Proposed vending machine standards would save energy

By Reuters


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Vending machines for soda and other beverages would sip energy rather than guzzle it under new standards proposed by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

The proposed rules set energy conservation standards and consumption thresholds for refrigerated vending machines that dispense bottled or canned drinks.

The measures would cut energy use of glass- or polymer-front machines by as much as 42 percent compared to current energy consumption of such machines. Energy use in more traditional solid-front vending machines would be cut by about 15 percent.

"With roughly 3 million beverage vending machines in the U.S., or 1 for every 100 Americans, a strong national standard means real savings for all the universities, park districts, hotels, and other institutions and businesses that pay the electric bills for these machines," Noah Horowitz, a senior scientist with the Natural Resources Defense Council, said in a statement.

Under the proposed standards, energy use per unit would be no more than about 1,400 kilowatt-hours to 1,800 kilowatt-hours per year, compared to highs of 3,000 kwh to 5,000 kwh in the mid 1990s, according to Horowitz, a leader in vending machine research.

Each machine manufactured under the new standards would save about $320 per year in energy costs, he said.

Over a 30-year period, the new standards could yield savings of as much as 10 billion kwh of electricity — about enough for 800,000 typical homes for a year, save vending machine property owners $250 million, and eliminate 5 million metric tons of CO2 emissions, according to the DOE's long-term projections. The 30-year estimate for CO2 reduction is roughly the equivalent of the CO2 emissions produced by a million cars during a year and has an estimated value of $96 million, the DOE said.

PepsiCo is testing an HFC-free, energy efficient vending machine.

A public hearing on the proposed standards is scheduled for June 17. After a review period and barring controversy, the rules are to be adopted in August with the standards taking effect three years later.

In ratcheting up the energy efficiency of beverage vending machines, the proposed standards build upon a number of improvements made in the past 10 years, Horowitz acknowledged.

But he and representatives of other organizations supporting stricter energy efficiency — American Council for an Energy-Efficient Economy and the Appliance Standards Awareness Project — also said that requiring smart controls on the vending machines would save more electricity and more money. Smart control devices could automate certain features of the equipment and, for example, put lights in sleep mode or turn them off when the machine is not in use.

However, the DOE's authority to set such a requirement is currently limited by parameters established by the previous administration. Standards adopted after July 1, 2010, are allowed to incorporate sleep mode provisions.

Vending machines are already ripe targets for energy savings in facilities.

At Wal-Mart, for example, an employee's idea to switch off soda machine lights saved about $1 million. At Intuit, installing automatic shut-off controls for vending machine lights was among the recommendations made by an Environmental Defense Fund Climate Corps fellow who spent the summer at the company devising energy efficiency strategies.

In the beverage industry, Coca-Cola and PepsiCo are working to make their vending machines consume less energy and reduce their greenhouse gas emissions.

PepsiCo is testing new vending machines that are 15 percent more energy efficient than the company's 2008 models. Last year's models had cut energy use by 51 percent compared to 2003 models. The 2009 test models use carbon dioxide instead of hydrofluorocarbons as a refrigerant.

Coca-Cola has used alternatives to the refrigerant in some machines for several years. For the 2010 Olympic Winter Games in Vancouver, the 1,400 Coca-Cola coolers and vending machines will be HFC-free. The company plans to have 100,000 HFC-free vending machines and refrigerators — about 1 percent of its current inventory — around the world by 2010.

The proposed standards for beverage machines are the first of about 25 new standards for a variety of products that the DOE must complete by January 2012 as mandated by court orders or Congressional deadlines. Fluorescent lighting tubes used in commercial settings, home refrigerators, water heaters and air conditions are among the products subject to new standards.

Related News

Spain plans switch to 100% renewable electricity by 2050

Spain 2050 Renewable Energy Plan drives decarbonisation with wind and solar, energy efficiency, fossil fuel bans, and Paris Agreement targets, enabling net-zero power, emissions cuts, and just transition measures for workers and coal regions.

