Howard takes reins of EPRI

By Knoxville News Sentinel


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Eighteen years after coming to work for a Knoxville spin-off of the Electric Power Research Institute, Mike Howard will soon be EPRI's president and CEO.

Howard, a University of Tennessee graduate and EPRI's current senior vice president of research and development, will take the position in September, following the retirement of president and CEO Steve Specker, EPRI announced.

EPRI, a nonprofit research organization for the electric power industry, has principal research labs in Knoxville, Palo Alto, Calif., and Charlotte, N.C., and serves 90 percent of the power generation industry in the U.S. along with power providers in 40 foreign countries. EPRI employs about 125 people in Knoxville and 775 companywide.

"In the role that I'm in at EPRI... I've had to have the perspective of the entire industry," said Howard in a telephone interview Monday. "What are the issues that we need to be working on, whether it's nuclear, electric power vehicles, renewables.... It's a perfect transition. It's really to just keep doing what I've been doing."

Howard came to Knoxville in 1992 as head of the Tennessee Center for Research and Development, which, under Howard's leadership, morphed into EPRI PEAC - Power Electronics Applications Center was reorganized with three other research firms to become EPRI Solutions and, finally, became a formal research center within EPRI itself.

Howard, who said he would work from home bases in Charlotte and Knoxville in his new position, said EPRI's local office will continue to play an important role in the organization's R&D activities. EPRI's presence, together with TVA and ORNL, makes the region an important research hub for a variety of power-related projects, said Tom Key, director of ORNL's energy efficiency and electricity technologies program, and he said those partnerships should continue and grow under Howard's leadership.

"We have very, very strong capabilities, and in my mind it's important for us to be collaborators and working together," Key said. "With Mike's background in working with the laboratory, we're really excited about that and looking forward to a long collaboration and partnership with EPRI."

Tom Kilgore, president and CEO of TVA, serves on the EPRI board and has followed Howard's career for the past several years.

"I... have found Mike to be a very knowledgable and very good executive," Kilgore said in a statement sent via e-mail. "He always knows his subject matter and communicates his thoughts effectively to a wide range of audiences. He is very much up-to-date on the world energy picture due to his development of partnerships with EPRI's international counterparts."

Today, Howard said, the organization's role is growing in importance as power companies turn to EPRI to find solutions for issues that promise to transform power generation and delivery.

"I think number one is, you have to speak truth to technology," he said. "What I mean by that is you have to understand what the various technologies will do and what they will not. Do the science, do the technology to really understand what is the truth about technology. That's what we've been doing, and we'll continue to do."

Related News

Opinion: The awesome, revolutionary electric-car revolution that doesn't actually exist

Ecofiscal Commission EV Policy Shift examines carbon pricing limits, endorsing signal boosters like subsidies, EV incentives, and coal bans, amid advisory changes and public pushback, to accelerate emissions cuts beyond market-based taxes and regulations.

 

Key Points

An updated stance recognizing carbon pricing limits and backing EV incentives, subsidies, and rules to reduce emissions.

✅ Carbon pricing plus subsidies, EV incentives

✅ Advisory shift; Jack Mintz departs

✅ Focus on emissions cuts, coal power bans

 

Something strange happened at the Ecofiscal Commission recently. Earlier this month, the carbon-tax advocacy group featured on its website as one of its advisers the renowned Canadian economist (and FP Comment columnist) Jack M. Mintz. The other day, suddenly and without fanfare, Mintz was gone from the website, and the commission’s advisory board.

Advisers come and advisers go, of course, but it turns out there was an impetus for Mintz’s departure. The Ecofiscal Commission in its latest report, dropped just before Canada Day, seemingly shifted from its position that carbon prices were so excellent at mimicking market forces that the tax could repeal and replace virtually the entire vast expensive gallimaufry of subsidies, caps, rules and regulations that are costing Canada a fortune in business and bureaucrats. As some Ecofiscal commissioners wrote just a few months ago, policies that “dictate specific technologies or methods for reducing emissions constrain private choice and increase costs” and were a bad idea.

