Pilot project will see energy-efficient bulbs in streetlights

By Cobourg Daily Star


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
A "green" street-lighting replacement pilot project will make Cobourg one of a kind in North America, says Mayor Peter Delanty.

The new "induction lighting" system will garner attention for the community, save energy, be good for the environment and save money, he told those attending a surprise announcement in his Victoria Hall office recently.

The mayor made his announcement as the town is readying itself to participate in this Saturday's Earth Hour (March 29, 8 to 9.m.) lights off/energy reduction challenge with Port Hope, part of the worldwide event to draw attention to climate change.

Energy-saving lighting manufacturer Luxlite approached Cobourg Networks Inc., a town-controlled utility company, asking if it would take part in a pilot project for its energy-saving lights, Mr. Delanty said. That was last fall. The project was researched and town councillors attended a Cobourg Networks Inc. meeting to hear details.

"Cobourg has agreed, in principle, to take an extraordinary step in changing the lighting in all 2,395 of the town's street lights from the energy-heating, high-pressure sodium lights to the new induction lighting system," according to the mayor's release.

Cobourg Networks Inc., the retail arm of Lakefront Utilities, will foot the estimated conversion cost of about $1.25-million and the Town of Cobourg will repay it at the rate of about $205,000 yearly - which is about what the town is now spending on energy costs and maintaining its streetlights, according to an interview and report from town treasurer Ian Davey.

An analysis of replacing the town's streetlight system at one time versus over a period of years was costed out and Mr. Davey's report states: "The final analysis suggests that the alternative of replacing the entire system with new technology in 2008 would result in approximate savings of $1.3-million over the next 20 years - or annual savings of $65,000."

It would also cut energy costs in half, eliminate maintenance costs for the first five years and reduce them in future years and provide more predictable budgeting, Mr. Davey predicts.

"This is a significant step in conserving energy and improving the environment," Cobourg Networks Inc. board member John Farrell said. The positive impact on the environment is "central to the proposal" he stressed.

Cobourg is taking a leadership role, Mr. Farrell added.

Mr. Delanty said that the time was right for this project.

"Many of our streetlights are past their life span and need to be replaced," he said.

The town has been replacing light fixtures on a previous program, but not with the energy-saving technology of induction lighting. Lakeshore Utilities Inc. president Bruce Craig said the lights have such a long life because there are no contacts to wear out. They also provide white light, "so you can see better."

The results is twice the light for half the energy cost.

Luxlite will be providing the light fixture and the bulb. One is already installed on King Street across from St. Peter's Anglican Church, and can be readily identified by the white light it emits at night, those gathered in the mayor's officer were told.

Luxlite provided lighting for the Lake City Winter Olympics and the Vancouver Winter Games, the mayor said.

Its sales director, Arthur Hossain, said his company became aware of Cobourg's potential as a pilot street-lighting project for their product because Luxlite sales associate Wayne Helmer has lived in Cobourg for 35 years. He was "passionate" Luxlite should do something for his town, Mr. Hossain said.

Cobourg's decision to change all its street lighting and go green with Luxlite technology will be showcased on the company's Web site providing positive exposure for the town, he said.

While the estimated cost to change 2,395 of the town's streetlights (including heritage lighting conversions) to Luxlite fixtures and bulbs is $1.25-million, the actual cost is twice that, Mr. Hossain said. Asked about payment, he said the company is still working out the details.

"We're very flexible," he said.

Related News

Britain's energy security bill set to become law

UK Energy Security Bill drives private investment, diversifies from fossil fuels with hydrogen and offshore wind, strengthens an independent system operator, and extends the retail price cap to shield consumers from volatile gas markets.

 

Key Points

A UK plan to reform energy, cut fossil fuel reliance, boost hydrogen and wind, and extend the retail price cap.

✅ Targets £100bn private investment and 480,000 jobs by 2030.

✅ Creates an independent system operator for grid planning.

✅ Extends retail energy price cap; mitigates volatile gas costs.

 

The British government said that plans to bolster the country's energy security, diversify away from fossil fuels amid the Europe energy crisis and protect consumers from spiralling prices are set to become law.