 

Key Points

A roadmap to 100 percent renewable power by 2050, deep emissions cuts, and a just transition aligned with Paris goals.

✅ Adds 3,000 MW of wind and solar each year through 2030

✅ Bans new fossil fuel drilling, hydrocarbon extraction, and fracking

✅ Targets 35% energy efficiency gains and 35% green power by 2030

 

Spain has launched an ambitious plan to switch its electricity system entirely to renewable sources, similar to California's 100% clean electricity mandate, by 2050 and completely decarbonise its economy soon after.

By mid-century, as EU electricity demand projections suggest increases, greenhouse gas emissions would be slashed by 90% from 1990 levels under Spain’s draft climate change and energy transition law.

To do this, the country’s social democratic government is committing to installing at least 3,000MW of wind and solar power capacity every year in the next 10 years ahead.

New licences for fossil fuel drills, hydrocarbon exploitation and fracking wells, will be banned, and a fifth of the state budget will be reserved for measures that can mitigate climate change. This money will ratchet upwards from 2025.

Christiana Figueres, a former executive secretary of the UN’s framework convention on climate change (UNFCCC), hailed the draft Spanish law as “an excellent example of the Paris agreement”. She added: “It sets a long-term goal, provides incentives on scaling up emissions technologies and cares about a good transition for the workforce.”

Under the plan, “just transition” contracts will be drawn up, similar to the £220m package announced in October, that will shut most Spanish coalmines in return for a suite of early retirement schemes, re-skilling in clean energy jobs, and environmental restoration. These deals will be partly financed by auction returns from the sale of emissions rights.

The government has already scrapped a controversial “sun tax” that halted Spain’s booming renewables sector earlier this decade, even as IEA analysis finds solar the cheapest electricity worldwide, and the new law will also mandate a 35% electricity share for green energy by 2030.

James Watson, chief executive of the SolarPower Europe trade association, said the law was “a wake-up call to the rest of the world” amid debate on the global energy transition today.

Energy efficiency will also be improved by 35% within 11 years, and government and public sector authorities will be able to lease only buildings that have almost zero energy consumption.

Laurence Tubiana, chief executive of the European Climate Foundation, and former French climate envoy who helped draft the Paris accord, described the agreement as groundbreaking and inspirational. “By planning on going carbon neutral, Spain shows that the battle against climate change is deadly serious, that they are ready to step up and plan to reap the rewards of decarbonisation,” she said.

However, the government’s hold on power is fragile. With just a quarter of parliamentary seats it will depend on the more leftwing Podemos and liberal Ciudadanos parties to pass the climate plan.

No dates were included in the legislation for phaseouts of coal or nuclear energy, and, echoing UK net zero policy shifts, a ban on new cars with petrol or diesel engines was delayed until 2040.

 

Related News

View more

City of Vancouver named Clean Energy Champion for Bloedel upgrades

BC Hydro Clean Energy Champions highlights Vancouver's Bloedel Conservatory electrification with a massive heat pump, clean electricity, LED lighting, deep energy efficiency, and 90% greenhouse gas reductions advancing climate action across buildings and industry.

 

Key Points

A BC Hydro program honoring clean electricity adoption in homes, transport, and industry to replace fossil fuels.

✅ Vancouver's Bloedel Conservatory cut GHGs by 90% with a heat pump

✅ LEDs and electrification boost efficiency, comfort, and reliability

✅ Nominations open for residents, businesses, and Indigenous groups

 

The City of Vancouver has been selected as BC Hydro’s first Clean Energy Champion for energy efficient upgrades made at the Bloedel Conservatory that cut greenhouse gas emissions by 90 per cent, a meaningful step given concerns about 2050 greenhouse gas targets in B.C.

BC Hydro’s Clean Energy Champions program is officially being launched today to recognize residents, businesses, municipalities, Indigenous and community groups across B.C. that have made the choice to switch from using fossil fuels to using clean electricity in three primary areas: homes and buildings, transportation, and industry, even as drought challenges power generation in B.C. The City of Vancouver is being recognized as the first champion for demonstrating its commitment to using clean energy, including power from projects like Site C's electricity, to fight climate change at its landmark Bloedel Conservatory.

