Pickering families try to cut energy use 10 per cent

By Toronto Star


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Ally Zaheer wields a lot of power for a 5-year-old.

She runs around the family home turning off lights, television, running water – anything she thinks is wasting energy.

"She'll shut off lights when we're still in the room or turn the TV off when we're still watching it," says her mother Stephanie.

Ally not only takes energy conservation seriously, she's sparking the rest of the family to action.

"We had a cracked window where cold air was getting in and she kept saying `you really have to get that fixed this winter, mom'," adds Stephanie.

They've done that and more since signing up with "We have the power," a pilot project in Pickering to reduce household energy consumption by 10 per cent by the end of March.

About 750 families have joined the program, which is run by Durham Sustain Ability (DSA), a volunteer organization, with support from the ministry of energy, city of Pickering, energy company Veridian Corp. and Dominion Stores.

Already environmentally conscious, the Zaheers cranked up their efforts after Ally, who's in senior kindergarten, brought a DSA resource kit home from Rosebank Road Public School.

"You'd run out of water and electricity" if you waste energy, she explains. "Daddy leaves the TV on when he does the dishes and makes pancakes. And he leaves the water running too!"

"Daddy" insists Ally is exaggerating but admits her diligence is paying off.

"It's helping us because we used to leave the lights on all the time," says Najas Zaheer, a programmer analyst who works from home. "And I'm trying to keep the computer turned off more although that's not always convenient because I like to check email often."

While the youngest child Eleanor, 8 months, is a bit young to save the planet, Ally's working on her other sister, 3-year-old Olivia.

"I took Ally to pick up garbage for two hours on an environmental day when she was 4 and that stuck with her. Now she's teaching Olivia to pick up garbage," Stephanie says.

People of all ages have the power "to make a difference" starting at home, the source of 40 per cent of greenhouse gas emissions, says DSA's executive director Jack McGinnis.

He says electricity saved by a 10 per cent energy reduction in 1,000 households could supply Pickering's schools for a month.

The group's website, http://www.sustain-ability.ca, offers tips on reducing consumption along with a calculator to work out savings. Many of the ideas are low- or no-cost steps like lowering the thermostat, turning off power bars when computer and entertainment systems aren't in use and changing to compact fluorescent light bulbs.

Cecil Ramnauth, director of the Devi Mandir Hindu temple on Brock Rd., has seen the difference such measures can make. By changing 100-watt bulbs to compact fluorescents, they've reduced energy consumption by 66 per cent, says Ramnauth, who recently invited a DSA volunteer to a Sunday service to sign up congregants for the "We have the power" project.

The temple has also installed a solar panel to light the parking lot and started a composting and waste reduction plan, he says, crediting young people for driving energy conservation measures at the temple.

"They're really passionate about making a difference to the environment."

Rishe Binda, a university student and leader of the youth group, proudly points to a small pile of garbage in the corner of the auditorium: Trash from Sunday lunches for 400 has dropped from four bags to one, he says. Now they're switching from pop to water from a cooler to cut down on plastic bottles.

And the 10-year-old building is about to undergo an energy audit as part of "greening sacred spaces," says Stephanie Jagroop, 15, the temple's secretary for the energy conservation program in places of worship.

"Saving the environment is very important," she says, listing all the steps she follows at home such as dimming lights, watching less TV and using cold water for laundry.

"I'm encouraging everyone I know to sign up," she says, adding many of her friends and their parents are following her example.

Bidya Persaud, a member of the temple, already has her family of five washing dishes by hand and hanging laundry up to dry rather than use appliances.

But the Ajax resident is anxious to get more tips "for maximum savings" so she's registering with DSA's program when it expands into other areas of Durham Region next month.

"It just takes a little thought before it becomes a habit," she says about saving energy.

Related News

Scientists generate 'electricity from thin air.' Humidity could be a boundless source of energy.

Air Humidity Energy Harvesting converts thin air into clean electricity using air-gen devices with nanopores, delivering continuous renewable energy from ambient moisture, as demonstrated by UMass Amherst researchers in Advanced Materials.

 

Key Points

A method using nanoporous air-gen devices to harvest continuous clean electricity from ambient atmospheric moisture.

✅ Nanopores drive charge separation from ambient water molecules

✅ Works across materials: silicon, wood, bacterial films

✅ Predictable, continuous power unlike intermittent solar or wind

 

Sure, we all complain about the humidity on a sweltering summer day. But it turns out that same humidity could be a source of clean, pollution-free energy, aligning with efforts toward cheap, abundant electricity worldwide, a new study shows.