But, in this latest report, the commission is now musing about the benefits of carbon-tax “signal boosters”: that is, EV subsidies and rules to, for instance, get people to start buying electric vehicles (EVs), as well as bans on coal-fired power. “Even well designed carbon pricing can have limitations,” rationalized the commission. Mintz said he had “misgivings” about the change of tack. He decided it best if he focus his advisory energies elsewhere.

It’s hard to blame the commission for falling like everyone else for the electric-car mania that’s sweeping the nation and the world. Electric cars offer a sexiness that dreary old carbon taxes can never hope to match — especially in light of a new Angus Reid poll last week that showed the majority of Canadians now want governments to shelve any plans for carbon taxes.

So far, because nobody’s really driving these miracle machines, said mania has been limited to breathless news reports about how the electric-vehicle revolution is about to rock our world. EVs comprise just two-tenths of a per cent of all passenger vehicles in North America, despite the media’s endless hype and efforts of green-obsessed governments to cover much of the price tag, like Ontario’s $14,000 rebate for Tesla buyers. In Europe, where virtue-signalling urban environmentalism is the coolest, they’re not feeling the vehicular electricity much more: EVs account for barely one per cent of personal vehicles in France, the U.K. and Germany. When Hong Kong cancelled Tesla rebates in April, sales fell to zero.

Going by the ballyhoo, you’d think EVs were at an inflection point and an unstoppable juggernaut. But it’s one that has yet to even get started. In his 2011 State of the Union address, then president Barack Obama predicted one million electric cars on the road by 2015. Four years later, there wasn’t even a third that many. California offered so many different subsidies for electric vehicles that low-income families could get rebates of up to US$13,500, but it still isn’t even close to reaching its target of having zero-emission vehicles make up 15 per cent of California auto sales by 2025, being stuck at three per cent since 2014. Ontario’s Liberal government last year announced to much laughter its plan to ensure that every family would have at least one zero-emission vehicle (ZEV) by 2024, and Quebec made a plan to make ZEVs worth 15.5 per cent of sales by 2020, while Ottawa’s 2035 EV mandate attracts criticism too. Let’s see how that’s going: Currently, ZEVs make up 0.16 per cent of new vehicle sales in Ontario and 0.38 per cent in Quebec.

The latest sensational but bogus EV news out last week was France’s government announcing the “end of the sale of gasoline and diesel cars by 2040,” and Volvo apparently announcing that as of 2019, all its models would be “electric.” Both announcements made international headlines. Both are baloney. France provided no actual details about this plan (will it literally become a crime to sell a gasoline car? Will hybrids, run partly on gasoline, be allowed?), but more importantly, as automotive writer Ed Wiseman pointed out in The Guardian, a lot will happen in technology and automotive use over the next 23 years that France has no way to predict, with changes in self-driving cars, public car-sharing and fuel technologies. Imagine making rules for today’s internet back in 1994.

Volvo, meanwhile, looked to be recycling and repackaging years-old news to seize on today’s infatuation with electric vehicles to burnish its now Chinese-owned brand. Since 2010, Volvo’s plan has been to focus on engines that were partly electric, with electric turbochargers, but still based on gasoline. Volvo doesn’t actually have an all-electric model, but the gasoline-swigging engine of its popular XC90 SUV is, partly, electrical. When Volvo said all its models would in two years be “electric,” it meant this kind of engine, not that it was phasing out the internal-combustion gasoline engine. But that is what it wanted reporters to think, and judging by all the massive and inaccurate coverage, it worked.

The real story being missed is just how pathetic things look right now for electric cars. Gasoline prices in the U.S. turned historically cheap in 2015 and stayed cheap, icing demand for gasless cars. Tesla, whose founder’s self-promotion had made the niche carmaker magically more valuable than powerhouses like Ford and GM, haemorrhaged US$12 billion in market value last week after tepid sales figures brought some investors back to Earth, even as the company’s new Model 3 began rolling off the line.

