Harper confident of Indian nuclear assurances

By Toronto Star


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Anyone worried that an agreement to grant the Canadian nuclear industry access to the massive Indian market could bolster threats from rogue states should realize what decade this is, said Prime Minister Stephen Harper.

The ink is finally dry on a long-negotiated nuclear cooperation agreement between the two countries that will allow Canadian businesses to sell nuclear equipment, material and technology to India for civilian and peaceful use.

Canadian nuclear firms have been forbidden from exporting to the lucrative Indian market since India used Canadian technology to quietly develop nuclear weapons in the 1970s, prompting a chill in diplomatic relations.

Harper has moved to warm relations between the two countries with a series of steps including a trip to India last year, and an invitation to Prime Minister Manmohan Singh to visit Canada — the first by sitting Indian prime minister since 1973 — for a bilateral discussion after the G20 wrapped up.

After the agreement was signed at a downtown Toronto hotel, Harper expressed confidence that Canada would not see a repeat of that uncomfortable episode in history even though India has not signed an international nuclear non-proliferation treaty that makes countries promise not to develop weapons-grade plutonium.

“I think it is important to understand we cannot live as a country in the 1970s. We are living in very different realities today,” Harper said at a news conference alongside Indian Prime Minister Manmohan Singh after the agreement was signed.

“India is a country — a very important country a country that will be even more important in the future — that shares with us key values. It shares with us key interests in the world and faces the same threats that we do.”

Harper noted India had been “forthcoming” in granting Canada the safeguards it asked for in the agreement, which his office said provides assurances at the same level as an international treaty.

Singh called the agreement a “landmark in the development of our relations” and told reporters that India was happy to follow the rules.

“We have a complete civilian control of our nuclear facilities and there is actually no scope whatsoever of nuclear materials being used for unintended purposes,” Singh said.

The two countries also signed memorandums of understanding on post-secondary education, mining and cultural cooperation.

Singh layed a wreath at the site of the memorial to victims of 1985Â’s Air India bombing before going home.

The Indian prime minister spoke out against Sikh extremism in India and Canada as damaging to the relations between the two countries and the asked the Sikh community here to not allow religious institutions to promote extremist views.

“Extremism of all types, mostly of religious variety, I think is something which is not in tune with the growing realities of an integrated or... a globalized community in which people of diverse backgrounds and shades of opinion must learn to live together as brothers and sisters as equal partners in processes of peace ad prosperity,” Singh said.

Related News

Study: US Power Grid Has More Blackouts Than ENTIRE Developed World

US Power Grid Blackouts highlight aging infrastructure, rising outages, and declining reliability per DOE and NERC data, with weather-driven failures, cyberattack risk, and underinvestment stressing utilities, transmission lines, and modernization efforts.

 

Key Points

US power grid blackouts are outages caused by aging grid assets, severe weather, and cyber threats reducing reliability.

✅ DOE and NERC data show rising outage frequency and duration.

✅ Weather now drives 68-73% of major failures since 2008.

✅ Modernization, hardening, and cybersecurity investments are critical.

 

The United States power grid has more blackouts than any other country in the developed world, according to new data and U.S. blackout warnings that spotlight the country’s aging and unreliable electric system.

The data by the Department of Energy (DOE) and the North American Electric Reliability Corporation (NERC) shows that Americans face more power grid failures lasting at least an hour than residents of other developed nations.

And it’s getting worse.

Going back three decades, the US grid loses power 285 percent more often than it did in 1984, when record keeping began, International Business Times reported. The power outages cost businesses in the United States as much as $150 billion per year, according to the Department of Energy.

Customers in Japan lose power for an average of 4 minutes per year, as compared to customers in the US upper Midwest (92 minutes) and upper Northwest (214), University of Minnesota Professor Massoud Amin told the Times. Amin is director of the Technological Leadership Institute at the school.

#google#

The grid is becoming less dependable each year, he said.

“Each one of these blackouts costs tens of hundreds of millions, up to billions, of dollars in economic losses per event,” Amin said. “… We used to have two to five major weather events per year [that knocked out power], from the ‘50s to the ‘80s. Between 2008 and 2012, major outages caused by weather, reflecting extreme weather trends, increased to 70 to 130 outages per year. Weather used to account for about 17 to 21 percent of all root causes. Now, in the last five years, it’s accounting for 68 to 73 percent of all major outages.”

