrid sales shaped by EV adoption, emissions rules, charging access, and automaker strategies.

✅ S&P sees hybrids at 24% of U.S. sales by 2028

✅ Bridges ICE to EV amid range and charging concerns

✅ Ford, Toyota, Stellantis expand U.S. hybrid lineups

 

Hybrid gasoline-electric vehicles may not be dying as fast as some predicted in the auto sector’s rush to develop all-electric models.

Ford Motor is the latest of several top automakers, including Toyota and Stellantis, planning to build and sell hundreds of thousands of hybrid vehicles in the U.S. over the next five years, industry forecasters told Reuters.

The companies are pitching hybrids as an alternative for retail and commercial customers who are seeking more sustainable transportation, but may not be ready to make the leap to a full electric vehicle.

"Hybrids really serve a lot of America," said Tim Ghriskey, senior portfolio strategist at New York-based investment manager Ingalls & Snyder. "Hybrid is a great alternative to a pure electric vehicle (and) it's an easier sell to a lot of customers."

Interest in hybrids is rebounding as consumer demand for pure electrics has not accelerated as quickly as expected, with EV market share dipping in Q1 2024 according to some analyses. Surveys cite a variety of reasons for tepid EV demand, from high initial cost and concerns about range to lengthy charging times and a shortage of public charging infrastructure in many regions.

“With the tightening of emissions requirements, hybrids provide a cleaner fleet without requiring buyers to take the leap into pure electrics,” said Sam Fiorani, vice president at AutoForecast Solutions.

S&P Global Mobility estimates hybrids will more than triple over the next five years, accounting for 24% of U.S. new vehicle sales in 2028. Sales of pure electrics will claim about 37%, supported by strong U.S. EV sales into 2024 momentum, leaving combustion vehicles — including so-called “mild” hybrids — with a nearly 40% share.

S&P estimates hybrids will account for just 7% of U.S. sales this year, and pure electrics 9%, underscoring that EV sales still lag gas cars as internal combustion engine (ICE) vehicles take more than 80%.

Historically, hybrids have accounted for less than 10% of total U.S. sales, with Toyota’s long-running Prius among the most popular models. The Japanese automaker has consistently said hybrids will play a key role in the company's long-range electrification plans as it slowly ramps up investment in pure EVs.

Ford is the latest to roll out more aggressive hybrid plans. On its second-quarter earnings call in late July, Chief Executive Jim Farley surprised analysts, saying Ford expects to quadruple its hybrid sales over the next five years after earlier promising an aggressive push into all-electric vehicles.

“This transition to EVs will be dynamic,” Farley told analysts. “We expect the EV market to remain volatile until the winners and losers shake out.”

Among Ford’s competitors, General Motors appears to have little interest in hybrids in the U.S., while Stellantis will follow Toyota and Ford’s hedge by offering U.S. buyers a choice of different powertrains, including hybrids, until sales of pure electric vehicles start to take off after mid-decade, a potential EV inflection point according to forecaster GlobalData.

In a statement, GM said it, echoing leadership's view that EVs won't go mainstream until key issues are addressed, "continues to be committed to its all-electric future ... While we will have hybrid vehicles in our global fleet, our focus remains on transitioning our portfolio to electric by 2030.”

Stellantis said hybrids now account for 36% of Jeep Wrangler sales and 19% of Chrysler Pacifica sales. In addition to new pure electric models coming soon, "we are very bullish on hybrids going forward," a spokesperson said.

This year, manufacturers are marketing more than 60 hybrids in the U.S. Toyota and its premium Lexus brand are selling at least 18 different hybrid models, enabling the Japanese automaker to maintain its stranglehold on the sector.

Hyundai and sister brand Kia offer seven hybrid models, with Ford and Lincoln six. Stellantis offers just three, and GM’s sole entry, due out later this year, is a hybrid version of the Chevrolet Corvette sports car.

But hybrids remain in short supply at many U.S. dealerships.

Andrew DiFeo, dealer principal at Hyundai of St. Augustine, south of Jacksonville, FL, doesn't see EV adoption hitting the levels the Biden administration wants until EV charging networks are as ubiquitous as gas stations.

"Hybrids are a great bridge to whatever the future holds,” said DiFeo, adding, “I've got zero in stock (and) I've got customers that want all of them."

 

Related News

View more

"Knowledge Gap" Is Contributing To On-the-job Electrical Injuries

BC Hydro Trades Electrical Safety addresses electric contact incidents among trade workers, emphasizing power line hazards, overhead lines clearance, the 3 m rule, jobsite planning, and safety training to prevent injuries during spring and summer.

 

Key Points

BC Hydro Trades Electrical Safety is guidance and training to reduce power-line contact risks for trade workers.

✅ Stay at least 3 m from overhead power lines and equipment

✅ Plan worksites and spot hazards before starting tasks

✅ Use BC Hydro electrical awareness training near electricity

 

A BC Hydro report finds serious electrical contact incidents are more common among trades workers, and research shows this is partly due to a knowledge gap in the electricity sector in Canada.

Trade workers were involved in more than 60 per cent of electric contact incidents that led to serious injuries over the last three years, according to BC Hydro.

One-in-five trade workers have also either made contact or had a close call with electric equipment.

A recent worksite electrocution case underscores the consequences of contact.

“New research finds many have had a close call with electricity on the job or have witnessed unsafe work near overhead lines or electrical equipment,” BC Hydro staff said in the report.

“A gap in electrical safety knowledge is a contributing factor in most of these incidents.”

Most electrical contact incidents take place in the spring and summer, when trade workers are working outdoors and are working in close proximity to power lines.