Britain's energy security bill will be introduced to Parliament on Wednesday and includes 26 measures to reform the energy system, including ending the gas-electricity price link, and reduce its dependency on fossil fuels and exposure to volatile gas prices.

Global energy prices have skyrocketed this year, and UK natural gas and electricity have risen sharply, particularly after Russia's invasion of Ukraine which has led to many European countries trying to reduce reliance on Russian pipeline gas and seek cheaper alternatives.

The bill will help drive 100 billion pounds ($119 billion) of private sector investment by 2030 into industries to diversify Britain's energy supply, including hydrogen and offshore wind, which could help lower costs as a 16% decrease in bills in April is anticipated, and create around 480,000 jobs by the end of the decade, the government said.

"We’re going to slash red tape, get investment into the UK, and grab as much global market share as possible in new technologies to make this plan a reality," Business and Energy Secretary Kwasi Kwarteng, amid high winter energy costs, said in a statement.

The bill will establish a new independent system operator to coordinate and plan Britain's energy system, while MPs move to restrict prices for gas and electricity through oversight.

It will also enable the extension of a cap on retail energy prices beyond 2023, with the price cap cost under scrutiny, which limits the amount suppliers can charge for each unit of gas and electricity.

The bill will also enable the secretary of state to prevent potential disruptions to the downstream oil sector due to industrial action or malicious protests, the government added.

 

Related News

View more

High Natural Gas Prices Make This The Time To Build Back Better - With Clean Electricity

Build Back Better Act Energy Savings curb volatile fossil fuel heating bills by accelerating electrification and renewable electricity, insulating households from natural gas, propane, and oil price spikes while cutting emissions and lowering energy costs.

 

Key Points

BBBA policies expand clean power and electrification to curb volatility, lower bills, and cut emissions.

✅ Tax credits for renewables, EVs, and efficient all-electric homes

✅ Shields households from natural gas, propane, and heating oil spikes

✅ Cuts methane, lowers bills, and improves grid reliability and jobs

 

Experts are forecasting serious sticker shock from home heating bills this winter. Nearly 60 percent of United States’ households heat their homes with fossil fuels, including natural gas, propane, or heating oil, and these consumers are expected to spend much more this winter because of fuel price increases.

That could greatly burden many families and businesses already operating on thin margins. Yet homes that use electricity for heating and cooking are largely insulated from the pain of volatile fuel markets, and they’re facing dramatically lower price increases as a result.

Projections say cost increases for households could range anywhere from 22% to 94% more, depending on the fuel used for heating and the severity of the winter temperatures. But the added expenditures for the 41% of U.S. households using electricity for heating are much less stark—these consumers will see only a 6% price increase on average. The projected fossil fuel price spikes are largely due to increased demand, limited supply, declining fuel stores, and shifting investment priorities in the face of climate change.

The fossil fuel industry is already seizing this moment to use high prices to persuade policymakers to vote against clean energy policies, particularly the Build Back Better Act (BBBA). Spokespeople with ties to the fossil fuel industry and some consumer groups are trying to pin higher fuel prices on the proposed legislation even before it has passed, even as analyses show the energy crisis is not spurring a green revolution on its own, let alone begun impacting fuel markets. But the claim the BBBA would cost Americans and the economy is false.

The facts tell a different story. Adopting smart climate policies and accelerating the clean energy transition are precisely the solutions to counter this vicious cycle by ending our dependance on volatile fossil fuels. The BBBA will ensure reliable, affordable clean electricity for millions of Americans, in line with a clean electricity standard many experts advocate—a key strategy for avoiding future vulnerability. Unlike fossil fuels subject to the whims of a global marketplace, wind and sunshine are always free. So renewable-generated electricity comes with an ultra-low fixed price decades into the future.

By expanding clean energy and electric vehicle tax credits, creating new incentives for efficient all-electric homes, and dedicating new funding for state and local programs, the BBBA provides practical solutions that build on lessons from Biden's climate law to protect Americans from price shocks, save consumers money, and reduce emissions fueling dangerous climate change.