Not helping is that environmental claims about environmental cars are falling apart. In June, Tesla was rocked by a controversial Swedish study that found that making one of its car batteries released as much CO2 as eight years of gasoline-powered driving. And Bloomberg reported last week on a study by Chinese engineers that found that electric vehicles, because of battery manufacturing and charging by fossil-fuel-powered electricity sources, emit 50-per-cent more carbon than do internal-combustion engines. Still, the electric-vehicle hype not only continues unabated, it gets bigger and louder every day. If some car company figures out how to harness it, we’d finally have a real automotive revolution on our hands.

Kevin Libin, Financial Post

 

Related News

View more

Solar Now ‘cheaper Than Grid Electricity’ In Every Chinese City, Study Finds

China Solar Grid Parity signals unsubsidized industrial and commercial PV, rooftop solar, and feed-in tariff guarantees competing with grid electricity and coal power prices, driven by cost declines, policy reform, and technology advances.

 

Key Points

Point where PV in China meets or beats grid electricity, enabling unsubsidized industrial and commercial solar.

✅ City-level analysis shows cheaper PV than grid in 344 cities.

✅ 22% can beat coal power prices without subsidies.

✅ Soft-cost, permitting, and finance reforms speed uptake.

 

Solar power has become cheaper than grid electricity across China, a development that could boost the prospects of industrial and commercial solar, according to a new study.

Projects in every city analysed by the researchers could be built today without subsidy, at lower prices than those supplied by the grid, and around a fifth could also compete with the nation’s coal electricity prices.

They say grid parity – the “tipping point” at which solar generation costs the same as electricity from the grid – represents a key stage in the expansion of renewable energy sources.

While previous studies of nations such as Germany, where solar-plus-storage costs are already undercutting conventional power, and the US have concluded that solar could achieve grid parity by 2020 in most developed countries, some have suggested China would have to wait decades.

However, the new paper published in Nature Energy concludes a combination of technological advances, cost declines and government support has helped make grid parity a reality in Chinese today.

Despite these results, grid parity may not drive a surge in the uptake of solar, a leading analyst tells Carbon Brief.

 

Competitive pricing

China’s solar industry has rapidly expanded from a small, rural program in the 1990s to the largest in the world, with record 2016 solar growth underscoring the trend. It is both the biggest generator of solar power and the biggest installer of solar panels.

The installed capacity of solar panels in China in 2018 amounted to more than a third of the global total, with the country accounting for half the world’s solar additions that year.

Since 2000, the Chinese government has unveiled over 100 policies supporting the PV industry, and technological progress has helped make solar power less expensive. This has led to the cost of electricity from solar power dropping, as demonstrated in the chart below.


 

In their paper, Prof Jinyue Yan of Sweden’s Royal Institute of Technology and his colleagues explain that this “stunning” performance has been accelerated by government subsidies, but has also seen China overinvesting in what some describe as a clean energy's dirty secret of “redundant construction and overcapacity”. The authors write:

“Recently, the Chinese government has been trying to lead the PV industry onto a more sustainable and efficient development track by tightening incentive policies with China’s 531 New Policy.”

The researchers say the subsidy cuts under this policy in 2018 were a signal that the government wanted to make the industry less dependent on state support and shift its focus from scale to quality.

This, they say, has “brought the industry to a crossroads”, with discussions taking place in China about when solar electricity generation could achieve grid parity.

In their analysis, Yan and his team examined the prospects for building industrial and commercial solar projects without state support in 344 cities across China, attempting to gauge where or whether grid parity could be achieved.

The team estimated the total lifetime price of solar energy systems in all of these cities, taking into account net costs and profits, including project investments, electricity output and trading prices.

Besides establishing that installations in every city tested could supply cheaper electricity than the grid, they also compared solar to the price of coal-generated power. They found that 22% of the cities could build solar systems capable of producing electricity at cheaper prices than coal.