"Air humidity is a vast, sustainable reservoir of energy that, unlike wind and solar power resources, is continuously available," said the study, which was published recently in the journal Advanced Materials.

While humidity harvesting promises constant output, advances like a new fuel cell could help fix renewable energy storage challenges, researchers suggest.

“This is very exciting,” said Xiaomeng Liu, a graduate student at the University of Massachusetts-Amherst, and the paper’s lead author. “We are opening up a wide door for harvesting clean electricity from thin air.”

In fact, researchers say, nearly any material can be turned into a device that continuously harvests electricity from humidity in the air, a concept echoed by raindrop electricity demonstrations in other contexts.

“The air contains an enormous amount of electricity,” said Jun Yao, assistant professor of electrical and computer engineering at the University of Massachusetts-Amherst and the paper’s senior author. “Think of a cloud, which is nothing more than a mass of water droplets. Each of those droplets contains a charge, and when conditions are right, the cloud can produce a lightning bolt – but we don’t know how to reliably capture electricity from lightning.

"What we’ve done is to create a human-built, small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”

The heart of the human-made cloud depends on what Yao and his colleagues refer to as an air-powered generator, or the "air-gen" effect, which relates to other atmospheric power concepts like night-sky electricity studies in the field.

In broader renewable systems, flexible resources such as West African hydropower can support variable wind and solar output, complementing atmospheric harvesting concepts as they mature.

The study builds on research from a study published in 2020. That year, scientists said this new technology "could have significant implications for the future of renewable energy, climate change and in the future of medicine." That study indicated that energy was able to be pulled from humidity by material that came from bacteria; related bio-inspired fuel cell design research explores better electricity generation, the new study finds that almost any material, such as silicon or wood, also could be used.

The device mentioned in the study is the size of a fingernail and thinner than a single hair. It is dotted with tiny holes known as nanopores, it was reported. "The holes have a diameter smaller than 100 nanometers, or less than a thousandth of the width of a strand of human hair."

 

Related News

View more

Iceland Cryptocurrency mining uses so much energy, electricity may run out

Iceland Bitcoin Mining Energy Shortage highlights surging cryptocurrency and blockchain data center electricity demand, as hydroelectric and geothermal power strain to cool servers, stabilize grid, and meet rapid mining farm growth amid Arctic-friendly conditions.

 

Key Points

Crypto mining data centers in Iceland are outpacing renewable power, straining the grid and exceeding residential electricity demand.

✅ Hydroelectric and geothermal capacity nearing allocation limits

✅ Cooling-friendly climate draws energy-hungry mining farms

✅ Grid planning and regulation lag rapid data center growth

 

The value of bitcoin may have stumbled in recent months, but in Iceland it has known only one direction so far: upward. The stunning success of cryptocurrencies around the globe has had a more unexpected repercussion on the island of 340,000 people: It could soon result in an energy shortage in the middle of the Atlantic Ocean.

As Iceland has become one of the world's prime locations for energy-hungry cryptocurrency servers — something analysts describe as a 21st-century gold-rush equivalent — the industry’s electricity demands have skyrocketed, too. For the first time, they now exceed Icelanders’ own private energy consumption, and energy producers fear that they won’t be able to keep up with rising demand if Iceland continues to attract new companies bidding on the success of cryptocurrencies, a concern echoed by policy moves like Russia's proposed mining ban amid electricity deficits.

Companies have flooded Iceland with requests to open new data centers to “mine” cryptocurrencies in recent months, even as concerns mount that the country may have to slow down investments amid an increasingly stretched electricity generation capacity, a dynamic seen in BC Hydro's suspension of new crypto connections in Canada.

“There was a lot of talk about data centers in Iceland about five years ago, but it was a slow start,” Johann Snorri Sigurbergsson, a spokesman for Icelandic energy producer HS Orka, told The Washington Post. “But six months ago, interest suddenly began to spike. And over the last three months, we have received about one call per day from foreign companies interested in setting up projects here.”

“If all these projects are realized, we won’t have enough energy for it,” Sigurbergsson said.

Every cryptocurrency in the world relies on a “blockchain” platform, which is needed to trade with digital currencies. Tracking and verifying a transaction on such a platform is like solving a puzzle because networks are often decentralized, and there is no single authority in charge of monitoring payments. As a result, a transaction involves an immense number of mathematical calculations, which in turn occupy vast computer server capacity. And that requires a lot of electricity, as analyses of bitcoin's energy use indicate worldwide.