What’s really causing the gas price spikes?
The U.S. Energy Information Administration’s winter 2021 energy price forecasts project that homes heated with natural gas, fuel oil, and propane will see average price increases of 30%, 43%, and 54%, respectively. Those who heat their homes with electricity, on the other hand, should expect a modest 6% increase. At the pump, drivers are seeing some of the highest gas prices in nearly a decade as the U.S. energy crisis ripples through electricity, gas, and EV markets today. And the U.S. is not alone. Countries around the globe are experiencing similar price jumps, including Britain's high winter energy costs this season.

A closer look confirms the cause of these high prices is not clean energy or climate policies—it’s fossil fuels themselves.  

First, the U.S. (and the world) are just now feeling the effects of the oil and gas industry’s reduced fuel production and spending due to the pandemic. COVID-19 brought the world’s economies to a screeching halt, and most countries have not returned to pre-COVID economic activity. During the past 20 months, the oil and gas industry curtailed its production to avoid oversupply as demand fell to all-time lows. Just as businesses were reopening, stored fuel was needed to meet high demand for cooling during 2021’s hottest summer on record, driving sky-high summer energy bills for many households. February’s Texas Big Freeze also disrupted gas distribution and production.

The world is moving again and demand for goods and services is rebounding to pre-pandemic levels. But even with higher energy demand, OPEC announced it would not inject more oil into the economy. Major oil companies have also held oil and gas spending flat in 2021, with their share of overall upstream spending at 25%, compared with nearly 40% in the mid-2010s. And as climate change threats loom in the financial world, investors are reducing their exposure to the risks of stranded assets, increasingly diversifying and divesting from fossil fuels. 

Second, despite strong and sustained growth for renewable energy, energy storage, and electric vehicles, the relatively slow pace to adopt fossil fuel alternatives at scale has left U.S. households and businesses tethered to an industry well-known for price volatility. Today, some oil drillers are using profits from higher gas prices to pay back debt and reward shareholders as demanded by investors, instead of increasing supply. Rising prices for a limited commodity in high demand is generating huge profits for many of the world’s largest companies at the expense of U.S. households.

Because 48% of homes use fossil gas for heating and another 10% heat with propane and fuel oil, more than half of U.S. households will feel the impact of rising prices on their home energy bills. One in four U.S. households continues to experience a high energy burden (meaning their energy expenses consume an inordinate amount of their income), including risks of pandemic power shut-offs that deepen energy insecurity, and many are still experiencing financial hardships exacerbated by the pandemic. Those with inefficient fossil-fueled appliances, homes, and cars will be hardest hit, and many families with fixed- and lower-incomes could be forced to choose between heat or other necessities.

We have the solutions—the BBBA will unlock their benefits for all households

Short-term band-aids may be enticing, but long-term policies are the only way out of this negative feedback loop. Clean energy and building electrification will prevent more costly disasters in the future, but they’re the very solutions the fossil fuel industry fights at every turn. All-electric homes and vehicles are a natural hedge against the price spikes we’re experiencing today since renewables are inherently devoid of fuel-related price fluctuations.

RMI analysis shows all-electric single-family homes in all regions of the country have lower energy bills than a comparable mixed fuel-homes (i.e., electricity and gas). Electric vehicles also save consumers money. Research from University of California, Berkeley and Energy Innovation found consumers could save a total of $2.7 trillion in 2050—or $1,000 per year, per household for the next 30 years—if we accelerate electric vehicle deployment in the coming decade.

The BBBA would help deliver these consumer savings by expanding and expediting clean energy, while ensuring equitable adoption among lower-income households and underserved communities. Extending and expanding clean energy tax credits; new incentives for electric vehicles (including used electric vehicles); and new incentives for energy efficient homes and all-electric appliances (and electrical upgrades) will reduce up-front costs and spur widespread adoption of all-electric homes, buildings, and cars.

A combination of grants, incentives, and programs will promote private sector investments in a decarbonized economy, while also funding and supporting state and local governments already leading the way. The BBBA also allocates dedicated funding and makes important modifications (such as higher rebate amounts and greater point-of-purchase availability) to ensure these technologies are available to low-income households, underserved urban and rural communities, tribes, frontline communities, and people living in multifamily housing.