As previously reported by Off The Grid News, the power grid received a “D+” grade on its power grid report card from the American Society of Civil Engineers (ASCE) in 2013. The power grid grade card rating means the energy infrastructure is in “poor to fair condition and mostly below standard, with many elements approaching the end of their service life.” It further means a “large portion of the system exhibits significant deterioration” with a “strong risk of failure.”

“America relies on an aging electrical grid and pipeline distribution systems, some of which originated in the 1880s,” the 2013 ASCE report read. “Investment in power transmission has increased since 2005, but ongoing permitting issues, weather events, and limited maintenance have contributed to an increasing number of failures and power interruptions.”

As The Times noted, the US power grid as it exists today was built shortly after World War II, with the design dating back to Thomas Edison. While Edison was a genius, he and his contemporaries could not have envisioned all the strains the modern world would place upon the grid and the multitude of tech gadgets many Americans treat as an extension of their body. While the drain on the grid has advanced substantially, the infrastructure itself has not.

There are approximately 5 million miles of electrical transmission lines throughout the United States, and thousands of power generating plants dot the landscape. The electrical grid is managed by a group of 3,300 different utilities and serve about 150 million customers, The Times said. The entire power grid system is currently valued at $876 billion.

Many believe the grid is vulnerable to an attack on substations and other threats.

Former Department of Homeland Security Secretary Janet Napolitano once said that a power grid cyber attack is a matter of “when” not “if,” as Russians hacked utilities incidents have shown.

 

Related News

View more

Covid-19: Secrets of lockdown lifestyle laid bare in electricity data

Lockdown Electricity Demand Trends reveal later mornings, weaker afternoons, and delayed peaks as WFH, streaming, and video conferencing reshape energy demand curves, grid forecasting, and residential electricity usage across Europe, New York, Tokyo, and Singapore.

 

Key Points

Shifts in power use during lockdowns: later ramps, weaker afternoons, and higher, delayed evening peaks.

✅ Morning ramp starts later; midday demand dips

✅ Evening peak shifts 1-2 hours; higher late-night usage

✅ WFH and streaming raise residential load; industrial demand falls

 

Life in lockdown means getting up late, staying up till midnight and slacking off in the afternoons.

That’s what power market data in Europe show in the places where restrictions on activity have led to a widespread shift in daily routines of hundreds of millions of people.

It’s a similar story wherever lockdowns bite. In New York City electricity use has fallen as much as 18% from normal times at 8am. Tokyo and three nearby prefectures had a 5% drop in power use during weekdays after Japan declared a state of emergency on April 7, according to Tesla Asia Pacific, an energy forecaster.

Italy’s experience shows the trend most clearly since the curbs started there on March 5, before any other European country. Data from the grid operator Terna SpA gives a taste of what other places are also now starting to report, with global daily demand dips observed in many markets as well.


1. People are sleeping later

With no commute to the office people can sleep longer. Normally, electricity demand began to pick up between 6 a.m. and 8 a.m. Now in Germany, it’s clear coffee machines don’t go on until between 8 a.m. and 9 a.m., said Simon Rathjen, founder of the trading company MFT Energy A/S.

Germany, France and Italy -- which between them make up almost two thirds of the euro-zone economy -- all have furlough measures that allow workers to receive a salary while temporarily suspended from their jobs. The U.K. also has a support package. Many of these workers will be getting up later.

"Now I have quite a relaxed start to the morning,” said David Freeman, an analyst in financial services from London. "I don’t get up until about half an hour before I need to start work.”

2. Less productive afternoons

There is a deeper dip in electricity use in the afternoons. Previously, power use rose between 2pm and 5pm. Now it dips as people head out for a walk or some air, according to UK demand data from National Grid Plc

It’s "as though we are living through a month of Sundays”, said Iain Staffell, senior lecturer in sustainable energy at Imperial College London.

3. Evenings in

From 6pm electricity use begins to rise steeply as people finish work and start chores. Restrictions like work and home schooling that prevent much daytime TV watching lifts in the early evening. This following chart for Germany shows the evening peak for power use coming during later hours.

The evening is when electricity use is highest, with most people confined to their homes. Netflix Inc reported a record 15.8 million paid subscribers – almost double the figure forecast by Wall Street analysts. Video-streaming services like Netflix and YouTube have found a captive audience. The new Disney+ service surpassed 50 million subscribers in just five months, a faster pace than predicted.