The bitcoin rush may have come as a surprise to locals in sleepy Icelandic towns that are suddenly bustling with cryptocurrency technicians, but there’s a simple explanation. “The economics of bitcoin mining mean that most miners need access to reliable and very cheap power on the order of 2 or 3 cents per kilowatt hour. As a result, a lot are located near sources of hydro power, where it’s cheap,” Sam Hartnett, an associate at the nonprofit energy research and consulting group Rocky Mountain Institute, told the Washington Post.

Top financial regulators briefed a Senate panel on Feb. 6 about their work with cryptocurrencies like Bitcoin, and the risks to potential investors. (Reuters)

Located in the middle of the Atlantic Ocean and famous for its hot springs and mighty rivers, Iceland produces about 80 percent of its energy in hydroelectric power stations, compared with about 6 percent in the United States, and innovations such as underwater kites illustrate novel ways to harness marine energy. That and the cold climate make it a perfect location for new data-mining centers filled with servers in danger of overheating.

Those conditions have attracted scores of foreign companies to the remote location, including Germany's Genesis Mining, which moved to Iceland about three years ago. More have followed suit since then or are in the process of moving. 

While some analysts are already sensing a possible new revenue source for the country that is so far mostly known abroad as a tourist haven and low-budget airline hub, others are more concerned by a phenomenon that has so far mostly alarmed analysts because of its possible financial unsustainability, alongside issues such as clean energy's dirty secret that complicate the picture. Some predictions have concluded that cryptocurrency computer operations may account for “all of the world’s energy by 2020” or may already account for the equivalent of Denmark's energy needs. Those predictions are probably too alarmist, though. 

Most analysts agree that the real energy-consumption figure is likely smaller, and several experts recently told the Washington Post that bitcoin — currently the world's biggest cryptocurrency — used no more than 0.14 percent of the world’s generated electricity, as of last December. Even though global consumption may not be as significant as some have claimed, it still presents a worrisome drain for a tiny country such as Iceland, where consumption suddenly began to spike with almost no warning — and continues to grow fast.

Some networks are considering or have already pushed through changes to their protocols, designed to reduce energy use. But implementing such changes for the leading currency, bitcoin, won't be as easy because it is inherently decentralized. The companies that provide the vast amounts of computing power needed for these transactions earn a small share, comparable to a processing fee or a reward.

They are the source of the Icelandic bitcoin miners’ income — a revenue source that many Icelanders are still not quite sure what to make of, especially if the lights start flickering.

 

Related News

View more

Manitoba looking to raise electricity rates 2.5 per cent each year for 3 years

Manitoba Hydro Rate Increase sets electricity rates up 2.5% annually for three years via Bill 35, bypassing PUB hearings, citing Crown utility debt and pandemic impacts, with legislature debate and a multi-year regulatory review ahead.

 

Key Points

A government plan to lift electricity rates 2.5% annually over three years via Bill 35, bypassing PUB hearings.

✅ 2.5% annual hikes for three years set in legislation

✅ Bypasses PUB rate hearings during pandemic recovery

✅ Targets Crown utility debt; multi-year review planned

 

The Manitoba government is planning to raise electricity rates, with Manitoba Hydro scaling back next year, by 2.5 per cent a year over the next three years.

Finance Minister Scott Fielding says the increases, to be presented in a bill before the legislature, are the lowest in a decade and will help keep rates among the lowest in Canada, even as SaskPower's 8% hike draws scrutiny in a neighbouring province.

Crown-owned Manitoba Hydro had asked for a 3.5 per cent increase this year, similar to BC Hydro's 3% rise, to help pay off billions of dollars in debt.

“The way we figured this out, we looked at the rate increases that were approved by PUB (Public Utilities Board) over the last ten years, (and) we went to 75 per cent of that,” Fielding said during a Thursday morning press conference.

“It’s a pandemic, we know that there’s a lot of people that are unemployed, that are struggling, we know that businesses need to recharge after the business (sic), so this will provide them an appropriate break.”

Electricity rates are normally set by the Public Utilities Board, a regulatory body that holds rate hearings and examines the Crown corporation’s finances.

The Progressive Conservative government has temporarily suspended the regulatory process and has set rates itself, while Ontario rate legislation to lower rates moved forward in its jurisdiction.

Manitoba Liberal leader Dougald Lamont was quick to condemn the move, noting parallels to Ontario price concerns before saying in a news release the PCs “are abusing their power and putting Hydro’s financial future at risk by fixing prices in the hope of buying some political popularity.”