Finally, the BBBA proposes to make oil and gas polluters pay for the harm they are causing to people’s health and the climate through a methane fee. This fee would cost companies less than 1% of their revenue, meaning the industry would retain over 99% of its profits. In return return we’d see substantial reductions of a powerful greenhouse gas and a healthier environment in communities living near fossil fuel production. These benefits also come with a stronger economy—Energy Innovation analysis shows the methane fee would create more than 70,000 jobs by 2050 and boost gross domestic product more than $250 billion from 2023 to 2050.

The facts speak for themselves. Gas prices are rising because of reasons totally unrelated to smart climate and clean energy policies, which research shows actually lower costs. For the first time in more than a decade, America has the opportunity to enact a comprehensive energy policy that will yield measurable savings to consumers and free us from oil and gas industry control over our wallets.

The BBBA will help the U.S. get off the fossil fuel rollercoaster and achieve a stable energy future, ensuring that today’s price spikes will be a thing of the past. Proving, once and for all, that the solution to our fossil fuel woes is not more fossil fuels.

 

Related News

View more

Sudbury Hydro crews aim to reconnect service after storm

Sudbury Microburst Power Outage strains hydro crews after straight-line winds; New Sudbury faces downed power lines, tree damage, and hazardous access as restoration efforts, mutual aid, and safety protocols aim to reconnect customers by weekend.

 

Key Points

A microburst downed lines in New Sudbury, cutting power as crews tackle hazardous access and complex repairs.

✅ Straight-line winds downed poles, trees, and service lines

✅ Crews face backyard access hazards, complex reconnections

✅ Mutual aid linemen, arborists, and crane work speed restoration

 

About 300 Sudbury Hydro customers are still without power Thursday after Monday's powerful microburst storm, part of a series of damaging storms in Ontario seen across the province.

The utility's spokesperson, Wendy Watson, says the power in the affected New Sudbury neighbourhoods should be back on by the weekend, even as Toronto power outages persisted in a recent storm.

The storm, which Environment Canada said was classified as a microburst or straight line wind damage, similar to a severe windstorm in Quebec, downed a number of power lines in the city.

Now crews are struggling with access to the lines, a challenge that BC Hydro's atypical storm response also highlighted, as they work to reconnect service in the area.

"In some cases, you can't get to someone's back yard, or you have to go through the neighbour's yard," Watson said.

"We have one case where [we had] equipment working over a swimming pool. It's dicey, it's really dirty and it's dangerous."

Monday's storm caused massive property damage across the city, particularly in New Sudbury. (Benjamin Aubé/CBC)

Veteran arborist Jim Allsop told CBC News he hasn't seen damage like this in his 30-plus years in the business.

"I don't know how many we've done up to date, but I have another 35 trees on houses," Allsop said. "We'll be probably another week."

"We've rented a crane to help speed up the process, and increase safety, and we're getting five or six done in our 12-hour days."

Scott Aultman, a lineman with North Bay Hydro, said he has seen a few storms in his career, and isn't usually surprised by extensive damage a storm can cause.

"When you see a trailer on its side, you know, you don't see that every day," Aultman said.

But during the clean up, Aultman said the spirit of camaraderie runs high with crews from different areas, as seen when Canadian crews helped Florida during Hurricane Irma.

"We were pumped. It's part of the trade, everybody gets together," Aultman said. "We had a big storm in 2006 and the Sudbury guys were up helping us, so it's great, it's nice to be able to return the favour and help them out."

 

Related News

View more

B.C. Hydro doing good job managing billions in capital assets, says auditor

BC Hydro Asset Management Audit confirms disciplined oversight of dams, generators, power lines, substations, and transformers, with robust lifecycle planning, reliability metrics, and capital investment sustaining aging infrastructure and near full-capacity performance.

 

Key Points

Audit confirming BC Hydro's asset governance and lifecycle planning, ensuring safe, reliable grid infrastructure.

✅ $25B in assets; many facilities operating near full capacity.

✅ 80% of assets are dams, generators, lines, poles, substations, transformers.

✅ $2.5B invested in renewal, repair, and replacement in fiscal 2018.

 

A report by B.C.’s auditor-general says B.C. Hydro is doing a good job managing the province’s dams, generating stations and power lines, including storm response during severe weather events.