Earlier this year, the City of Vancouver installed a large air source heat pump at Bloedel Conservatory – more than 50 times the size of a heat pump used in a typical B.C. home – that uses electricity instead of natural gas to heat and cool the dome's interior, which is home to more than 500 exotic plants and flowers, and 100 exotic birds, aligning with citywide debates such as Vancouver’s reversal on gas appliances policy. It is the biggest heat pump the City of Vancouver has ever installed, with 210 tonnes of cooling capacity.

A heat pump that provides cooling in the summer and heating in the winter, helping reduce reliance on wasteful air conditioning that can drive up energy bills, is ideal for the conservatory, as its dome is completely made of glass, which can be challenging for temperature regulation. While the dome experiences a lot of heat loss in the colder months, its need for cooling in warmer weather is even greater to ensure the safety of the wildlife and plants that call it home.

The clean energy upgrades do not end there though. All lighting in the building has been upgraded to energy-efficient LEDs, reflecting conservation themes highlighted by 2018 Earth Hour electricity use discussions, and outside colour-changing LEDs now surround the perimeter and light up the dome at night.

BC Hydro is calling for nominations from B.C. residents, businesses, municipalities or Indigenous and community groups that have taken steps to lower their carbon footprint and adopt new clean energy technologies, and continues to support customers through programs like its winter payment plan during colder months. If you or someone you know is a Clean Energy Champion, nominate them at bchydro.com/cleanenergychampions.

 

Related News

View more

Salmon and electricity at center of Columbia River treaty negotiations

Columbia River Treaty Negotiations involve Canada-U.S. talks on B.C. dams, flood control, hydropower sharing, and downstream benefits, prioritizing ecosystem health, First Nations rights, and salmon restoration while balancing affordable electricity for northwest consumers.

 

Key Points

Talks to update flood control, hydropower, and ecosystem terms for fair benefits to B.C. and U.S. communities.

✅ Public consultations across B.C.'s Columbia Basin

✅ First Nations priorities include salmon restoration

✅ U.S. seeks cheaper power; B.C. defends downstream benefits

 

With talks underway between Canada and the U.S. on the future of the Columbia River Treaty, the B.C. New Democrats have launched public consultations in the region most affected by the high-stakes negotiation.

“We want to ensure Columbia basin communities are consulted, kept informed and have their voices heard,” said provincial cabinet minister Katrine Conroy via a press release announcing meetings this month in Castlegar, Golden, Revelstoke, Nakusp, Nelson and other communities.

As well as having cabinet responsibility for the talks, Conroy’s Kootenay West riding includes several places that were inundated under the terms of the 1964 flood control and power generation treaty.

“We will continue to work closely with First Nations affected by the treaty, to ensure Indigenous interests are reflected in the negotiations,” she added by way of consolation to Indigenous people who’ve been excluded from the negotiating teams on both sides of the border.

#google#

The stakes are also significant for the province as a whole. The basics of the treaty saw B.C. build dams to store water on this side of the border, easing the flood risk in the U.S. and allowing the flow to be evened out through the year. In exchange, B.C. was entitled to a share of the additional hydro power that could be generated in dams on the U.S. side.

B.C.’s sale of those downstream benefits to the U.S has poured almost $1.4 billion into provincial coffers over the past 10 years, albeit at a declining rate these days amid scrutiny from a regulator report on BC Hydro that raised concerns, because of depressed prices for cross-border electricity sales.

Politicians on the U.S. side have long sought to reopen the treaty, believing there was now a case for reducing B.C.’s entitlement.

They did not get across the threshold under President Barack Obama.

Then, last fall his successor Donald Trump served notice of intent, initiating the formal negotiations that commenced with a two day session last week in Washington, D.C. The next round is set for mid-August in B.C.