Internet traffic is skyrocketing, with a surge in bandwidth-intensive applications like streaming services and Zoom. This may mean that monthly broadband consumption of as much as 600 gigabytes, about 35% higher than before, according to Bloomberg Intelligence.

In Singapore, electricity use has dropped off significantly since the country’s "circuit-breaker” efforts to keep people at home began April 7. Electricity use has fallen and stayed low during the day. But late at night is a different story, as power demand fell sharply immediately after the lockdown began, it has steadily crept back in the past two weeks, perhaps a sign that Tiger King and The Last Dance have been finding late-night fans in the city state.

In Ottawa, COVID-19 closures made it seem as if the city had fallen off the electricity grid, according to local reports.

4. Staying up late

We’re going to bed later too. Demand doesn’t start to drop off until 10pm to 12am, at least an hour later than before.

"My children are definitely going to bed later,” said Liz Stevens, a teaching assistant from London. "Our whole routine is out the window.”

It’s challenging for those that need to predict behaviour – power grids and electricity traders. Forecasting is based on historical data, and there isn’t anything to go into the models gauging use now.

The closest we can get is looking at big events like football World Championships when people are all sitting down at the same time, according to Rathjen at MFT.

"Forecasting demand right now is very tricky,” said Chris Kimmett, director of power grids at Reactive Technologies Ltd. "A global pandemic is uncharted territory."

What normal looks like when the crisis passes is also an open question. Different countries are set to unravel their measures in their own ways, and global power demand has already surged above pre-pandemic levels in some analyses, with Germany and Austria loosening restrictions first and Italy remaining under tight control. Some changes may be permanent, with both workers and employers becoming more comfortable with working from home.

5. Different sectors consume more

In China, which is further along recovering from the pandemic than Europe or the US, the sharp contraction in overall power output masks a shift in daily routines.

Eating habits have changed. Restaurants are expanding delivery and even offering grocery services as the preference for dining at home persists. Household electricity consumption in China probably increased from activities such as cooking and heating, according to IHS Markit, which said that residential demand rose by 2.4% in the first two months as people stayed in.

The increase in technology use also drove China’s power demand from the telecom and web-service sectors to rise by 27%, the consultancy said.

Overall, China power demand in the first quarter of the year fell 6.5% from the same period in 2019 to 1.57 trillion kilowatt-hours, China’s National Energy Administration said last week. Industry uses about 70% of the country’s electricity, while the commercial sector and households account for 14% each. – Bloomberg

 

Related News

View more

San Diego Gas & Electric Orders Mitsubishi Power Emerald Storage Solution

SDG&E Mitsubishi Power Energy Storage adds a 10 MW/60 MWh BESS in Pala, boosting grid reliability, renewable integration, and flexibility with EMS and SCADA controls, LFP safety chemistry, NERC CIP compliance, UL 9540 standards.

 

Key Points

A 10 MW/60 MWh BESS for SDG&E in Pala that enhances grid reliability, renewables usage, and operational flexibility.

✅ Emerald EMS/SCADA meets NERC CIP, IEC/ISA 62443, NIST 800-53

✅ LFP chemistry with UL 9540 and UL 9540A safety compliance

✅ Adds capacity, energy, and ancillary services to CA grid

 

San Diego Gas & Electric Company (SDG&E), a regulated public utility that provides energy service to 3.7 million people, has awarded Mitsubishi Power an order for a 10 megawatt (MW) / 60 megawatt-hour (MWh) energy storage solution for its Pala-Gomez Creek Energy Storage Project in Pala, California. The battery energy storage system (BESS) will add capacity to help meet high energy demand, support grid reliability and operational flexibility, underscoring the broader benefits of energy storage now recognized by utilities, maximize use of renewable energy, and help prevent outages during peak demand.

The BESS project is Mitsubishi Power’s eighth in California, bringing total capacity to 280 MW / 1,140 MWh of storage to help meet California’s clean energy goals with reliable power to complement renewables, alongside emerging solutions like a California green hydrogen microgrid for added resilience.

Mitsubishi Power’s Emerald storage solution for SDG&E includes full turnkey design, engineering, procurement, and construction, as well as a 10-year long-term service agreement, aligning with CEC long-duration storage funding initiatives underway. It is scheduled to be online in early 2023.

The project will repower an existing energy storage site. It will employ Mitsubishi Power’s Emerald Integrated Plant Controller, which is an Energy Management System (EMS) and Supervisory Control and Data Acquisition (SCADA) system with real-time BESS operation and a monitoring/supervisory control platform. Mitsubishi Power leverages its decades of technology monitoring and diagnostics to turn data into actionable insights to maximize reliability, a priority as regions like Ontario increasingly rely on battery storage to meet rising demand. The Mitsubishi Power Emerald Integrated Plant Controller complies with North American Electric Reliability Corporation critical infrastructure protection (NERC CIP) standards and meets the highest security certification in the energy storage industry (IEC/ISA 62443, NIST 800-53) for maximum protection from cybersecurity risks and vulnerabilities.

For added physical safety, Mitsubishi Power’s solution employs lithium iron phosphate (LFP) battery chemistry, aligning with BESS adoption in New York where safety and performance are critical. Compared with other chemistries, LFP provides longer life and superior thermal stability and chemical stability, while meeting UL 9540 and UL 9540A safety standards.

Fernando Valero, Director, Advanced Clean Technology, SDG&E, said, “SDG&E is committed to achieving net-zero greenhouse gas emissions by 2045. We are increasing our portfolio of energy storage assets, including virtual power plant models, to reach this goal. These assets enhance grid reliability and operational flexibility while maximizing our use of abundant renewable energy sources in California.”

Tom Cornell, Senior Vice President, Energy Storage Solutions, Mitsubishi Power Americas, said, “As more and more renewables come online during the energy transition, BESS solutions are essential to support a reliable and stable grid. We look forward to providing SDG&E with our BESS solution to add capacity, energy, and ancillary services to California’s grid. Mitsubishi Power’s Emerald storage solutions are enabling a smarter and more resilient energy future for our customers in California and around the globe, with projects like an energy storage demonstration in India underscoring this momentum.”

 

Related News

View more

Opinion: The awesome, revolutionary electric-car revolution that doesn't actually exist

Ecofiscal Commission EV Policy Shift examines carbon pricing limits, endorsing signal boosters like subsidies, EV incentives, and coal bans, amid advisory changes and public pushback, to accelerate emissions cuts beyond market-based taxes and regulations.

 

Key Points

An updated stance recognizing carbon pricing limits and backing EV incentives, subsidies, and rules to reduce emissions.

✅ Carbon pricing plus subsidies, EV incentives

✅ Advisory shift; Jack Mintz departs

✅ Focus on emissions cuts, coal power bans

 

Something strange happened at the Ecofiscal Commission recently. Earlier this month, the carbon-tax advocacy group featured on its website as one of its advisers the renowned Canadian economist (and FP Comment columnist) Jack M. Mintz. The other day, suddenly and without fanfare, Mintz was gone from the website, and the commission’s advisory board.

Advisers come and advisers go, of course, but it turns out there was an impetus for Mintz’s departure. The Ecofiscal Commission in its latest report, dropped just before Canada Day, seemingly shifted from its position that carbon prices were so excellent at mimicking market forces that the tax could repeal and replace virtually the entire vast expensive gallimaufry of subsidies, caps, rules and regulations that are costing Canada a fortune in business and bureaucrats. As some Ecofiscal commissioners wrote just a few months ago, policies that “dictate specific technologies or methods for reducing emissions constrain private choice and increase costs” and were a bad idea.

But, in this latest report, the commission is now musing about the benefits of carbon-tax “signal boosters”: that is, EV subsidies and rules to, for instance, get people to start buying electric vehicles (EVs), as well as bans on coal-fired power. “Even well designed carbon pricing can have limitations,” rationalized the commission. Mintz said he had “misgivings” about the change of tack. He decided it best if he focus his advisory energies elsewhere.

It’s hard to blame the commission for falling like everyone else for the electric-car mania that’s sweeping the nation and the world. Electric cars offer a sexiness that dreary old carbon taxes can never hope to match — especially in light of a new Angus Reid poll last week that showed the majority of Canadians now want governments to shelve any plans for carbon taxes.

So far, because nobody’s really driving these miracle machines, said mania has been limited to breathless news reports about how the electric-vehicle revolution is about to rock our world. EVs comprise just two-tenths of a per cent of all passenger vehicles in North America, despite the media’s endless hype and efforts of green-obsessed governments to cover much of the price tag, like Ontario’s $14,000 rebate for Tesla buyers. In Europe, where virtue-signalling urban environmentalism is the coolest, they’re not feeling the vehicular electricity much more: EVs account for barely one per cent of personal vehicles in France, the U.K. and Germany. When Hong Kong cancelled Tesla rebates in April, sales fell to zero.

Going by the ballyhoo, you’d think EVs were at an inflection point and an unstoppable juggernaut. But it’s one that has yet to even get started. In his 2011 State of the Union address, then president Barack Obama predicted one million electric cars on the road by 2015. Four years later, there wasn’t even a third that many. California offered so many different subsidies for electric vehicles that low-income families could get rebates of up to US$13,500, but it still isn’t even close to reaching its target of having zero-emission vehicles make up 15 per cent of California auto sales by 2025, being stuck at three per cent since 2014. Ontario’s Liberal government last year announced to much laughter its plan to ensure that every family would have at least one zero-emission vehicle (ZEV) by 2024, and Quebec made a plan to make ZEVs worth 15.5 per cent of sales by 2020, while Ottawa’s 2035 EV mandate attracts criticism too. Let’s see how that’s going: Currently, ZEVs make up 0.16 per cent of new vehicle sales in Ontario and 0.38 per cent in Quebec.

The latest sensational but bogus EV news out last week was France’s government announcing the “end of the sale of gasoline and diesel cars by 2040,” and Volvo apparently announcing that as of 2019, all its models would be “electric.” Both announcements made international headlines. Both are baloney. France provided no actual details about this plan (will it literally become a crime to sell a gasoline car? Will hybrids, run partly on gasoline, be allowed?), but more importantly, as automotive writer Ed Wiseman pointed out in The Guardian, a lot will happen in technology and automotive use over the next 23 years that France has no way to predict, with changes in self-driving cars, public car-sharing and fuel technologies. Imagine making rules for today’s internet back in 1994.

Volvo, meanwhile, looked to be recycling and repackaging years-old news to seize on today’s infatuation with electric vehicles to burnish its now Chinese-owned brand. Since 2010, Volvo’s plan has been to focus on engines that were partly electric, with electric turbochargers, but still based on gasoline. Volvo doesn’t actually have an all-electric model, but the gasoline-swigging engine of its popular XC90 SUV is, partly, electrical. When Volvo said all its models would in two years be “electric,” it meant this kind of engine, not that it was phasing out the internal-combustion gasoline engine. But that is what it wanted reporters to think, and judging by all the massive and inaccurate coverage, it worked.

The real story being missed is just how pathetic things look right now for electric cars. Gasoline prices in the U.S. turned historically cheap in 2015 and stayed cheap, icing demand for gasless cars. Tesla, whose founder’s self-promotion had made the niche carmaker magically more valuable than powerhouses like Ford and GM, haemorrhaged US$12 billion in market value last week after tepid sales figures brought some investors back to Earth, even as the company’s new Model 3 began rolling off the line.

Not helping is that environmental claims about environmental cars are falling apart. In June, Tesla was rocked by a controversial Swedish study that found that making one of its car batteries released as much CO2 as eight years of gasoline-powered driving. And Bloomberg reported last week on a study by Chinese engineers that found that electric vehicles, because of battery manufacturing and charging by fossil-fuel-powered electricity sources, emit 50-per-cent more carbon than do internal-combustion engines. Still, the electric-vehicle hype not only continues unabated, it gets bigger and louder every day. If some car company figures out how to harness it, we’d finally have a real automotive revolution on our hands.

Kevin Libin, Financial Post

 

Related News

View more

Clorox accelerates goal of achieving 100% renewable electricity in the U.S. and Canada to 2021

Clorox Enel 70 MW VPPA accelerates renewable energy, sourcing Texas solar from the Roadrunner project to support 100% renewable electricity, Scope 2 reductions, and grid decarbonization through a virtual power purchase agreement starting in 2021.

 

Key Points

A 12-year virtual power purchase agreement for 70 MW of Texas solar to advance Clorox's 100% renewable electricity goal.

✅ 12-year contract supporting 100% renewable electricity by 2021

✅ Supplies 70 MW from Enel's Roadrunner solar project in Texas

✅ Cuts Scope 2 emissions via grid-delivered virtual PPA

 

The Clorox Company and a wholly owned subsidiary of Enel Green Power North America announced today the signing of a 12-year, 70 megawatt (MW) virtual power purchase agreement (VPPA) for the purchase of renewable energy, aligned with carbon-free electricity investments across the power sector beginning in 2021. Representing about half of Clorox's 100% renewable electricity goal in its operations in the U.S. and Canada, this agreement is expected to help Clorox accelerate achieving its goal in 2021, four years ahead of the company's original plan.

"Climate change and rising greenhouse gas emissions pose a real threat to the health of our planet and ultimately the long-term well-being of people globally. That's why we've taken action for more than 10 years to measure and reduce the carbon footprint of our operations," said Benno Dorer, chair and CEO, The Clorox Company. "Our agreement with Enel helps to expand U.S. renewable energy infrastructure, reflecting our view that companies like Clorox play an important role in addressing global climate change, as landmark policies like the U.S. climate deal further accelerate the transition. We believe this agreement will significantly contribute toward Clorox achieving our goal of 100% renewable electricity in our operations in the U.S. and Canada in 2021, four years earlier than originally planned. Our commitment to climate stewardship is an important pillar of our new IGNITE strategy and part of our overall efforts to drive Good Growth – growth that's profitable, sustainable and responsible."

The 70MW VPPA between Clorox and Enel Green Power North America for the purchase of renewable energy delivered to the electricity grid is for the second phase of Enel's Roadrunner solar project to be built in Texas, and complement global clean energy collaborations such as Canada-Germany hydrogen cooperation announced recently. Roadrunner is a 497-direct current megawatt (MWdc) solar project that is being built in two phases. The first phase, currently under construction, comprises around 252 MWdc and is expected to be completed by the end of 2019, while the remaining 245 MWdc of capacity is expected to be completed by the end of 2020. Once fully operational, the solar plant could generate up to 1.2 terawatt-hours (TWh) of electricity annually, while avoiding an estimated 800,000 metric tons of carbon dioxide emissions per year.

Based on the U.S. Environmental Protection Agency Greenhouse Gas Equivalencies Calculator[i], this VPPA is estimated to avoid approximately 140,000 metric tons of CO2 emissions each year. This is equivalent to the annual impact that 165,000 acres of U.S. forest can have in removing CO2 from the atmosphere, and illustrates why cleaning up Canada's electricity is central to emissions reductions in the power sector, or the carbon impact of the electricity needed to power more than 24,000 U.S. homes annually.

"We are proud to support Clorox on their path towards 100% renewable electricity in its operations in the U.S. and Canada by helping them achieve about half their goal through this agreement," said Georgios Papadimitriou, head of Enel Green Power North America. "This agreement with Clorox reinforces the continued significance of renewable energy as a fundamental part of any company's sustainability strategy."

Schneider Electric Energy & Sustainability Services advised Clorox on this power purchase agreement and, amid heightened investor attention exemplified by the Duke Energy climate report, supported the company in its project selection, analysis, negotiations and deal execution.

 

Clorox Commits to Scope 1, 2 and 3 Science-Based Targets

For more than 10 years, Clorox has consistently achieved its goals to reduce greenhouse gas emissions in its operations. Clorox is focused on setting emissions reduction targets in line with climate science. As a participant in the Science Based Targets Initiative, Clorox has committed to setting and achieving science-based greenhouse gas emissions reduction targets in its operations (Scopes 1 and 2) and across its value chain (Scope 3), and consistent with national pathways such as Canada's net-zero 2050 target pursued by policymakers. The targets are considered "science-based" if they are in line with what the latest climate science says is necessary to meet the goals of the 2015 Paris Agreement – a global environmental accord to address climate change and its negative impacts.

Clorox's climate stewardship goals are part of its new integrated corporate strategy called IGNITE, which includes several other environmental, social and governance (ESG) goals and reflects lessons from Canada's electricity progress in scaling clean power. More comprehensive information about Clorox's IGNITE ESG goals can be found here. Information on Clorox's 2020 ESG strategy can be found in its fiscal year 2019 annual report.

 

Related News

View more

Energy Security Support to Ukraine

U.S. Energy Aid to Ukraine delivers emergency electricity grid equipment, generators, transformers, and circuit breakers, supports ENTSO-E integration, strengthens energy security, and advances decarbonization to restore power and heat amid Russian attacks.

 

Key Points

U.S. funding and equipment stabilize Ukraine's power grid, strengthen energy security, and advance ENTSO-E integration.

✅ $53M for transformers, breakers, surge arresters, disconnectors

✅ $55M for generators and emergency heat to municipalities

✅ ENTSO-E integration, cybersecurity, nuclear safety support

 

In the midst of Russia’s continued brutal attacks against Ukraine’s energy infrastructure, Secretary of State Blinken announced today during a meeting of the G7+ on the margins of the NATO Ministerial in Bucharest that the United States government is providing over $53 million to support acquisition of critical electricity grid equipment. This equipment will be rapidly delivered to Ukraine on an emergency basis to help Ukrainians persevere through the winter, as the country prepares for winter amid energy challenges. This supply package will include distribution transformers, circuit breakers, surge arresters, disconnectors, vehicles and other key equipment.

This new assistance is in addition to $55 million in emergency energy sector support for generators and other equipment to help restore emergency power and heat to local municipalities impacted by Russia’s attacks on Ukraine’s power system, while both sides accuse each other of energy ceasefire violations that complicate repairs. We will continue to identify additional support with allies and partners, and we are also helping to devise long-term solutions for grid restoration and repair, along with our assistance for Ukraine’s effort to advance the energy transition and build an energy system decoupled from Russian energy.

Since Russia’s further invasion on February 24, working together with Congress, the Administration has provided nearly $32 billion in assistance to Ukraine, including $145 million to help repair, maintain, and strengthen Ukraine’s power sector in the face of continued attacks. We also have provided assistance in areas such as EU integration and regional electricity trade, including electricity imports to stabilize supply, natural gas sector support to maximize resource development, support for nuclear safety and security, and humanitarian relief efforts to help Ukrainians to overcome the impacts of energy shortages.

Since 2014, the United States has provided over $160 million in technical support to strengthen Ukraine’s energy security, including to strengthen EU interconnectivity, increase energy supply diversification, and promote investments in energy efficiency, renewable energy, and clean energy technologies and innovation.  Much of this support has helped prepare Ukraine for its eventual interconnection with Europe’s ENTSO-E electricity grid, aligning with plans to synchronize with ENTSO-E across the integrated power system, including the island mode test in February 2022 that not only demonstrated Ukraine’s progress in meeting the EU’s technical requirements, but also proved to be critical considering Russia’s subsequent military activity aimed at disrupting power supplies and distribution in Ukraine.

 

Department of Energy (DOE)

  • With the increased attacks on Ukraine’s electricity grid and energy infrastructure in October, DOE worked with the Ukrainian Ministry of Energy and DOE national laboratories to collate, vet, and help prioritize lists of emergency electricity equipment for grid repair and stabilization amid wider global energy instability affecting supply chains.
  • Engaged at the CEO level U.S. private sector and public utilities and equipment manufacturers to identify $35 million of available electricity grid equipment in the United States compatible with the Ukrainian system for emergency delivery. Identified $17.5 million to support purchase and transportation of this equipment.
  • With support from Congress, initiated work on full integration of Ukraine with ENTSO-E to support resumption of Ukrainian energy exports to other European countries in the region, including funding for energy infrastructure analysis, collection of satellite data and analysis for system mapping, and work on cyber security, drawing on the U.S. rural energy security program to inform best practices.
  • Initiated work on a new dynamic model of interdependent gas and power systems of Europe and Ukraine to advance identification and mitigation of critical vulnerabilities.
  • Delivered emergency diesel fuel and other critical materials needed for safe operation of Ukrainian nuclear power plants, as well as initiated the purchase of three truck-mounted emergency diesel backup generators to be delivered to improve plant safety in the event of the loss of offsite power.

U.S. Department of State

  • Building on eight years of technical engagement, the State Department continued to provide technical support to Naftogaz and UkrGasVydobuvannya to advance corporate governance reform, increase domestic gas production, provide strategic planning, and assess critical sub-surface and above-ground technical issues that impact the company’s core business functions.
  • The State Department is developing new programs focused on emissions abatement, decarbonization, and diversification, acknowledging the national security benefits of reducing reliance on fossil fuels to support Ukraine’s ambitious clean energy and climate goals and address the impacts of reduced supplies of natural gas from Russia.
  • The State Department led a decades-long U.S. government engagement to develop and expand natural gas reverse flow (west-to-east) routes to enhance European and Ukrainian energy security. Ukraine is now able to import natural gas from Europe, eliminating the need for Ukraine to purchase natural gas from Gazprom.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.