BC Hydro offered tips for trades workers who may work closely to possible electrical contact points:

  • Look up and down – Observe the site beforehand and plan work so you can avoid contact with power lines
  • Stay back – You and your tools should stay at least 3 m away from an overhead power line
  • Call for help – If you come across a fallen power line, or a tree branch or object contacts a line—stay back 10 metres and call 911. Never try and move it yourself. If you must work closer than 3 m to a power line at your worksite, call BC Hydro before you begin.
  • Learn about the risks – BC Hydro offers in-person and online electrical awareness training, such as arc flash training, for anyone who works near electricity.

The report found that 38 per cent of trades workers who participated in the report said they only feel “somewhat informed” about safety measures around working near electricity and 71 per cent were unable to identify the correct distance they should be away from active power lines or electrical equipment.

BC Hydro said trade workers should participate in its electrical awareness training courses, including arc flash training, to make sure all safety measures are taken.

 

Related News

View more

Wind and solar make more electricity than nuclear for first time in UK

UK Renewables Surpass Nuclear Milestone as wind farms and solar panels outpace atomic output, cutting greenhouse gas emissions. BEIS data show low-carbon power generation rising while onshore wind subsidies and auction timelines face policy debate.

 

Key Points

It is the quarter when UK wind and solar generated more electricity than nuclear, signaling cleaner, low-carbon growth.

✅ BEIS reports wind and solar at 18.33 TWh vs nuclear 16.69 TWh

✅ Energy sector emissions fell 8% as coal use dropped

✅ Calls grow to reopen onshore wind support via CFD auctions

 

Wind farms and solar panels, with wind leading the power mix during key periods, produced more electricity than the UK’s eight nuclear power stations for the first time at the end of last year, official figures show.

Britain’s greenhouse gas emissions also continued to fall, dropping 3% in 2017, as coal use fell and the use of renewables climbed, though low-carbon generation stalled in 2019 according to later data.

Energy experienced the biggest drop in emissions of any UK sector, of 8%, while pollution from transport and businesses stayed flat.

Energy industry chiefs said the figures showed that the government should rethink its ban on onshore wind subsidies, a move that ministers have hinted could happen soon.

Lawrence Slade, chief executive of the big six lobby group Energy UK, said: “We need to keep up the pace ... by ensuring that the lowest cost renewables are no longer excluded from the market.”

Across the whole year, low-carbon sources of power – wind, solar, biomass and nuclear – provided a record 50.4% of electricity, up from 45.7% in 2016, when wind beat coal for the first time.

But in the fourth quarter of 2017, high wind speeds, new renewables installations and lower nuclear output saw wind and solar becoming the second biggest source of power for the first time.

Wind and solar generated 18.33 terawatt hours (TWh), with nuclear on 16.69TWh, and the UK later set a new record for wind power during 2019, the figures published by the Department for Business, Energy and Industrial Strategy show.

But renewables still have a long way to go to catch up with gas, the UK’s top source of electricity at 36.12TWh, which saw its share of generation fall slightly, though at times wind became the main source as capacity expanded.

Greenpeace said the figures showed the government should capitalise on its lead in renewables and “stop wasting time and money propping up nuclear power”.

Horizon Nuclear Power, a subsidiary of the Japanese conglomerate Hitachi, is in talks with Whitehall officials for a financial support package from the government, which it says it needs by midsummer.

By contrast, large-scale solar and onshore wind projects are not eligible for support, after the Conservative government cut subsidies in 2015.

However the energy minister, Claire Perry, recently told House Magazine that “we will have another auction that brings forward wind and solar, we just haven’t yet said when”.

 

Related News

View more

Ontario, Quebec to swap energy in new deal to help with electricity demands

Ontario-Quebec Energy Swap streamlines electricity exchange, balancing peak demand across clean grids with hydroelectric and nuclear power, enhancing reliability, capacity banking, and interprovincial load management for industry growth, EV adoption, and seasonal heating-cooling needs.

 

Key Points

10-year, no-cash power swap aligning peaks; hydro and nuclear enhance reliability and let Ontario bank capacity.

✅ Up to 600 MW exchanged yearly; reviews adjust volumes

✅ Peaks differ: summer A/C in Ontario, winter heating in Quebec

✅ Capacity banking enables future-year withdrawals

 

Ontario and Quebec have agreed to swap energy to build on an electricity deal to help each other out when electricity demands peak.

The provinces' electricity operators, the Independent Electricity System Operator holds capacity auctions and Hydro-Quebec, will trade up to 600 megawatts of energy each year, said Ontario Energy Minister Todd Smith.

“The deal just makes a lot of sense from both sides,” Smith said in an interview.

“The beauty as well is that Quebec and Ontario are amongst the cleanest grids around.”

The majority of Ontario's power comes from nuclear energy while the majority of Quebec's energy comes from hydroelectric power, including Labrador power in regional transmission networks.

The deal works because Ontario and Quebec's energy peaks come at different times, Smith said.

Ontario's energy demands spike in the summer, largely driven by air conditioning on hot days, and the province has occasionally set off-peak electricity prices to provide temporary relief, he said.

Quebec's energy needs peak in the winter, mostly due to electric heating on cold days.

The deal will last 10 years, with reviews along the way to adjust energy amounts based on usage.

“With the increase in energy demand, we must adopt more energy efficiency programs like Peak Perks and intelligent measures in order to better manage peak electricity consumption,” Quebec's Energy Minister Pierre Fitzgibbon wrote in a statement.

Smith said the energy deal is a straight swap, with no payments on either side, and won't reduce hydro bills as the transfer could begin as early as this winter.

Ontario will also be able to bank unused energy to save capacity until it is needed in future years, Smith said.

Both provinces are preparing for future energy needs, as electricity demands are expected to grow dramatically in the coming years with increased demand from industry and the rise of electric vehicles, and Ontario has tabled legislation to lower electricity rates to support consumers.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified