Wrong time to load carbon prices onto power costs

By New Zealand Herald


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
It is not a good time to be an electricity consumer, especially when households are struggling to make ends meet in today's tough economic environment.

The Commerce Commission inquiry into the electricity generation market concluded that households paid 10 per cent more than they would have if the market had been truly competitive over 2001 to 2007. That amounts to an extra $181 a year householders paid that could have stayed in their pockets.

On top of this, unless the government moves quickly to suspend the emissions trading legislation, business and consumers can expect significant price increases for their electricity as a result of electricity generators having to pay for carbon units in less than six months' time, when the act takes effect.

If carbon prices are around $25 a tonne, households will need to find an extra $160 a year, which is a 9 per cent increase in prices.

If carbon prices go back up to $50 a tonne, which is quite conceivable with prices set by the volatile international carbon markets, householders are looking at an extra $300 plus per year.

This price effect will hit from January 1 next year, unless the Government acts soon to suspend the entry into the scheme of the stationary energy and industrial process sectors.

There is a good case for doing so. Australia has put the introduction of its emissions trading scheme back to 2011 in view of the tough economic times. And even though the Rudd government has softened the impact of its proposed scheme considerably, it does not look like it will get the political support it needs to pass it into law.

It is quite conceivable they will not put a price on carbon before 2012, which is also the emerging trend in the U.S., Canada and Japan. While many of these countries' governments are making noises that are full of good intentions, tough economic times mean making energy more expensive is no longer getting popular political support.

In New Zealand, there is a select committee review of the emissions trading scheme legislation under way, due to widespread concern that the current scheme will undermine the competitiveness of New Zealand firms and worsen unemployment unless it is changed significantly.

The review is running two to three months behind schedule and, while the select committee deliberate (read disagree) on their report to Parliament, the ETS Act remains in force and will increase electricity prices soon unless the Government takes action to suspend it.

Suspension of the act is a good option, as it would allow the time to hold a proper consultation with stakeholders on how the act should be changed to better balance the environmental goal with the economic reality we are all living with right now.

Increasing prices in the electricity sector due to carbon charges result in millions of dollars of windfall profits for renewable electricity generators (which supply 60-70 per cent of our electricity), because they can increase their prices to just below the price of fossil-fuelled electricity, which will include the extra cost of having to pay for carbon units.

It is hard to see why we are shooting ourselves in the foot over electricity, when we are already world leaders in renewable electricity generation. Emissions from electricity generation only contributes 11 per cent to the country's greenhouse gas emissions, which is a standout performance compared to most other countries.

The fact of the matter is, no other country in the world has attempted an all-sectors, all-gases emissions trading scheme, largely due to the cost increases that will be the end result.

The proposed Australian scheme (if it ever gets off the ground) covers around 75 per cent of emissions and it is not certain that agriculture will ever be included. The European ETS only includes large industrials, which amount to about 40 per cent of emissions, and they do not include liquid fuels (oil, petrol, and diesel) yet.

New Zealand needs a policy approach which is in step with our major trading competitors, not out in front of them.

If we don't suspend the operation of the scheme in New Zealand to fix the flaws and get our timing in sync with large trade competitors, we might achieve emission reductions but the cost will be high, because it will come about from reduced economic activity which will lead to increased unemployment.

Related News

Barakah Unit 1 reaches 100% power as it steps closer to commercial operations, due to begin early 2021

Barakah Unit 1 100 Percent Power signals the APR-1400 reactor delivering 1400MW of clean baseload electricity to the UAE grid, advancing decarbonisation, reliability, and Power Ascension Testing milestones ahead of commercial operations in early 2021.

 

Key Points

The milestone where Unit 1 reaches full 1400MW output to the UAE grid, providing clean, reliable baseload electricity.

✅ Delivers 1400MW from a single generator to the UAE grid

✅ Enables clean, reliable baseload power with zero operational emissions

✅ Completes key Power Ascension Testing before commercial operations

 

The Emirates Nuclear Energy Corporation, ENEC, has announced that its operating and maintenance subsidiary, Nawah Energy Company, Nawah, has successfully achieved 100% of the rated reactor power capacity for Unit 1 of the Barakah Nuclear Energy Plant. This major milestone, seen as a crucial step in Abu Dhabi towards completion, brings the Barakah plant one step closer to commencing commercial operations, scheduled in early 2021.

100% power means that Unit 1 is generating 1400MW of electricity from a single generator connected to the UAE grid for distribution. This milestone makes the Unit 1 generator the largest single source of electricity in the UAE.

The Barakah Nuclear Energy Plant is the largest source of clean baseload electricity in the country, capable of providing constant and reliable power in a sustainable manner around the clock. This significant achievement accelerates the decarbonisation of the UAE power sector, while also supporting the diversification of the Nation’s energy portfolio as it transitions to cleaner electricity sources, similar to the steady development in China of nuclear energy programs now underway.

The accomplishment follows shortly after the UAE’s celebration of its 49th National Day, providing a strong example of the country’s progress as it continues to advance towards a sustainable, clean, secure and prosperous future, having made the UAE the first Arab nation to open a nuclear plant as it charts this path. As the Nation looks towards the next 50 years of achievements, the Barakah plant will generate up to 25 percent of the country’s electricity, while also acting as a catalyst of the clean carbon future of the Nation.

Mohamed Ibrahim Al Hammadi, Chief Executive Officer of ENEC said: "We are proud to deliver on our commitment to power the growth of the UAE with safe, clean and abundant electricity. Unit 1 marks a new era for the power sector and the future of the clean carbon economy of the Nation, with the largest source of electricity now being generated without any emissions. I am proud of our talented UAE Nationals, working alongside international experts who are working to deliver this clean electricity to the Nation, in line with the highest standards of safety, security and quality." Nawah is responsible for operating Unit 1 and has been responsible for safely and steadily raising the power levels since it commenced the start-up process in July, and connection to the grid in August.

Achieving 100% power is one of the final steps of the Power Ascension Testing (PAT) phase of the start-up process for Unit 1. Nawah’s highly skilled and certified nuclear operators will carry out a series of tests before the reactor is safely shut down in preparation for the Check Outage. During this period, the Unit 1 systems will be carefully examined, and any planned or corrective maintenance will be performed to maintain its safety, reliability and efficiency prior to the commencement of commercial operations.

Ali Al Hammadi, Chief Executive Officer of Nawah, said: "This is a key achievement for the UAE, as we safely work through the start-up process for Unit 1 of the Barakah plant. Successfully reaching 100% of the rated power capacity in a safe and controlled manner, undertaken by our highly trained and certified nuclear operators, demonstrates our commitment to safe, secure and sustainable operations as we now advance towards our final maintenance activities and prepare for commercial operations in 2021." The Power Ascension Testing of Unit 1 is overseen by the independent national regulator – the Federal Authority for Nuclear Regulation (FANR), which has conducted 287 inspections since the start of Barakah’s development. These independent reviews have been conducted alongside more than 40 assessments and peer reviews by the International Atomic Energy Agency, IAEA, and World Association of Nuclear Operators, WANO, reflecting milestones at nuclear projects worldwide that benchmark safety and performance.

This is an important milestone for the commercial performance of the Barakah plant. Barakah One Company, ENEC’s subsidiary in charge of the financial and commercial activities of the Barakah project signed a Power Purchase Agreement, PPA, with the Emirates Water and Electricity Company, EWEC, in 2016 to purchase all of the electricity generated at the plant for the next 60 years. Electricity produced at Barakah feeds into the national grid in the same manner as other power plants, flowing to homes and business across the country.

This milestone has been safely achieved despite the challenges of COVID-19. Since the beginning of the global pandemic, ENEC, and subsidiaries Nawah and Barakah One Company, along with companies that form Team Korea, including Korea Hydro & Nuclear Power, with KHNP’s work in Bulgaria illustrating its global role, have worked closely together, in line with all national and local health authority guidelines, to ensure the highest standards for health and safety are maintained for those working on the project. ENEC and Nawah’s robust business continuity plans were activated, alongside comprehensive COVID-19 prevention and management measures, including access control, rigorous testing, and waste water sampling, to support health and wellbeing.