American objectives in the talks include “continued, careful management of flood risk; ensuring a reliable and economical power supply; and better addressing ecosystem concerns,” with recognition of recent BC Hydro demand declines during the pandemic.

“Economical power supply,” being a diplomatic euphemism for “cheaper electricity for consumers in the northwest states,” achievable by clawing back most of B.C.’s treaty entitlement.

On taking office last summer, the NDP inherited a 14-point statement of principles setting out B.C. hopes for negotiations to “continue the treaty” while “seeking improvements within the existing framework” of the 54-year-old agreement.

The New Democrats have endorsed those principles in a spirit of bipartisanship, even as Manitoba Hydro governance disputes play out elsewhere in Canada.

“Those principles were developed with consultation from throughout the region,” as Conroy advised the legislature this spring. “So I was involved, as well, in the process and knew what the issues were, right as they would come up.”

The New Democrats did chose to put additional emphasis on some concerns.

“There is an increase in discussion with Canada and First Nations on the return of salmon to the river,” she advised the house, recalling how construction of the enormous Grand Coulee Dam on the U.S. side in the 1930s wiped out salmon runs on the upper Columbia River.

“There was no consideration then for how incredibly important salmon was, especially to the First Nations people in our region. We have an advisory table that is made up of Indigenous representation from our region, and also we are discussing with Canada that we need to see if there’s feasibility here.”

As to feasibility, the obstacles to salmon migration in the upper reaches of the Columbia include the 168-metre high Grand Coulee and the 72-metre Chief Joseph dams on the U.S. side, plus the Keenleyside (52 metres), Revelstoke (175 metres) and Mica (240 metres) dams on the Canadian side.

Still, says Conroy “the First Nations from Canada and the tribes from the United States, have been working on scientific and technical documents and research to see if, first of all, the salmon can come up, how they can come up, and what the things are that have to be done to ensure that happens.”

The New Democrats also put more emphasis on preserving the ecosystem, aligning with clean-energy efforts with First Nations that support regional sustainability.

“I know that certainly didn’t happen in 1964, but that is something that’s very much on the minds of people in the Columbia basin,” said Conroy. “If we are going to tweak the treaty, what can we do to make sure the voices of the basin are heard and that things that were under no consideration in the ’60s are now a topic for consideration?”

With those new considerations, there’s still the status quo concern of preserving the downstream benefits as a trade off for the flooding and other impacts on this side of the border.

The B.C. position on that score is the same under the New Democrats as it was under the Liberals, despite a B.C. auditor general report on deferred BC Hydro costs.

“The level of benefits to B.C., which is currently solely in the form of the (electricity) entitlement, does not account for the full range of benefits in the U.S. or the impacts in B.C.,” says the statement of principle.

“All downstream U.S. benefits such as flood risk management, hydropower, ecosystems, water supply (including municipal, industrial and agricultural uses), recreation, navigation and other related benefits should be accounted for and such value created should be shared equitably between the two countries.”

No surprise if the Americans do not see it the same way.  But that is a topic for another day.

 

Related News

View more

Experts Advise Against Cutting Quebec's Energy Exports Amid U.S. Tariff War

Quebec Hydropower Export Retaliation examines using electricity exports to counter U.S. tariffs amid Canada-U.S. trade tensions, weighing clean energy supply, grid reliability, energy security, legal risks, and long-term market impacts.

 

Key Points

Using Quebec electricity exports as leverage against U.S. tariffs, and its economic, legal, and diplomatic consequences.

✅ Revenue loss for Quebec and higher costs for U.S. consumers

✅ Risk of legal disputes under trade and energy agreements

✅ Long-term erosion of market share and grid cooperation

 

As trade tensions between Canada and the United States continue to escalate, with electricity exports at risk according to recent reporting, discussions have intensified around potential Canadian responses to the imposition of U.S. tariffs. One of the proposals gaining attention is the idea of reducing or even halting the export of energy from Quebec to the U.S. This measure has been suggested by some as a potential countermeasure to retaliate against the tariffs. However, experts and industry leaders are urging caution, emphasizing that the consequences of such a decision could have significant economic and diplomatic repercussions for both Canada and the United States.

Quebec plays a critical role in energy trade, particularly in supplying hydroelectric power to the United States, especially to the northeastern states, including New York where tariffs may spike energy prices according to analysts, strengthening the case for stable cross-border flows. This energy trade is deeply embedded in the economic fabric of both regions. For Quebec, the export of hydroelectric power represents a crucial source of revenue, while for the U.S., it provides access to a steady and reliable supply of clean, renewable energy. This mutually beneficial relationship has been a cornerstone of trade between the two countries, promoting economic stability and environmental sustainability.

In the wake of recent U.S. tariffs on Canadian goods, some policymakers have considered using energy exports as leverage, echoing threats to cut U.S. electricity exports in earlier disputes, to retaliate against what is viewed as an unfair trade practice. The idea is to reduce or stop the flow of electricity to the U.S. as a way to strike back at the tariffs and potentially force a change in U.S. policy. On the surface, this approach may appear to offer a viable means of exerting pressure. However, experts warn that such a move would be fraught with significant risks, both economically and diplomatically.

First and foremost, Quebec's economy is heavily reliant on revenue from hydroelectric exports to the U.S. Any reduction in these energy sales could have serious consequences for the province's economic stability, potentially resulting in job losses and a decrease in investment. The hydroelectric power sector is a major contributor to Quebec's GDP, and recent events, including a tariff threat delaying a green energy bill in Quebec, illustrate how trade tensions can ripple through the policy landscape, while disrupting this source of income could harm the provincial economy.

Additionally, experts caution that reducing energy exports could have long-term ramifications on the energy relationship between Quebec and the northeastern U.S. These two regions have developed a strong and interconnected energy network over the years, and abruptly cutting off the flow of electricity could damage this vital partnership. Legal challenges could arise under existing trade agreements, and even as tariff threats boost support for Canadian energy projects among some stakeholders, the situation would grow more complex. Such a move could also undermine trust between the two parties, making future negotiations on energy and other trade issues more difficult.

Another potential consequence of halting energy exports is that U.S. states may seek alternative sources of energy, diminishing Quebec's market share in the long run. As the U.S. has a growing demand for clean energy, especially as it looks to transition away from fossil fuels, and looks to Canada for green power in several regions, cutting off Quebec’s electricity could prompt U.S. states to invest in other forms of energy, including renewables or even nuclear power. This could have a lasting effect on Quebec's position in the U.S. energy market, making it harder for the province to regain its footing.

Moreover, reducing or ceasing energy exports could further exacerbate trade tensions, leading to even greater economic instability. The U.S. could retaliate by imposing additional tariffs on Canadian goods or taking other measures that would negatively impact Canada's economy. This could create a cycle of escalating trade barriers that would hurt both countries and undermine the broader North American trade relationship.

While the concept of using energy exports as a retaliatory tool may seem appealing to some, the experts' advice is clear: the potential economic and diplomatic costs of such a strategy outweigh the short-term benefits. Quebec’s role as an energy supplier to the U.S. is crucial to its own economy, and maintaining a stable, reliable energy trade relationship is essential for both parties. Rather than escalating tensions further, it may be more prudent for Canada and the U.S. to seek diplomatic solutions that preserve trade relations and minimize harm to their economies.

While the idea of using Quebec’s energy exports as leverage in response to U.S. tariffs may appear attractive on the surface, and despite polls showing support for tariffs on energy and minerals among Canadians, it carries significant risks. Experts emphasize the importance of maintaining a stable energy export strategy to protect Quebec’s economy and preserve positive diplomatic relations with the U.S. Both countries have much to lose from further escalating trade tensions, and a more measured approach is likely to yield better outcomes in the long run.