“Hydro’s rates should be set by the PUB after public hearings, not figured out on the back of a napkin in the Premier’s office,” Lamont wrote.

Fielding noted the increase would appear as an amendment to Bill 35, which will appear in the legislature this fall, as BC Hydro plans multi-year increases proceed elsewhere.

“All members of the legislative assembly will vote and debate this rate increase on Bill 35,” Fielding said.

“This will give the PUB time to implement reforms, and allow the utilities to prepare a more rigorous, multi-year review application process.”

 

Related News

View more

China to build 2,000-MW Lawa hydropower station on Jinsha River

Lawa Hydropower Station approved on the Jinsha River, a Yangtze tributary, delivers 2,000 MW via four units; 784 ft dam, 12 sq mi reservoir, Sichuan-Tibet site, US$4.59b investment, Huadian stake, renewable energy generation.

 

Key Points

A 2,000 MW dam project on the Jinsha River with four units, a 784 ft barrier, and 8.36 billion kWh annual output.

✅ Sichuan-Tibet junction on the Jinsha River

✅ 2,000 MW capacity; four turbine-generator units

✅ 8.36 bn kWh/yr; US$4.59b total; Huadian 48% stake

 

China has approved construction of the 2,000-MW Lawa hydropower station, a Yangtze tributary hydropower project on the Jinsha River, multiple news agencies are reporting.

Lawa, at the junction of Sichuan province and the Tibet autonomous region, will feature a 784-foot-high dam and the reservoir will submerge about 12 square miles of land. The Jinsha River is a tributary of the Yangtze River, and the project aligns with green hydrogen development in China.

The National Development and Reform Commission of the People’s Republic of China, which also guides China's nuclear energy development as part of national planning, is reported to have said that four turbine-generator units will be installed, and the project is expected to produce about 8.36 billion kWh of electricity annually.

Total investment in the project is to be US$4.59 billion, and Huadian Group Co. Ltd. will have a 48% stake in the project, reflecting overseas power infrastructure activity, with minority stakes held by provincial firms, according to China Daily.

In other recent news in China, Andritz received an order in December 2018 to supply four 350-MW reversible pump-turbines and motor-generators, alongside progress in compressed air generation technologies, for the 1,400-MW ZhenAn pumped storage plant in Shaanxi province.

 

Related News

View more

California faces huge power cuts as wildfires rage

California Wildfire Power Shut-Offs escalate as PG&E imposes blackouts amid high winds, Getty and Kincade fires, mass evacuations, Sonoma County threats, and a state of emergency, drawing regulatory scrutiny over grid safety and outage scope.

 

Key Points

Planned utility outages to curb wildfire risk during extreme winds, prompting evacuations and regulatory scrutiny.

✅ PG&E preemptive blackouts under regulator inquiry

✅ Getty and Kincade fires drive mass evacuations

✅ Sonoma County under threat amid high winds

 

Pacific Gas & Electric (PG&E) already faces an investigation by regulators after cutting supplies to 970,000 homes and businesses amid California blackouts that raised concerns.

It announced that another 650,000 properties would face precautionary shut-offs.

Wildfires fanned by the strong winds are raging in two parts of the state.

Thousands of residents near the wealthy Brentwood neighbourhood of Los Angeles have been told to evacuate because of a wildfire that began early on Monday.

Further north in Sonoma County, a larger fire has forced 180,000 people from their homes.

California's governor has declared a state-wide emergency.

 

What about the power cuts?

On Monday regulators announced a formal inquiry into whether energy utilities broke rules by pre-emptively cutting power to an estimated 2.5 million people, amid a blackouts policy debate that intensified, as wildfire risks soared.

They did not name any utilities but analysts said PG&E was responsible for the bulk of the "public safety power shut-offs", and later faced a Camp Fire guilty plea that underscored its liabilities.

The company filed for bankruptcy in January after facing hundreds of lawsuits from victims of wildfires in 2017 and 2018.

Of the 970,000 properties hit by the most recent cuts, under half had their services back by Monday, and some sought help through wildfire assistance programs, the Associated Press reported.

Despite criticism that the precautionary blackouts were too widespread and too disruptive, PG&E said more would come on Tuesday and Wednesday because further strong winds were expected.

The company said it had logged more than 20 preliminary reports of damage to its network from the most recent windstorm.

In a video posted to Twitter on Saturday, Governor Gavin Newsom said the power cuts were "infuriating everyone, and rightfully so".

 

Where are the fires now?

In Los Angeles, the Getty Fire has burned over 600 acres (242 ha) and about 10,000 buildings are in the mandatory evacuation zone.

At least eight homes have been destroyed and five others damaged.

"If you are in an evacuation zone, don't screw around," Mr Schwarzenegger tweeted. "Get out."

LA fire chief Ralph Terrazas said fire crews had been "overwhelmed" by the scale of the fires.

"They had to make some tough decisions on which houses they were able to protect," he said.

"Many times it depends on where the ember lands. I saw homes that were adjacent to homes that were totally destroyed, without any damage."

In northern California, schools remain closed in Sonoma County, where tens of thousands of homes and businesses are under threat.

Sonoma has been ravaged by the Kincade Fire, which started on Wednesday and has burned through 50,000 acres of land, fanned by the winds.

The Kincade Fire began seven minutes after a nearby power line was damaged, and power lines may have started fires according to reports, but PG&E has not yet confirmed if the power glitch started the blaze.

About 180,000 people have been ordered to evacuate, with roads around Santa Rosa north of San Francisco packed with cars as people tried to flee.

There are fears the flames could cross the 101 highway and enter areas that have not seen wildfires since the 1940s.

 

Related News

View more

Ontario to seek new wind, solar power to help ease coming electricity supply crunch

Ontario Clean Grid Plan outlines emissions-free electricity growth, renewable energy procurement, nuclear expansion at Bruce and Darlington, reduced natural gas, grid reliability, and net-zero alignment to meet IESO demand forecasts and EV manufacturing loads.

 

Key Points

A plan to expand emissions-free power via renewables and nuclear, cut natural gas use, and meet growing demand.

✅ Targets renewables, hydro, and nuclear capacity growth

✅ Aims to reduce reliance on gas for grid reliability

✅ Aligns with IESO demand forecasts and EV manufacturing loads

 

Ontario is working toward filling all of the province’s quickly growing electricity needs with emissions-free sources, including a plan to secure new renewable generation and clean power options, but isn’t quite ready to commit to a moratorium on natural gas.

Energy Minister Todd Smith announced Monday a plan to address growing energy needs for 2030 to 2050 — the Independent Electricity System Operator projects Ontario’s electricity demand could double by mid-century — and next steps involve looking for new wind, solar and hydroelectric power.

“While we may not need to start building today, government and those in the energy sector need to start planning immediately, so we have new clean, zero-emissions projects ready to go when we need them,” Smith said in Windsor, Ont.

The strategy also includes two nuclear projects announced last week — a new large-scale nuclear plant at Bruce Power on the shore of Lake Huron and three new small modular reactors at the site of the Darlington nuclear plant east of Toronto.

Those projects, enough to power six million homes, will help Ontario end its reliance on natural gas to generate electricity, said Smith, but committing to a natural gas moratorium in 2027 and eliminating natural gas by 2050 is contingent on the federal government helping to speed up the new nuclear facilities.

“Today’s report, the Powering Ontario’s Growth plan, commits us to working towards a 100 per cent clean grid,” Smith said in an interview.

“Hopefully the federal government can get on board with our intentions to build this clean generation as quickly as possible … That will put us in a much better position to use our natural gas facilities less in the future, if we can get those new projects online.”

The IESO has said that natural gas is required to ensure supply and stability in the short to medium term, as Ontario works on balancing demand and emissions across the grid, but that it will also increase greenhouse gas emissions from the electricity sector.

The province is expected to face increased demand for electricity from expanded electric vehicle use and manufacturing in the coming years, even as a $400-billion cost estimate for greening the grid is debated.

Keith Brooks, programs director for Environmental Defence, said the provincial plan could have been much more robust, containing firm timelines and commitments.

“This plan does not commit to getting emissions out of the system,” he said.

“It doesn’t commit to net zero, doesn’t set a timeline for a net zero goal or have any projection around emissions from Ontario’s electricity sector going forward. In fact, it’s not really a plan. It doesn’t set out any real goals and it doesn’t it doesn’t project what Ontario’s supply mix might look like.”

The Canadian Climate Institute applauded the plan’s focus on reducing reliance on gas-fired generation and emphasizing non-emitting generation, but also said there are still some question marks.

“The plan is silent on whether the province intends to construct new gas-fired generation facilities,” even as new gas plant expansions are proposed, senior research director Jason Dion wrote in a statement.

“The province should avoid building new gas plants since cost-effective alternatives are available, and such facilities are likely to end up as stranded assets. The province’s timeline for reaching net zero generation is also unclear. Canada and other G7 countries have set a target for 2035, something Ontario will need to address if it wants to remain competitive.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.