The Barakah Nuclear Energy Plant, located in the Al Dhafra region of the Emirate of Abu Dhabi, is one of the largest nuclear energy new build projects in the world, with four APR-1400 units. Construction of the plant began in 2012 and has progressed steadily ever since. Construction of Units 3 and 4 are in the final stages with 93 percent and 87 percent complete respectively, benefitting from the experience and lessons learned during the construction of Units 1 and 2, while the construction of the Barakah Plant as a whole is now more than 95 percent complete.

Once the four reactors are online, Barakah Plant will deliver clean, efficient and reliable electricity to the UAE grid for decades to come, providing around 25 percent of the country’s electricity and, as other nations like Bangladesh expand with IAEA assistance, reinforcing global decarbonisation efforts, preventing the release of up to 21 million tons of carbon emissions annually – the equivalent of removing 3.2 million cars off the roads each year.

 

Related News

View more

Was there another reason for electricity shutdowns in California?

PG&E Wind Shutdown and Renewable Reliability examines PSPS strategy, wildfire risk, transmission line exposure, wind turbine cut-out speeds, grid stability, and California's energy mix amid historic high-wind events and supply constraints across service areas.

 

Key Points

An overview of PG&E's PSPS decisions, wildfire mitigation, and how wind cut-out limits influence grid reliability.

✅ Wind turbines reach cut-out near 55 mph, reducing generation.

✅ PSPS mitigates ignition from damaged transmission infrastructure.

✅ Baseload diversity improves resilience during high-wind events.

 

According to the official, widely reported story, Pacific Gas & Electric (PG&E) initiated power shutoffs across substantial portions of its electric transmission system in northern California as a precautionary measure.

Citing high wind speeds they described as “historic,” the utility claims that if it didn’t turn off the grid, wind-caused damage to its infrastructure could start more wildfires.

Perhaps that’s true. Perhaps. This tale presumes that the folks who designed and maintain PG&E’s transmission system are unaware of or ignored the need to design it to withstand severe weather events, and that the Federal Energy Regulatory Commission (FERC) and North American Electric Reliability Corp. (NERC) allowed the utility to do so.

Ignorance and incompetence happens, to be sure, but there’s much about this story that doesn’t smell right—and it’s disappointing that most journalists and elected officials are apparently accepting it without question.

Take, for example, this statement from a Fox News story about the Kincade Fires: “A PG&E meteorologist said it’s ‘likely that many trees will fall, branches will break,’ which could damage utility infrastructure and start a fire.”

Did you ever notice how utilities cut wide swaths of trees away when transmission lines pass through forests? There’s a reason for that: When trees fall and branches break, the grid can still function, and even as the electric rhythms of New York City shifted during COVID-19, operators planned for variability.

So, if badly designed and poorly maintained infrastructure isn’t the reason PG&E cut power to millions of Californians, what might have prompted them to do so? Could it be that PG&E’s heavy reliance on renewable energy means they don’t have the power to send when a “historic” weather event occurs, especially as policymakers weigh the postponed closure of three power plants elsewhere in California?

 

Wind Speed Limits

The two most popular forms of renewable energy come with operating limitations, which is why some energy leaders urge us to keep electricity options open when planning the grid. With solar power, the constraint is obvious: the availability of sunlight. One doesn’t generate solar power at night and energy generation drops off with increasing degrees of cloud cover during the day.

The main operating constraint of wind power is, of course, wind speed, and even in markets undergoing 'transformative change' in wind generation, operators adhere to these technical limits. At the low end of the scale, you need about a 6 or 7 miles-per-hour wind to get a turbine moving. This is called the “cut-in speed.” To generate maximum power, about a 30 mph wind is typically required. But, if the wind speed is too high, the wind turbine will shut down. This is called the “cut-out speed,” and it’s about 55 miles per hour for most modern wind turbines.

It may seem odd that wind turbines have a cut-out speed, but there’s a very good reason for it. Each wind turbine rotor is connected to an electric generator housed in the turbine nacelle. The connection is made through a gearbox that is sized to turn the generator at the precise speed required to produce 60 Hertz AC power.

The blades of the wind turbine are airfoils, just like the wings of an airplane. Adjusting the pitch (angle) of the blades allows the rotor to maintain constant speed, which, in turn, allows the generator to maintain the constant speed it needs to safely deliver power to the grid. However, there’s a limit to blade pitch adjustment. When the wind is blowing so hard that pitch adjustment is no longer possible, the turbine shuts down. That’s the cut-out speed.

Now consider how California’s power generation profile has changed. According to Energy Information Administration data, the state generated 74.3 percent of its electricity from traditional sources—fossil fuels and nuclear, amid debates over whether to classify nuclear as renewable—in 2001. Hydroelectric, geothermal, and biomass-generated power accounted for most of the remaining 25.7 percent, with wind and solar providing only 1.98 percent of the total.

By 2018, the state’s renewable portfolio had jumped to 43.8 percent of total generation, with clean power increasing and wind and solar now accounting for 17.9 percent of total generation. That’s a lot of power to depend on from inherently unreliable sources. Thus, it wouldn’t be at all surprising to learn that PG&E didn’t stop delivering power out of fear of starting fires, but because it knew it wouldn’t have power to deliver once high winds shut down all those wind turbines

 

Related News

View more

18% of electricity generated in Canada in 2019 came from fossil fuels

EV Decarbonization Strategy weighs life-cycle emissions and climate targets, highlighting mode shift to public transit, cycling, and walking, grid decarbonization, renewable energy, and charging infrastructure to cut greenhouse gases while reducing private car dependence.

 

Key Points

A plan to cut transport emissions by pairing EV adoption with mode shift, clean power, and less private car use.

✅ Prioritize mode shift: transit, cycling, and walking.

✅ Electrify remaining vehicles with clean, renewable power.

✅ Expand charging, improve batteries, and manage critical minerals.

 

California recently announced that it plans to ban the sales of gas-powered vehicles by 2035, a move similar to a 2035 electric vehicle mandate seen elsewhere, Ontario has invested $500 million in the production of electric vehicles (EVs) and Tesla is quickly becoming the world's highest-valued car company.

It almost seems like owning an electric vehicle is a silver bullet in the fight against climate change, but it isn't, as a U of T study explains today. What we should also be focused on is whether anyone should use a private vehicle at all.
 
As a researcher in sustainable mobility, I know this answer is unsatisfying. But this is where my latest research has led.

Battery EVs, such as the Tesla Model 3 - the best selling EV in Canada in 2020 - have no tailpipe emissions. But they do have higher production and manufacturing emissions than conventional vehicles, and often run on electricity that comes from fossil fuels.

Almost 18 per cent of the electricity generated in Canada came from fossil fuels in 2019, and even as Canada's EV goals grow more ambitious today, the grid mix varies from zero in Quebec to 90 per cent in Alberta.
 
Researchers like me compare the greenhouse gas emissions of an alternative vehicle, such as an EV, with those of a conventional vehicle over a vehicle lifetime, an exercise known as a life-cycle assessment. For example, a Tesla Model 3 compared with a Toyota Corolla can provide up to 75 per cent reduction in greenhouse gases emitted per kilometre travelled in Quebec, but no reductions in Alberta.

 

Hundreds of millions of new cars

To avoid extreme and irreversible impacts on ecosystems, communities and the overall global economy, we must keep the increase in global average temperatures to less than 2 C - and ideally 1.5 C - above pre-industrial levels by the year 2100.

We can translate these climate change targets into actionable plans. First, we estimate greenhouse gas emissions budgets using energy and climate models for each sector of the economy and for each country. Then we simulate future emissions, taking alternative technologies into account, as well as future potential economic and societal developments.

I looked at the U.S. passenger vehicle fleet, which adds up to about 260 million vehicles, while noting the potential for Canada-U.S. collaboration in this transition, to answer a simple question: Could the greenhouse gas emissions from the sector be brought in line with climate targets by replacing gasoline-powered vehicles with EVs?

The results were shocking. Assuming no changes to travel behaviours and a decarbonization of 80 per cent of electricity, meeting a 2 C target could require up to 300 million EVs, or 90 per cent of the projected U.S. fleet, by 2050. That would require all new purchased vehicles to be electric from 2035 onwards.

To put that into perspective, there are currently 880,000 EVs in the U.S., or 0.3 per cent of the fleet. Even the most optimistic projections, despite hype about an electric-car revolution gaining steam, from the International Energy Agency suggest that the U.S. fleet will only be at about 50 per cent electrified by 2050.

 

Massive and rapid electrification

Still, 90 per cent is theoretically possible, isn't it? Probably, but is it desirable?

In order to hit that target, we'd need to very rapidly overcome all the challenges associated with EV adoption, such as range anxiety, the higher purchase cost and availability of charging infrastructure.
 
A rapid pace of electrification would severely challenge the electricity infrastructure and the supply chain of many critical materials for the batteries, such as lithium, manganese and cobalt. It would require vast capacity of renewable energy sources and transmission lines, widespread charging infrastructure, a co-ordination between two historically distinct sectors (electricity and transportation systems) and rapid innovations in electric battery technologies. I am not saying it's impossible, but I believe it's unlikely.

Read more: There aren't enough batteries to electrify all cars - focus on trucks and buses instead

So what? Shall we give up, accept our collective fate and stop our efforts at electrification?

On the contrary, I think we should re-examine our priorities and dare to ask an even more critical question: Do we need that many vehicles on the road?

 

Buses, trains and bikes

Simply put, there are three ways to reduce greenhouse gas emissions from passenger transport: avoid the need to travel, shift the transportation modes or improve the technologies. EVs only tackle one side of the problem, the technological one.

And while EVs do decrease emissions compared with conventional vehicles, we should be comparing them to buses, including leading electric bus fleets in North America, trains and bikes. When we do, their potential to reduce greenhouse gas emissions disappears because of their life cycle emissions and the limited number of people they carry at one time.

If we truly want to solve our climate problems, we need to deploy EVs along with other measures, such as public transit and active mobility. This fact is critical, especially given the recent decreases in public transit ridership in the U.S., mostly due to increasing vehicle ownership, low gasoline prices and the advent of ride-hailing (Uber, Lyft)

Governments need to massively invest in public transit, cycling and walking infrastructure to make them larger, safer and more reliable, rather than expanding EV subsidies alone. And we need to reassess our transportation needs and priorities.

The road to decarbonization is long and winding. But if we are willing to get out of our cars and take a shortcut through the forest, we might get there a lot faster.

Author: Alexandre Milovanoff - Postdoctoral Researcher, Environmental Engineering, University of Toronto The Conversation

 

Related News

View more

Ontario Government Consults On Changes To Industrial Electricity Pricing And Programs

Ontario electricity pricing consultations will gather business input on OEB rate design, Industrial Conservation Initiative, dynamic pricing, global adjustment, and system costs through online feedback and sector-specific in-person sessions province-wide.

 

Key Points

Consultations gathering business input on rates, programs, and OEB policy to improve fairness and reduce system costs.

✅ Consults on ICI, GA, dynamic pricing structures

✅ Seeks views on OEB C&I rate design changes

✅ In-person sessions across key industrial sectors

 

The Ontario government has announced plans to hold consultations to seek input from businesses about industrial electricity pricing and programs. This will be done through Ontario's online consultations directory and though in-person sector-specific consultation sessions across the province. The in-person sessions will be held in all areas of Ontario, and will target "key industries," including automotive and the build-out of electric vehicle charging stations infrastructure, forestry, mining, agriculture, steel, manufacturing and chemicals.

On April 1, 2019, the Ontario government published a consultation notice for this process, confirming that it is looking for input on "electricity rate design, existing tax-based incentives, reducing system costs and regulatory and delivery costs," including related proposals such as the hydrogen rate reduction proposal under discussion. The consultation process includes a list of nine questions for respondents (and presumably participants in the in-person sessions) to address. These include questions about:

The benefits of the Industrial Conservation Initiative (described below), including how it could be changed to improve fairness and industrial competitiveness, and how it could complement programs like the Hydrogen Innovation Fund that support industrial innovation.

Dynamic pricing structures that allow for lower rates in return for responding to price signals versus a flat rate structure that potentially costs more, but is more stable and predictable, as Ontario's energy storage expansion accelerates.

Interest in an all-in commodity contract with an electricity retailer, even if it involves a risk premium.

Interested parties are invited to submit their comments before May 31, 2019.

The government's consultation announcement follows recent developments in the Ontario Energy Board's (OEB) review of electricity ratemaking for commercial and industrial customers, and intertie projects such as the Lake Erie Connector that could affect market dynamics.

In December 2018, the OEB published a paper from its Market Surveillance Panel (MSP) examining the Industrial Conservation Initiative (ICI), and potential alternative approaches. The ICI is a program that allows qualifying large industrial customers to base their global adjustment (GA) payments on their consumption during five peak demand hours in a year. Customers who find ways to reduce consumption at those times, perhaps through DERs and enabling energy storage options, will reduce their electricity costs. This shifts GA costs to other customers. The MSP found that the ICI does not fairly allocate costs to those who cause them and/or benefit from them, and recommends that a better approach should be developed.

In February 2019, the OEB released its Staff Report to the Board on Rate Design for Commercial and Industrial Electricity Customers, setting out recommendations for new rate designs for electricity commercial and industrial (C&I) rate classes as Ontario increasingly turns to battery storage to meet rising demand. As described in an earlier post, the Staff Report includes recommendations to: (i) establish a fixed distribution charge for commercial customers with demands under 10 kW; (ii) implement a demand charge (rather than the current volumetric charge) for C&I customers with demands between 10kW and 50kW; and (iii) introduce a "capacity reserve charge" for customers with load displacement generation to replace stand-by charges and provide for recognition of the benefits of this generation on the system. The OEB held a stakeholder information session in mid-March on this initiative, and interested parties are now filing submissions in response to the Staff Report.

Whether and how the OEB's processes will fit together with the government's consultation process remains to be seen.

 

Related News

View more

State-owned electricity generation firm could save Britons nearly 21bn a year?

Great British Energy could cut UK electricity costs via public ownership, investing in clean energy like wind, solar, tidal, and nuclear, curbing windfall profits, stabilizing bills, and reinvesting returns through a state-backed generator.

 

Key Points

A proposed state-backed UK generator investing in clean power to cut costs and return gains to taxpayers.

✅ Publicly owned investment in wind, solar, tidal, and nuclear

✅ Cuts electricity bills by reducing generators' windfall profits

✅ Funded via bonds or asset buyouts; non-profit operations

 

A publicly owned electricity generation firm could save Britons nearly £21bn a year, according to new analysis that bolsters Labour’s case to launch a national energy company if the party gains power.

Thinktank Common Wealth has calculated that the cost of generating electricity to power homes and businesses could be reduced by £20.8bn or £252 per household a year under state ownership, according to a report seen by the Guardian.

The Labour leader, Keir Starmer, has committed to creating “a publicly owned national champion in clean energy” named Great British Energy.

Starmer is yet to lay out the exact structure of the mooted company, although he has said it would not involve nationalising existing assets, or become involved in the transmission grid or retail supply of energy.

Starmer instead hopes to create a state-backed entity that would invest in clean energy – wind, solar, tidal, nuclear, large-scale storage and other emerging technologies – creating jobs and ensuring windfalls from the growth in low carbon power feed back to the government.

The Common Wealth report, which analysed scenarios for reforming the electricity market, said that a huge saving on electricity costs could be made by buying out assets such as wind, solar and biomass generators on older contracts and running them on a non-profit basis. Funding the measure could require a government bond issuance, or some form of compulsory purchase process.

Last year the government attempted to get companies operating low carbon generators, including nuclear power plants, on older contracts to switch to contracts for difference (CfD), allowing any outsized profits to flow back to taxpayers. However, the government later decided to tax eligible firms through the electricity generator levy instead.

The Common Wealth study concluded that a publicly owned low carbon energy generator would best deliver on Britain’s climate and economic goals, would eliminate windfall profits made by generators and would cut household bills significantly.

MPs and campaigners have argued that Britain’s energy companies should be nationalised since the energy crisis, even as coal-free records have multiplied and renewables still need more support, which has resulted in North Sea oil and gas producers and electricity generators making windfall profits, and a string of retail suppliers collapsing, costing taxpayers billions. Detractors of nationalisation in energy argue it can stifle innovation and expose taxpayers to huge financial risks.

Common Wealth pointed out that more than 40% of the UK’s offshore wind generation capacity was publicly owned by overseas national entities, meaning the benefits of high electricity prices linked to the war in Ukraine had flowed back to other governments.

The study found the publicly owned generator model would create more savings than other options, including a drive for voluntary CfDs; splitting the generation market between low carbon and fossil fuel sources at a time when wind and solar have outproduced nuclear, and a “single buyer model” with nationalised retail suppliers.

 

Related News

View more

Electricity complaints filed by Texans reach three-year high, report says

Texas Electricity Complaints surged to a three-year high, highlighting Public Utility Commission data on billing disputes, meter problems, and service issues in the competitive retail electricity market and consumer protection process.

 

Key Points

Consumer filings to Texas PUC about billing, service, and meters, with 2018 reaching a three-year high.

✅ 5,371 complaints/inquiries in FY2018; 43.8% involved billing disputes.

✅ Service issues 15.8% and meters 12.6%; PUC publishes complaint stats.

✅ Advocates urge monitoring to keep deregulated retail market healthy.

 

The number of electricity service-related complaints and inquiries filed with the state’s Public Utility Commission reached a three-year high this past fiscal year, an advocacy group said Tuesday.

According to the Texas Coalition for Affordable Power, a nonprofit that advocates for low electricity prices, Texans filed 5,371 complaints or inquiries with the commission between September 2017 and August of this year. That’s up from the 4,175 complaints or inquiries filed during the same period in 2017 and the 4,835 filed in 2016. The complaints and inquiries included concerns with billing, meters and service.

“This stark uptick in complaints is disappointing — especially after several years of generally improving numbers,” Jay Doegey, the coalition's executive director, said in a written statement. “In percentage terms, the year-to-year rise in complaints is the greatest in a decade. Clearly, many Texans remain frustrated with aspects of their electric service.”

The utility commission did not immediately respond to a request for comment.

While complaints and inquiries increased in 2018, the number of complaints and inquiries has generally decreased since 2009, when Texans filed 15,956 with the commission. That could be because there have been lower residential electricity prices and because Texans have become more familiar with the state’s competitive retail electricity system over the last decade, the coalition's report said.

And complaints from 2018 are well below 2003 levels, when the number of complaints and inquiries soared to more than 17,000, a year after Texas deregulated most of its electricity market structure at the time.

But Jake Dyer, a policy analyst at the coalition, said his group is closely watching the uptick in complaints this year as the Texas power grid faces recurring strains.

“We are invested in making sure the competition works,” Dyer said. “When you see an uptick like this, you should watch very closely to make sure the market remains healthy and to make sure there is not something else going on.”

However, Dyer said that it is too early to know what that something else that is going on might be.

According to the report, concerns about billing made up most of the complaints and inquiries filed this year at 43.8 percent. That’s up from 42.5 percent in fiscal year 2017. Concerns about the provision of electrical service and about electrical meters also ranked high, constituting 15.8 percent and 12.6 percent of the complaints and inquiries, respectively.

The Public Utility Commission publishes customer complaint statistics on its website. The Texas Coalition for Affordable Power takes into account both complaints and inquiries filed with the commission for its report in order “to gauge general consumer sentiment and to maintain a uniform methodology across the study period.”

Texans can file an official complaint with the the commission's Customer Protection Division. Under the complaint process, the complaint is sent to the electric company, which has 21 days to respond.

Some providers outside the competitive market, such as electric cooperatives, drew praise for performance during the 2021 winter storm.

Following the 2021 winter storm, Texas lawmakers proposed an electricity market bailout to stabilize costs and reliability.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.