 

Related News

View more

Alberta Carbon tax is gone, but consumer price cap on electricity will remain

Alberta Electricity Rate Cap stays despite carbon tax repeal, keeping the Regulated Rate Option at 6.8 cents/kWh. Levy funds cover market gaps as the UCP reviews NDP policies to maintain affordable utility bills.

 

Key Points

Program capping RRO power at 6.8 cents/kWh, using levy funds to offset market prices while the UCP reviews policy.

✅ RRO cap fixed at 6.8 cents/kWh for eligible customers

✅ Levy funds pay generators when market prices exceed the cap

✅ UCP reviewing NDP policies to ensure affordable rates

 

Alberta's carbon tax has been cancelled, but a consumer price cap on electricity — which the levy pays for — is staying in place for now.

June electricity rates are due out on Monday, about four days after the new UCP government did away with the carbon charge on natural gas and vehicle fuel.

Part of the levy's revenue was earmarked by the previous NDP government to keep power prices at or below 6.8 cents per kilowatt hour under new electricity rules set by the province.

"The Regulated Rate Option cap of 6.8 cents/kWh was implemented by the previous government and currently remains in effect. We are reviewing all policies put in place by the former government and will make decisions that ensure more affordable electricity rates for job-creators and Albertans," said a spokesperson for Alberta's energy ministry in an emailed statement.

Albertans with regulated rate contracts and all City of Medicine Hat utility customers only pay that amount or less, though some Alberta ratepayers have faced deferral-related arrears.

If the actual market price rises above that, the difference is paid to generators directly from levy funds, a buffer that matters as experts warn prices are set to soar later this year.

The government has paid more than $55 million to utilities over the past year ending in March 2019, due to that electricity price cap being in place.

Alberta Energy says the price gap program will continue, at least for the time being, amid electricity policy changes being considered.

 

Related News

View more

Carbon capture: How can we remove CO2 from the atmosphere?

CO2 Removal Technologies address climate change via negative emissions, including carbon capture, reforestation, soil carbon, biochar, BECCS, DAC, and mineralization, helping meet Paris Agreement targets while managing costs, land use, and infrastructure demands.

 

Key Points

Methods to extract or sequester atmospheric CO2, combining natural and engineered approaches to limit warming.

✅ Includes reforestation, soil carbon, biochar, BECCS, DAC, mineralization

✅ Balances climate goals with costs, land, energy, and infrastructure

✅ Key to Paris Agreement targets under 1.5-2.0 °C warming

 

The world is, on average, 1.1 degrees Celsius warmer today than it was in 1850. If this trend continues, our planet will be 2 – 3 degrees hotter by the end of this century, according to the Intergovernmental Panel on Climate Change (IPCC).

The main reason for this temperature rise is higher levels of atmospheric carbon dioxide, which cause the atmosphere to trap heat radiating from the Earth into space. Since 1850, the proportion of CO2 in the air has increased, with record greenhouse gas concentrations documented, from 0.029% to 0.041% (288 ppm to 414 ppm).

This is directly related to the burning of coal, oil and gas, which were created from forests, plankton and plants over millions of years. Back then, they stored CO2 and kept it out of the atmosphere, but as fossil fuels are burned, that CO2 is released. Other contributing factors include industrialized agriculture and slash-and-burn land clearing techniques, and emissions from SF6 in electrical equipment are also concerning today.

Over the past 50 years, more than 1200 billion tons of CO2 have been emitted into the planet's atmosphere — 36.6 billion tons in 2018 alone, though global emissions flatlined in 2019 before rising again. As a result, the global average temperature has risen by 0.8 degrees in just half a century.


Atmospheric CO2 should remain at a minimum
In 2015, the world came together to sign the Paris Climate Agreement which set the goal of limiting global temperature rise to well below 2 degrees — 1.5 degrees, if possible.

The agreement limits the amount of CO2 that can be released into the atmosphere, providing a benchmark for the global energy transition now underway. According to the IPCC, if a maximum of around 300 billion tons were emitted, there would be a 50% chance of limiting global temperature rise to 1.5 degrees. If CO2 emissions remain the same, however, the CO2 'budget' would be used up in just seven years.

According to the IPCC's report on the 1.5 degree target, negative emissions are also necessary to achieve the climate targets.


Using reforestation to remove CO2
One planned measure to stop too much CO2 from being released into the atmosphere is reforestation. According to studies, 3.6 billion tons of CO2 — around 10% of current CO2 emissions — could be saved every year during the growth phase. However, a study by researchers at the Swiss Federal Institute of Technology, ETH Zurich, stresses that achieving this would require the use of land areas equivalent in size to the entire US.

Young trees at a reforestation project in Africa (picture-alliance/OKAPIA KG, Germany)
Reforestation has potential to tackle the climate crisis by capturing CO2. But it would require a large amount of space


More humus in the soil
Humus in the soil stores a lot of carbon. But this is being released through the industrialization of agriculture. The amount of humus in the soil can be increased by using catch crops and plants with deep roots as well as by working harvest remnants back into the ground and avoiding deep plowing. According to a study by the German Institute for International and Security Affairs (SWP) on using targeted CO2 extraction as a part of EU climate policy, between two and five billion tons of CO2 could be saved with a global build-up of humus reserves.


Biochar shows promise
Some scientists see biochar as a promising technology for keeping CO2 out of the atmosphere. Biochar is created when organic material is heated and pressurized in a zero or very low-oxygen environment. In powdered form, the biochar is then spread on arable land where it acts as a fertilizer. This also increases the amount of carbon content in the soil. According to the same study from the SWP, global application of this technology could save between 0.5 and two billion tons of CO2 every year.


Storing CO2 in the ground
Storing CO2 deep in the Earth is already well-known and practiced on Norway's oil fields, for example. However, the process is still controversial, as storing CO2 underground can lead to earthquakes and leakage in the long-term. A different method is currently being practiced in Iceland, in which CO2 is sequestered into porous basalt rock to be mineralized into stone. Both methods still require more research, however, with new DOE funding supporting carbon capture, utilization, and storage.

Capturing CO2 to be held underground is done by using chemical processes which effectively extract the gas from the ambient air, and some researchers are exploring CO2-to-electricity concepts for utilization. This method is known as direct air capture (DAC) and is already practiced in other parts of Europe.  As there is no limit to the amount of CO2 that can be captured, it is considered to have great potential. However, the main disadvantage is the cost — currently around €550 ($650) per ton. Some scientists believe that mass production of DAC systems could bring prices down to €50 per ton by 2050. It is already considered a key technology for future climate protection.

The inside of a carbon capture facility in the Netherlands (RWE AG)
Carbon capture facilities are still very expensive and take up a huge amount of space

Another way of extracting CO2 from the air is via biomass. Plants grow and are burned in a power plant to produce electricity. CO2 is then extracted from the exhaust gas of the power plant and stored deep in the Earth, with new U.S. power plant rules poised to test such carbon capture approaches.

The big problem with this technology, known as bio-energy carbon capture and storage (BECCS) is the huge amount of space required. According to Felix Creutzig from the Mercator Institute on Global Commons and Climate Change (MCC) in Berlin, it will therefore only play "a minor role" in CO2 removal technologies.


CO2 bound by rock minerals
In this process, carbonate and silicate rocks are mined, ground and scattered on agricultural land or on the surface water of the ocean, where they collect CO2 over a period of years. According to researchers, by the middle of this century it would be possible to capture two to four billion tons of CO2 every year using this technique. The main challenges are primarily the quantities of stone required, and building the necessary infrastructure. Concrete plans have not yet been researched.


Not an option: Fertilizing the sea with iron
The idea is use iron to fertilize the ocean, thereby increasing its nuturient content, which would allow plankton to grow stronger and capture more CO2. However, both the process and possible side effects are very controversial. "This is rarely treated as a serious option in research," concludes SWP study authors Oliver Geden and Felix Schenuit.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.