 

Embracing solar

Declining costs of solar technology, particularly crystalline silicon modules, mean the trend in China is also playing out around the world, with offshore wind cost declines reinforcing the shift. In May, the International Renewable Energy Agency (IRENA) said that by the beginning of next year, grid parity could become the global norm for the solar industry, and shifting price dynamics in Northern Europe illustrate the market impact.

Kingsmill Bond, an energy strategist at Carbon Tracker, says this is the first in-depth study he has seen looking at city-level solar costs in China, and is encouraged by this indication of solar becoming ever-more competitive, as seen in Germany's recent solar boost during the energy crisis. He tells Carbon Brief:

“The conclusion that industrial and commercial solar is cheaper than grid electricity means that the workshop of the world can embrace solar. Without subsidy and its distorting impacts, and driven by commercial gain.”

On the other hand, Jenny Chase, head of solar analysis at BloombergNEF, says the findings revealed by Yan and his team are “fairly old news” as the competitive price of rooftop solar in China has been known about for at least a year.

She notes that this does not mean there has been a huge accompanying rollout of industrial and commercial solar, and says this is partly because of the long-term thinking required for investment to be seen as worthwhile.


 

The lifetime of a PV system tends to be around two decades, whereas the average lifespan of a Chinese company is only around eight years, according to Chase. Furthermore, there is an even simpler explanation, as she explains to Carbon Brief:

“There’s also the fact that companies just can’t be bothered a lot of the time – there are roofs all over Europe where solar could probably save money, but people are not jumping to do it.”

According to Chase, a “much more exciting” development came earlier this year, when the Chinese government developed a policy for “subsidy-free solar”.

This involved guaranteeing the current coal-fired power price to solar plants for 20 years, creating what is essentially a low feed-in tariff and leading to what she describes as “a lot of nice, low-risk projects”.

As for the beneficial effects of grid parity, based on how things have played out in countries where it has already been achieved, Chase says it does not necessarily mean a significant uptake of solar power will follow:

“Grid parity solar is never as popular as subsidised solar, and ironically you don’t generally have a rush to build grid parity solar because you may as well wait until next year and get cheaper solar.”

 

Policy proposals

In their paper, Yan and his team lay out policy changes they think would help provide an economic incentive, in combination with grid parity, to encourage the uptake of solar power systems.

Technology costs may have fallen for smaller solar projects of the type being deployed on the rooftops of businesses, but they note that the so-called “soft costs” – including installation and maintenance – tend to be “very impactful”.

Specifically, they say aspects such as financing, land acquisition and grid accommodation, which make up over half the total cost, could be cut down:

“Labour costs are not significant [in China] because of the relatively low wages of direct labour and related installation overhead. Customer acquisition has largely been achieved in China by the mature market, with customers’ familiarity with PV systems, and with the perception that PV systems are a reliable technology. However, policymakers should consider strengthening the targeted policies on the following soft costs.”

Among the measures they suggest are new financing schemes, an effort to “streamline” the complicated procedures and taxes involved, and more geographically targeted government policies, alongside innovations like peer-to-peer energy sharing that can improve utilization.

As their analysis showed the price of solar electricity had fallen further in some cities than others, the researchers recommend targeting future subsidies at the cities that are performing less well – keeping costs to a minimum while still providing support when it is most needed.

 

Related News

View more

Residential electricity use -- and bills -- on the rise thanks to more working from home

Work From Home Energy Consumption is driving higher electricity bills as residential usage rises. Smart meter data, ISO-New-England trends, and COVID-19 telecommuting show stronger power demand and sensitivity to utility rates across regions.

 

Key Points

Higher household electricity use from telecommuting, shifting load to residences and raising utility bills.

✅ Smart meters show 5-22 percent residential usage increases.

✅ Commercial demand fell as home cooling and IT loads rose.

✅ Utility rates and AC use drive bill spikes during summer.

 

Don't be surprised if your electric bills are looking higher than usual, with a sizable increase in the amount of power that you have used.

Summer traditionally is a peak period for electricity usage because of folks' need to run fans and air-conditioners to cool their homes or run that pool pump. But the arrival of the coronavirus and people working from home is adding to amount of power people are using.

Under normal conditions, those who work in their employer's offices might not be cooling their homes as much during the middle of the day or using as much electricity for lights and running computers.

For many, that's changed.

Estimates on how much of an increase residential electric customers are seeing as result of working from home vary widely.

ISO-New England, the regional electric grid operator, has seen a 3 percent to 5 percent decrease in commercial and industrial power demand, even as the grid overseer issued pandemic warnings nationally. The expectation is that much of that decrease translates into a corresponding increase in residential electricity usage.

But other estimates put the increase in residential electricity usage much higher. A Washington state company that makes smart electric meters, Itron, estimates that American households are using 5 percent to 10 percent more electricity per month since March, when many people began working from home as part of an effort to prevent the spread of the coronavirus.

Another smart metering company, Cambridge, Mass.-based Sense, found that average home electricity usage increased 22 percent in April compared to the same period in 2019, a reflection of people using more electricity while they stayed home. Based on its analysis of data from 5,000 homes across 30 states, Sense officials said a typical customer's monthly electric bill increased by between $22 and $25, with a larger increase for consumers in states with higher electricity rates.

Connecticut-specfic data is harder to come by.

Officials with Orange-based United Illuminating declined to provide any customer usage data, though, like others in the power industry, they did acknowledge that residential customers are using more electricity. And the state's other large electric distribution utility, Eversource, was unable to provide any recent data on residential electric usage. The company did tell Connecticut utility regulators there was a 3 percent increase in residential power usage for the week of March 21 compared to the week before.

Over the same time period, Eversource officials saw a 3 percent decrease in power usage by commercial and industrial customers.

Separately, nuclear plant workers raised concerns about pandemic precautions at some facilities, reflecting operational strains.

Alan Behm of Cheshire said he normally uses 597 kilowatt hours of electricity during an average month. But in April of this year, the amount of electricity he used rose by nearly 51 percent.

With many offices closed, the expense of heating, cooking and lighting is being shifted from employer to employee, and some utilities such as Manitoba Hydro have pursued unpaid days off to trim costs during the pandemic. And one remote work expert believes some companies are recognizing the burden those added costs are placing on workers -- and are trying to do something about it.

Technology giant Google announced in late May that it was giving employees who work from home $1,000 allowances to cover equipment costs and other expenses associated with establishing a home office.

Moe Vela, chief transparency officer for the New York City-based computer software company TransparentBusiness, said the move by Google executives is a savvy one.

"Google is very smart to have figured this out," Vela said. "This is what employees want, especially millenials. People are so much happier to be working remotely, getting those two to three hours back per day that some people spend getting to and from work is so much more important than a stipend."

Vela predicted that even after a vaccine is found for the corona virus, one of the key worklife changes is likely to be a broader acceptance of telework and working from home.

Beyond the immediate shifts, more young Canadians would work in electricity if awareness improved, pointing to future talent pipelines.

"I think that's where we're headed," he said. "I think it will make an employer more attractive as they try to attract talent from around the world."

Vela said employers save an average of $11,000 per year for each employee they have working from home.

"It would be a brilliant move if a company were to share some of that amount with employees," he said. "I wouldn't do it if it's going to cause a company to not be there (in business) though."

The idea of a company sharing whatever savings it achieves by having employees work from home wasn't well received by many Connecticut residents who responded to questions posed via social media by Hearst Connecticut Media. More than 100 people responded and an overwhelming number of people spoke out against the idea.

"You are saving on gas and other travel related expenses, so the small increase in your electric bill shouldn't really be a concern," said Kathleen Bennett Charest of Wallingford.

Jim Krupp, also of Wallingford, said, "to suggest that the employers compensate the employees makes as much sense as suggesting that the employees should take a pay cut due to their reduced expenses for travel, day care, and eating lunch at work."

"Employers must still maintain their offices and incur all of the fixed expenses involved, including basic utilities, taxes and insurance," Krupp said. "The cost savings (for employers) that are realized are also offset by increased costs of creating and maintaining IT networks that allow employees to access their work sites from home and the costs of monitoring and managing the work force."

Kiki Nichols Nugent of Cheshire said she was against the idea of an employee trying to get their employer to pay for the increased electricity costs associated with working from home.

"I would not nickle and dime," Nugent said. "If companies are saving on electricity now, maybe employers will give better raises next year."

New Haven resident Chris Smith said he is "just happy to have a job where I am able to telecommute."

"When teleworking becomes more the norm, either now or in the future, we may see increased wages for teleworkers either for the lower cost to the employer or for the increase in productivity it brings," Smith said.

 

Related News

View more

Fixing California's electric grid is like repairing a car while driving

CAISO Clean Energy Transition outlines California's path to 100% carbon-free power by 2045, scaling renewables, battery storage, and offshore wind while safeguarding grid reliability, managing natural gas, and leveraging Western markets like EDAM.

 

Key Points

CAISO Clean Energy Transition is the plan to reach 100% carbon-free power by 2045 while maintaining grid reliability.

✅ Target: add 7 GW/year to reach 120 GW capacity by 2045

✅ Battery storage up 30x; smooths intermittent solar and wind

✅ EDAM and WEIM enhance imports, savings, and reliability

 

Mark Rothleder, Chief Operating Officer and Senior Vice President at the California Independent System Operator (CAISO), which manages roughly 80% of California’s electric grid, has expressed cautious optimism about meeting the state's ambitious clean energy targets while keeping the lights on across the grid. However, he acknowledges that this journey will not be without its challenges.

California aims to transition its power system to 100% carbon-free sources by 2045, ensuring a reliable electricity supply at reasonable costs for consumers. Rothleder, aware of the task's enormity, likens it to a complex car repair performed while the vehicle is in motion.

Recent achievements have demonstrated California's ability to temporarily sustain its grid using clean energy sources. According to Rothleder, the real challenge lies in maintaining this performance round the clock, every day of the year.

Adding thousands of megawatts of renewable energy into California’s existing 50-gigawatt system, which needs to expand to 120 gigawatts to meet the 2045 goal, poses a significant challenge, though recent grid upgrade funding offers some support for needed infrastructure. CAISO estimates that an addition of 7 gigawatts of clean power per year for the next two decades is necessary, all while ensuring uninterrupted power delivery.

While natural gas currently constitutes California's largest single source of power, Rothleder notes the need to gradually decrease reliance on it, even as it remains an operational necessity in the transition phase.

In 2023, CAISO added 5,660 megawatts of new power to the grid, with plans to integrate over 1,100 additional megawatts in the next six to eight months of 2024. Battery storage, crucial for mitigating the intermittent nature of wind and solar power, has seen substantial growth as California turns to batteries for grid support, increasing 30-fold in three years.

Rothleder emphasizes that electricity reliability is paramount, as consumers always expect power availability. He also highlights the potential of offshore wind projects to significantly contribute to California's power mix by 2045.

The offshore wind industry faces financial and supply chain challenges despite these plans. CAISO’s 20-year outlook indicates a significant increase in utility-scale solar, requiring extensive land use and wider deployment of advanced inverters for grid stability.

Addressing affordability is vital, especially as California residents face increasing utility bills. Rothleder suggests a broader energy cost perspective, encompassing utility and transportation expenses.

Despite smooth grid operations in 2023, challenges in previous years, including extreme weather-induced power outages driven by climate change, underscore the need for a robust, adaptable grid. California imports about a quarter of its power from neighbouring states and participates in the Western Energy Imbalance Market, which has yielded significant savings.

CAISO is also working on establishing an extended day-ahead electricity market (EDAM) to enhance the current energy market's success, building on insights from a Western grid integration report that supports expanded coordination.

Rothleder believes that a thoughtfully designed, diverse power system can offer greater reliability and resilience in the long run. A future grid reliant on multiple, smaller power sources such as microgrids could better absorb potential losses, ensuring a more reliable electricity supply for California.

 

Related News

View more

BNEF Report: Wind and Solar Will Provide 50% of Electricity in 2050

BNEF 2019 New Energy Outlook projects surging renewable energy demand, aggressive decarbonization, wind and solar cost declines, battery storage growth, coal phase-out, and power market reform to meet Paris Agreement targets through 2050.

 

Key Points

Bloomberg's NEO 2019 forecasts power demand, renewables growth, and decarbonization pathways through 2050.

✅ Predicts wind/solar to ~50% of global electricity by 2050

✅ Foresees coal decline; Asia transitions slower than Europe

✅ Calls for power market reform and battery integration

 

In a report that examines the ways in which renewable energy demand is expected to increase, Bloomberg New Energy Finance (BNEF) finds that “aggressive decarbonization” will be required beyond 2030 to meet the temperature goals of the Paris Agreement on climate change.

Focusing on electricity, BNEF’s 2019 New Energy Outlook (NEO) predicts a 62% increase in global power demand, leading to global generating capacity tripling between now and 2050, when wind and solar are expected to make up almost 50% of world electricity, as wind and solar gains indicate, due to decreasing costs.

The report concludes that coal will collapse everywhere except Asia, and, by 2032, there will be more wind and solar electricity than coal-fired electricity. It forecasts that coal’s role in the global power mix will decrease from 37% today, as renewables surpass 30% globally, to 12% by 2050 with the virtual elimination of oil as a power-generating source.

Highlighting regional differences, the report finds that:

Western European economies are already on a strong decarbonization path due to carbon pricing and strong policy support, with offshore wind costs dropping bolstering progress;

by 2040, renewables will comprise 90% of the electricity mix in Europe, with wind and solar accounting for 80%;

the US, with low-priced natural gas, and China, with its coal-fired plants, will transition more slowly even as 30% from wind and solar becomes feasible; and

China’s power sector emissions will peak in 2026 and then fall by more than half over the next 20 years, as solar PV growth accelerates, with wind and solar increasing from 8% to 48% of total electricity generation by 2050.

Power markets must be reformed to ensure wind, solar and batteries are properly remunerated for their contributions to the grid.

The 2019 report finds that wind and solar now represent the cheapest option for adding new power-generating capacity in much of the world, amid record-setting momentum, which is expected to attract USD 13.3 trillion in new investment. While solar, wind, batteries and other renewables are expected to attract USD 10 trillion in investment by 2050, the report warns that curbing emissions will require other technologies as well.

Speaking about the report, Matthias Kimmel, NEO 2019 lead analyst, said solar photovoltaic modules, wind turbines and lithium-ion batteries are set to continue on aggressive cost reduction curves of 28%, 14% and 18%, respectively, for every doubling in global installed capacity. He explained that by 2030, energy generated or stored and dispatched by these technologies will undercut electricity generated by existing coal and gas plants.

To achieve this level of transition and decarbonization, the report stresses, power markets must be reformed to ensure wind, solar and batteries are “properly remunerated for their contributions to the grid.”

Additionally, the 2019 NEO includes a number of updates such as:

  • new scenarios on global warming of 2°C above preindustrial levels, electrified heat and road transport, and an updated coal phase-out scenario;
  • new sections on coal and gas power technology, the future grid, energy access, and costs related to decarbonization technology such as carbon capture and storage (CCS), biogas, hydrogen fuel cells, nuclear and solar thermal;
  • sub-national results for China;
  • the addition of commercial electric vehicles;
  • an expanded air-conditioning analysis; and
  • modeling of Brazil, Mexico, Chile, Turkey and Southeast Asia in greater detail.

Every year, the NEO compares the costs of competing energy technologies, informing projections like US renewables at one-fourth in the near term. The 2019 report brought together 65 market and technology experts from 12 countries to provide their views on how the market might evolve.

 

Related News

View more

Seattle City Light's Initiative Helps Over 93,000 Customers Reduce Electricity Bills

Seattle City Light Energy Efficiency Programs help 93,000 residents cut bills with rebates, home energy audits, weatherization, conservation workshops, and sustainability tools, reducing electricity use and greenhouse gas emissions across Seattle communities.

 

Key Points

They are utility programs that lower electricity use and bills via rebates, energy audits, and weatherization services.

✅ Rebates for ENERGY STAR appliances and efficient HVAC upgrades

✅ Free audits with tailored recommendations and savings roadmaps

✅ Weatherization aid for low-income households and renters

 

In a noteworthy achievement for both residents and the environment, Seattle City Light has successfully helped more than 93,000 customers reduce their electricity bills through various energy efficiency programs. This initiative not only alleviates financial burdens for many households, amid concerns about pandemic-era shut-offs that heightened energy insecurity, but also aligns with the city’s commitment to sustainability and responsible energy use.

The Drive for Energy Efficiency

Seattle City Light, the city’s publicly owned electric utility, has been at the forefront of promoting energy efficiency among its customers. Recognizing that energy costs can strain household budgets, the utility has developed a range of programs and tracks emerging utility rate designs to help residents lower their energy consumption and, consequently, their bills.

One of the main aspects of this initiative is the emphasis on education and awareness. By providing customers with tools and resources to understand their energy usage, City Light empowers residents to make informed choices that can lead to substantial savings and prepare for power outage events as well.

Key Programs and Services

Seattle City Light offers a variety of programs aimed at reducing energy consumption. Among the most popular are:

  1. Energy Efficiency Rebates: Customers can receive rebates for purchasing energy-efficient appliances, such as refrigerators, washing machines, and HVAC systems. These appliances are designed to consume less electricity than traditional models, resulting in lower energy bills over time.

  2. Home Energy Audits: Free energy audits are available for residential customers. During these audits, trained professionals assess homes for energy efficiency and provide recommendations on improvements. This personalized service allows homeowners to understand specific changes that can lead to savings.

  3. Weatherization Assistance: This program is particularly beneficial for low-income households. By improving insulation, sealing air leaks, and enhancing overall energy efficiency, residents can maintain comfortable indoor temperatures without over-relying on heating and cooling systems.

  4. Community Workshops: Seattle City Light conducts workshops that educate residents about energy conservation strategies. These sessions cover topics such as smart energy use, seasonal tips for reducing consumption, and the benefits of renewable energy sources, highlighting examples of clean energy engagement in other cities.

The Impact on Households

The impact of these initiatives is profound. By assisting over 93,000 customers in lowering their electricity bills, Seattle City Light not only provides immediate financial relief but also encourages a long-term commitment to energy conservation. This collective effort has resulted in significant reductions in overall energy consumption, contributing to a decrease in greenhouse gas emissions—a critical step in the fight against climate change.

Additionally, the programs have been particularly beneficial for low-income households. By targeting these communities, Seattle City Light ensures that the benefits of energy efficiency reach those who need them the most, promoting equity-focused regulation and access to essential resources.

Looking Ahead: Challenges and Opportunities

While the success of these initiatives is commendable, challenges remain. Fluctuating energy prices can still pose difficulties for many households, especially those on fixed incomes, as some utilities explore minimum charges for low-usage customers in their rate structures. Seattle City Light recognizes the need for ongoing support and resources to help residents navigate these financial challenges.

The utility is committed to expanding its programs to reach even more customers in the future. This includes enhancing outreach efforts to ensure that residents are aware of the available resources, even as debates like utility revenue in a free-electricity future shape planning, and potentially forming partnerships with local organizations to broaden the impact of its initiatives.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.