Carol Bellringer says in the audit that B.C. Hydro’s assets are valued at more than $25 billion and even though some generating facilities are more than 85 years old they continue to operate near full-capacity and can accommodate holiday demand peaks when needed.

The report says about 80 per cent of Hydro’s assets are dams, generators, power lines, poles, substations and transformers that are used to provide electrical service to B.C., where residential electricity use shifted during the pandemic.

The audit says Hydro invested almost $2.5 billion to renew, repair or replace the assets it manages during the last fiscal year, ending March 31, 2018, and, in a broader context, bill relief has been offered to only part of the province.

Bellringer’s audit doesn’t examine the $10.7 billion Site C dam project, which is currently under construction in northeast B.C. and not slated for completion until 2024.

She says the audit examined whether B.C. Hydro has the information, practices, processes and systems needed to support good asset management, at a time when other utilities are dealing with pandemic impacts on operations.

 

 

Related News

View more

Cape Town to Build Own Power Plants, Buy Additional Electricity

Cape Town Renewable Energy Plan targets 450+ MW via solar, wind, and battery storage, cutting Eskom reliance, lowering greenhouse gas emissions, stabilizing electricity prices, and boosting grid resilience through municipal procurement, PPAs, and city-owned plants.

 

Key Points

A municipal plan to procure over 450 MW, cut Eskom reliance, stabilize prices, and reduce Cape Town emissions.

✅ Up to 150 MW from private plants within the city

✅ 300 MW to be purchased from outside Cape Town later

✅ City financing 100-200 MW of its own generation

 

Cape Town is seeking to secure more than 450 megawatts of power from renewable sources to cut reliance on state power utility Eskom Holdings SOC Ltd., where wind procurement cuts were considered during lockdown, and reduce greenhouse gas emissions.

South Africa’s second-biggest city is looking at a range of options, including geothermal exploration in comparable markets, and expects the bulk of the electricity to be generated from solar plants, Kadri Nassiep, the city’s executive director of energy and climate change, said in an interview.

On July 14 the city of 4.6 million people released a request for information to seek funding to build its own plants. This month or next it will seek proposals for the provision of as much as 150 megawatts from privately owned plants, largely solar additions, to be built and operated within the city, he said. As much as 300 megawatts may also be purchased at a later stage from plants outside of Cape Town, according to Nassiep.

The city could secure finance to build 100 to 200 megawatts of its own generation capacity, Nassiep said. “We realized that it is important for the city to be more in control around the pricing of the power,” he added.

Power Outages

Cape Town’s foray into the securing of power from sources other than Eskom comes after more than a decade of intermittent electricity outages, while elsewhere in Africa coal projects face scrutiny from lenders, because the utility can’t meet national demand. The government last year said municipalities could find alternative suppliers.

Earlier this month Ethekwini, the municipal area that includes the city of Durban, issued a request for information for the provision of 400 megawatts of power, similar to BC Hydro’s call for power driven by EV uptake.

The City of Johannesburg will in September seek information and proposals for the construction of a 150-megawatt solar plant, reflecting moves like Ontario’s new wind and solar procurements to tackle supply gaps, 50 megawatts of rooftop solar panels and the refurbishment of an idle gas-fired plant that could generate 20 megawatts, it said in June. It will also seek information for the installation of 100 megawatts of battery storage.

Cape Town, which uses a peak of 1,800 megawatts of electricity in winter, hopes to start generating some of its own power next year, aligning with SaskPower’s 2030 renewables plan seen in Canada, according to a statement that accompanied its request for financing proposals.
 

 

Related News

View more

Four Facts about Covid and U.S. Electricity Consumption

COVID-19 Impact on U.S. Electricity Consumption shows commercial and industrial demand dropped as residential use rose, with flattened peak loads, weekday-weekend convergence, Texas hourly data, and energy demand as a real-time economic indicator.

 

Key Points

It reduced commercial and industrial demand while raising residential use, shifting peaks and weekday patterns.

✅ Commercial electricity down 12%; industrial down 14% in Q2 2020

✅ Residential use up 10% amid work-from-home and lockdowns

✅ Peaks flattened; weekday-weekend loads converged in Texas

 

This is an important turning point for the United States. We have a long road ahead. But one of the reasons I’m optimistic about Biden-Harris is that we will once again have an administration that believes in science.

To embrace this return to science, I want to write today about a fascinating new working paper by Tufts economist Steve Cicala.

Professor Cicala has been studying the effect of Covid on electricity consumption since back in March, when the Wall Street Journal picked up his work documenting an 18% decrease in electricity consumption in Italy.

The new work, focused on the United States, is particularly compelling because it uses data that allows him to distinguish between residential, commercial, and industrial sectors, against a backdrop of declining U.S. electricity sales over recent years.

Without further ado, here are four facts he uncovers about Covid and U.S. electricity demand during COVID-19 and consumption.

 

Fact #1: Firms Are Using Less
U.S. commercial electricity consumption fell 12% during the second quarter of 2020. U.S. industrial electricity consumption fell 14% over the same period.

This makes sense. The second quarter was by some measures, the worst quarter for the U.S. economy in over 145 years!

Economic activity shrank. Schools closed. Offices closed. Factories closed. Restaurants closed. Malls closed. Even health care offices closed as patients delayed going to the dentist and other routine care. All this means less heating and cooling, less lighting, less refrigeration, less power for computers and other office equipment, less everything.

The decrease in the industrial sector is a little more surprising. My impression had been that the industrial sector had not fallen as far as commercial, but amid broader disruptions in coal and nuclear power that strained parts of the energy economy, the patterns for both sectors are quite similar with the decline peaking in May and then partially rebounding by July. The paper also shows that areas with higher unemployment rates experienced larger declines in both sectors.

 

Fact #2: Households Are Using More
While firms are using less, households are using more. U.S. residential electricity consumption increased 10% during the second quarter of 2020. Consumption surged during March, April, and May, a reflection of the lockdown lifestyle many adopted, and then leveled off in June and July – with much less of the rebound observed on the commercial/industrial side.

This pattern makes sense, too. In Professor Cicala’s words, “people are spending an inordinate amount of time at home”. Many of us switched over to working from home almost immediately, and haven’t looked back. This means more air conditioning, more running the dishwasher, more CNN (especially last week), more Zoom, and so on.

The paper also examines the correlates of the decline. Areas in the U.S. where more people can work from home experienced larger increases. Unemployment rates, however, are almost completely uncorrelated with the increase.

 

Fact #3: Firms are Less Peaky
The paper next turns to a novel dataset from Texas, where Texas grid reliability is under active discussion, that makes it possible to measure hourly electricity consumption by sector.

As the figure above illustrates, the biggest declines in commercial/industrial electricity consumption have occurred Monday through Friday between 9AM and 5PM.

The dashed line shows the pattern during 2019. Notice the large spikes in electricity consumption during business hours. The solid line shows the pattern during 2020. Much smaller spikes during business hours.

 

Fact #4: Everyday is Like Sunday
Finally, we have what I would like to nominate as the “Energy Figure of the Year”.

Again, start with the pattern for 2019, reflected by the dashed line. Prior to Covid, Texas households used a lot more electricity on Saturdays and Sundays.

Then along comes Covid, and turned every day into the weekend. Residential electricity consumption in Texas during business hours Monday-Friday is up 16%(!).

In the pattern for 2020, it isn’t easy to distinguish weekends from weekdays. If you feel like weekdays and weekends are becoming a big blur – you are not alone.

 

Conclusion
Researchers are increasingly thinking about electricity consumption as a real-time indicator of economic activity, even as flat electricity demand complicates utility planning and investment. This is an intriguing idea, but Professor Cicala’s new paper shows that it is important to look sector-by-sector.

While commercial and industrial consumption indeed seem to measure the strength of an economy, residential consumption has been sharply countercylical – increasing exactly when people are not at work and not at school.

These large changes in behavior are specific to the pandemic. Still, with the increased blurring of home and non-home activities we may look back on 2020 as a key turning point in how we think about these three sectors of the economy.

More broadly, Professor Cicala’s paper highlights the value of social science research. We need facts, data, and yes, science, if we are to understand the economy and craft effective policies on energy insecurity and shut-offs as well.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified