Teck pitches coal stake to pension funds

By Globe and Mail


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Teck Cominco Ltd. is inviting some of the country's largest pension funds to invest in its coal business and help the ailing miner reduce its massive $9.4-billion (US) debt load, according to sources familiar with the plan.

Quebec pension giant Caisse de dépôt et placement du Québec and Alberta Investment Management Corp. (AIMCo) are among the institutions that have been pitched a deal to buy as much as 20 per cent of the output from Teck's hard coking coal operations.

Analysts have estimated a 20-per-cent stake in Teck's coal business could be worth $1.2-billion to $1.8-billion.

The purchase would not be a direct investment in Teck's B.C. and Alberta coal mines. Rather, the pension funds would be sold notes or securities that would pay a set interest rate and offer exposure to any upside in the coal price.

In addition to the pension funds, Chinese state-owned mining companies including China Aluminum Corp. (Chinalco) and China Minmetals Corp. are said to be weighing a similar investment in Teck's coal business.

“[The notes] are kind of like preferred shares. If you don't have the guts to buy a coal company, you take out one of these and you get some exposure, but you have a downside floor,” said a source familiar with the matter.

Teck is struggling to reduce the enormous debt load it incurred from its top-of-the-market, $14-billion (Canadian) takeover of Fording Canadian Coal Trust last year.

Teck must begin paying down a $4-billion (US) term loan in April, and a bridge loan now worth $5.35-billion is due at the end of October.

The crash in commodity prices and reduced demand for metals has forced Teck to cut its work force and put assets such as its gold and oil sands properties up for sale to raise cash.

Chief executive officer Don Lindsay is in discussions with Teck's lenders to refinance the bridge loan. Sources said a deal to sell part of the coal operations would give Teck a better bargaining position with banks when it comes to negotiating lending terms.

In addition to the coal investment, the pension funds are also understood to be considering buying some of Teck's debt.

“Teck is talking to funds that know the company, or its assets,” said one investment banker close to the mining company. The Caisse owns about 17 per cent of Teck's powerful A-class shares, which give holders more votes than B-class shareholders. Teck's dual-class share structure allows the family of Teck chairman Norman Keevil and Japan's Sumitomo Metal Mining Co. Ltd. to control the company.

Along with the Caisse, another pension fund involved in the talks is the $70-billion (Canadian) AIMCo. The Edmonton-based fund recently hired Leo de Bever as its chief executive officer, and Brian Gibson as its senior vice-president for public equities.

Both executives are veterans of the Ontario Teachers' Pension Plan, which co-owned Fording Canadian Coal Trust for six years.

The pension funds are also sounding out Teck about potential recapitalization plans that would see them invest at the parent company level. However, these offers are understood to be conditional on the company giving up the dual-share structure that allows the Keevil family to maintain control while owning a minority of the equity.

“There are ways for Teck to bring in investors, but they involve concessions from the controlling shareholders, and it's not clear there's a willingness to make concessions,” said one investment banker working with Teck.

Other sources, close to Teck's management team, said Mr. Keevil is not willing to scrap the dual-share structure at this time, but is willing to listen to restructuring pitches.

Related News

Site C dam could still be cancelled at '11th hour' if First Nations successful in court

Site C Dam Court Ruling could halt hydroelectric project near Fort St. John, as First Nations cite Treaty 8 rights in B.C. Supreme Court against BC Hydro, reservoir flooding, and Peace River Valley impacts.

 

Key Points

Potential B.C. Supreme Court stop to Site C, grounded in Treaty 8 rights claims by First Nations against BC Hydro.

✅ Trial expected in 2022 before planned 2023 reservoir flooding

✅ Treaty 8 rights and Peace River Valley impacts at issue

✅ Talks ongoing among B.C., BC Hydro, West Moberly, Prophet River

 

The Site C dam could still be stopped by an "eleventh hour" court ruling, according to the lawyer representing B.C. First Nations opposed to the massive hydroelectric project near Fort St. John.

The B.C. government, BC Hydro and West Moberly and Prophet River First Nations were in B.C. Supreme Court Feb. 28 to set a 120-day trial, expected to begin in March 2022.

That date means a ruling would come prior to the scheduled flooding of the dam's reservoir area in 2023 said Tim Thielmann, legal counsel for the West Moberly First Nation.

"The court has left itself the opportunity for an eleventh hour cancellation of the project," he said.

 

Construction continues

At the core of the case is First Nations arguments the multi-billion dollar BC Hydro dam will cause irreparable harm to its territory and way of life — even as drought strains hydro production elsewhere — rights protected under Treaty 8.

The West Moberly have previously warned it believes Site C constitutes a $1 billion treaty violation.

​In 2018, the First Nations lost a bid for an injunction order, meaning construction of the dam is continuing despite warnings that delays could cost $600 million to the project.

First Nations 'deeply frustrated' after B.C. Supreme Court dismisses Site C injunction

The judge in the case said the ruling was made because if the First Nations lost the challenge, the project would be needlessly put into disarray.

 

Province, Nations enter talks to avoid litigation

Also this week the B.C. government announced it has entered into talks with BC Hydro and the two First Nations in an attempt to avoid the court process altogether, amid broader energy debates such as bridging the Alberta-B.C. electricity gap for climate goals.

Thielmann said the details of the talk are confidential, but his clients are willing to pursue all avenues in order to stop the dam from moving forward.

"They are trying to save what little is left [of the Peace River Valley]", he said.

Tim Thielmann of Sage Legal is representing the West Moberly First Nation in its lawsuit aimed at stopping Site C. (Sage Legal)

In the meantime, the parties will continue to prepare for the 2022 court dates.

The latest figure on the cost of the dam is $10.7 billion, in a billions-over-budget project that the premier says will proceed. When complete, it would power the equivalent of 450,000 homes a year, though use of Site C's electricity remains a point of debate.

 

Related News

View more

Canada Invests Over $960-Million in Renewable Energy and Grid Modernization Projects

Smart Renewables and Electrification Pathways Program enables clean energy and grid modernization across Canada, funding wind, solar, hydro, geothermal, tidal, and storage to cut GHG emissions and accelerate electrification toward a net-zero economy.

 

Key Points

A $964M Canadian program funding clean power and grid upgrades to cut emissions and build net-zero electrified economy.

✅ Funds wind, solar, hydro, geothermal, tidal, and storage projects

✅ Modernizes grids for reliability, digitalization, and resilience

✅ Supports net-zero by 2050 with Indigenous and utility partners

 

Harnessing Canada's immense clean energy resources requires transformational investments to modernize our electricity grid. The Government of Canada is investing in renewable energy and upgrading the electricity grid, moving toward an electric, connected and clean economy, to make clean, affordable electricity options more accessible in communities across Canada.

The Honourable Seamus O'Regan Jr., Minister of Natural Resources, today launched a $964-million program, alongside a recent federal green electricity contract in Alberta that underscores momentum, to support smart renewable energy and grid modernization projects that will lower emissions by investing in clean energy technologies, like wind, solar, storage, hydro, geothermal and tidal energy across Atlantic Canada.

The Smart Renewables and Electrification Pathways Program (SREPs) supports building Canada's low-emissions energy future and a renewable, electrified economy through projects that focus on non-emitting, cleaner energy technologies, such as storage, and modernizing electricity system operations.

Investing in these technologies reduces greenhouse gas emissions by creating a cleaner, more connected electrical system, supporting progress toward zero-emissions electricity by 2035 goals, while helping Canada reach net-zero emissions by 2050.

Minister O'Regan launched the program during the Canadian Electricity Association's (CEA) virtual regulatory forum on Electricity Regulation & the Four Disruptors – Decarbonization, Decentralization, Digitalization and Democratization, highlighting evolving regulatory approaches as B.C. streamlines clean energy approvals to support deployment nationwide. The launch also coincides with Canadian Environment Week, which celebrates Canada's environmental accomplishments and encourages Canadians to contribute to conserving and protecting the environment.

Through SREPs and other programming, the government is working with provinces and territories, with the Prairie Provinces leading renewable growth in the years ahead, utilities, Indigenous partners and others, including diverse businesses and communities, to deliver these clean and reliable energy initiatives. With Canadian innovation, technology and skilled energy workers, we can provide more communities, households and businesses with an increased supply of clean electricity and a cleaner electrical grid.

To help interested stakeholders find information on SREPs, a new webpage has been launched, which includes a comprehensive guide for eligible projects.

This supports Canada's strengthened climate plan, A Healthy Environment and a Healthy Economy. Canada is advancing projects that support the clean grid of the future and seize opportunities in the global electricity market to boost competitiveness. Collectively with investments from the Fall Economic Statement 2020 and Budget 2021, Canada will achieve our climate change commitments and ensure a healthier environment and more prosperous economy for future generations.

 

Related News

View more

Biden Imposes Higher Tariffs on Chinese Electric Cars and Solar Cells

U.S. Tariffs on Chinese EVs and Solar Cells target trade imbalances, subsidies, and intellectual property risks, bolstering domestic manufacturing, supply chains, and national security across clean energy, automotive technology, and renewable markets.

 

Key Points

Policy measures raising duties on Chinese EVs and solar cells to protect U.S. industry, IP, and national security.

✅ Raises duties to counter subsidies and IP risks

✅ Supports domestic EV and solar manufacturing jobs

✅ May reshape supply chains, prices, and trade flows

 

In a significant move aimed at bolstering domestic industries and addressing trade imbalances, the Biden administration has announced higher tariffs on Chinese-made electric cars and solar cells. This decision marks a strategic shift in U.S. trade policy, with market observers noting EV tariffs alongside industrial and financial implications across sectors today.

Tariffs on Electric Cars

The imposition of tariffs on Chinese electric cars comes amidst growing competition in the global electric vehicle (EV) market. U.S. automakers and policymakers have raised concerns about unfair trade practices, subsidies, and market access barriers faced by American EV manufacturers in China amid escalating trade tensions with key partners. The tariffs aim to level the playing field and protect U.S. interests in the burgeoning electric vehicle sector.

Impact on Solar Cells

Similarly, higher tariffs on Chinese solar cells address concerns regarding intellectual property theft, subsidies, and market distortions in the solar energy industry, where tariff threats have influenced investment signals across North American markets.

The U.S. solar sector, a key player in renewable energy development, has called for measures to safeguard fair competition and promote domestic manufacturing of solar technologies.

Economic and Political Implications

The tariff hikes underscore broader economic tensions between the United States and China, spanning trade, technology, and geopolitical issues. While aimed at protecting American industries, these tariffs could lead to retaliatory measures from China and impact global supply chains, particularly in renewable energy and automotive sectors, as North American electricity exports at risk add to uncertainty across markets.

Industry and Market Responses

Industry stakeholders have responded with mixed reactions to the tariff announcements. U.S. automakers and solar manufacturers supportive of the tariffs argue they will help level the playing field and encourage domestic production. However, critics warn of potential energy price spikes for consumers, supply chain disruptions, and unintended consequences for global clean energy goals.

Strategic Considerations

The Biden administration's tariff policy reflects a broader strategy to promote economic resilience, innovation, and national security in critical industries, even as cross-border electricity exports become flashpoints in trade policy debates today.

Efforts to strengthen domestic supply chains, invest in renewable energy infrastructure, and foster international partnerships remain central to U.S. economic competitiveness and climate objectives.

Future Outlook

Looking ahead, navigating U.S.-China trade relations will continue to be a complex challenge for policymakers. Balancing economic interests, diplomatic engagements, and environmental priorities, alongside regional public support for tariffs, will shape future trade policy decisions affecting electric vehicles, renewable energy, and technology sectors globally.

Conclusion

The Biden administration's decision to impose higher tariffs on Chinese electric cars and solar cells represents a strategic response to economic and geopolitical dynamics reshaping global markets. While aimed at protecting American industries and promoting fair trade practices, the tariffs signal a commitment to fostering competitiveness, innovation, and sustainability in critical sectors of the economy. As these measures unfold, stakeholders will monitor their impact on industry dynamics, supply chain resilience, and international trade relations in the evolving landscape of global commerce.

 

Related News

View more

Fuel Cell Electric Buses Coming to Mississauga

Mississauga Fuel Cell Electric Buses advance zero-emission public transit, leveraging hydrogen fuel cells, green hydrogen supply, rapid refueling, and extended range to cut GHGs, improve air quality, and modernize sustainable urban mobility.

 

Key Points

Hydrogen fuel cell buses power electric drivetrains for zero-emission service, long range, and quick refueling.

✅ Zero tailpipe emissions improve urban air quality

✅ Longer route range than battery-electric buses

✅ Hydrogen fueling is rapid, enabling high uptime

 

Mississauga, Ontario, is gearing up for a significant shift in its public transportation landscape with the introduction of fuel cell electric buses (FCEBs). This initiative marks a pivotal step toward reducing greenhouse gas emissions and enhancing the sustainability of public transport in the region. The city, known for its vibrant urban environment and bustling economy, is making strides to ensure that its transit system evolves in harmony with environmental goals.

The recent announcement highlights the commitment of Mississauga to embrace clean energy solutions. The integration of FCEBs is part of a broader strategy to modernize the transit fleet while tackling climate change. As cities around the world seek to reduce their carbon footprints, Mississauga’s initiative aligns with global trends toward greener urban transport, where projects like the TTC battery-electric buses demonstrate practical pathways.

What are Fuel Cell Electric Buses?

Fuel cell electric buses utilize hydrogen fuel cells to generate electricity, which powers the vehicle's electric motor. Unlike traditional buses that run on diesel or gasoline, FCEBs produce zero tailpipe emissions, making them an environmentally friendly alternative. The only byproducts of their operation are water and heat, significantly reducing air pollution in urban areas.

The technology behind FCEBs is becoming increasingly viable as hydrogen production becomes more sustainable. With the advancement of green hydrogen production methods, which use renewable energy sources to create hydrogen, and because some electricity in Canada still comes from fossil fuels, the environmental benefits of fuel cell technology are further amplified. Mississauga’s investment in these buses is not only a commitment to cleaner air but also a boost for innovative technology in the transportation sector.

Benefits for Mississauga

The introduction of FCEBs is poised to offer numerous benefits to the residents of Mississauga. Firstly, the reduction in greenhouse gas emissions aligns with the city’s climate action goals and complements Canada’s EV goals at the national level. By investing in cleaner public transit options, Mississauga is taking significant steps to improve air quality and combat climate change.

Moreover, FCEBs are known for their efficiency and longer range compared to battery electric buses, such as the Metro Vancouver fleet now operating across the region, commonly used in Canadian cities. This means they can operate longer routes without the need for frequent recharging, making them ideal for busy transit systems. The use of hydrogen fuel can also result in shorter fueling times compared to electric charging, enhancing operational efficiency.

In addition to environmental and operational advantages, the introduction of these buses presents economic opportunities. The deployment of FCEBs can create jobs in the local economy, from maintenance to hydrogen production facilities, similar to how St. Albert’s electric buses supported local capabilities. This aligns with broader trends of sustainable economic development that prioritize green jobs.

Challenges Ahead

While the potential benefits of FCEBs are clear, the transition to this technology is not without its challenges. One of the main hurdles is the establishment of a robust hydrogen infrastructure. To support the operation of fuel cell buses, Mississauga will need to invest in hydrogen production, storage, and fueling stations, much as Edmonton’s first electric bus required dedicated charging infrastructure. Collaboration with regional and provincial partners will be crucial to develop this infrastructure effectively.

Additionally, public acceptance and awareness of hydrogen technology will be essential. As with any new technology, there may be skepticism regarding safety and efficiency. Educational campaigns will be necessary to inform the public about the advantages of FCEBs and how they contribute to a more sustainable future, and recent TTC’s battery-electric rollout offers a useful reference for outreach efforts.

Looking Forward

As Mississauga embarks on this innovative journey, the introduction of fuel cell electric buses signifies a forward-thinking approach to public transportation. The city’s commitment to sustainability not only enhances its transit system but also sets a precedent for other municipalities to follow.

In conclusion, the shift towards fuel cell electric buses in Mississauga exemplifies a significant leap toward greener public transport. With ongoing efforts to tackle climate change and improve urban air quality, Mississauga is positioning itself as a leader in sustainable transit solutions. The future looks promising for both the city and its residents as they embrace cleaner, more efficient transportation options. As this initiative unfolds, it will be closely watched by other cities looking to implement similar sustainable practices in their own transit systems.

 

Related News

View more

Is this the start of an aviation revolution?

Harbour Air Electric Seaplanes pioneer sustainable aviation with battery-electric propulsion, zero-emission operations, and retrofitted de Havilland Beavers using magniX motors for regional commuter routes, cutting fuel burn, maintenance, and carbon footprints across British Columbia.

 

Key Points

Retrofitted floatplanes using magniX battery-electric motors to provide zero-emission, short-haul regional flights.

✅ Battery-electric magniX motors retrofit de Havilland DHC-2 Beavers

✅ Zero-emission, low-noise operations on short regional routes

✅ Lower maintenance and operating costs vs combustion engines

 

Aviation is one of the fastest rising sources of carbon emissions from transport, but can a small Canadian airline show the industry a way of flying that is better for the planet?

As air journeys go, it was just a short hop into the early morning sky before the de Havilland seaplane splashed back down on the Fraser River in Richmond, British Columbia. Four minutes earlier it had taken off from the same patch of water. But despite its brief duration, the flight may have marked the start of an aviation revolution.

Those keen of hearing at the riverside on that cold December morning might have been able to pick up something different amid the rumble of the propellers and whoosh of water as the six-passenger de Havilland DHC-2 Beaver took off and landed. What was missing was the throaty growl of the aircraft’s nine-cylinder radial engine.

In its place was an all-electric propulsion engine built by the technology firm magniX that had been installed in the aircraft over the course of several months. The four-minute test flight (the plane was restricted to flying in clear skies, so with fog and rain closing in the team opted for a short trip) was the first time an all-electric commercial passenger aircraft had taken to the skies.

The retrofitted de Havilland DHC-2 Beaver took off from the Fraser River in the early morning light for a four minute test flight (Credit: Diane Selkirk)

“It was the first shot of the electric aviation revolution,” says Roei Ganzarski, chief executive of magniX, which worked with Canadian airline Harbour Air Seaplanes to convert one of the aircraft in their fleet of seaplanes so it could run on battery power rather than fossil fuels.

For Greg McDougall, founder of Harbour Air and pilot during the test flight, it marked the culmination of years of trying to put the environment at the forefront of its operations, backed by research investment across the program.

Harbour Air, which has a fleet of some 40 commuter floatplanes serving the coastal regions around Vancouver, Victoria and Seattle, was the first airline in North America to become carbon-neutral through offsets in 2007. A one-acre green roof on their new Victoria airline terminal followed. Then in 2017, 50 solar panels and four beehives housing 10,000 honeybees were added, but for McDougall, a Tesla owner with an interest in disruptive technology, the big goal was to electrify the fleet, with 2023 electric passenger flights as an early target for service.

McDougall searched for alternative motor options for a couple of years and had put the plan on the backburner when Ganzarski first approached him in February 2019. “He said, ‘We’ve got a motor we want to get certified and we want to fly it before the end of the year,’” McDougall recalls.

The two companies found their environmental values and teams were a good match and quickly formed a partnership. Eleven months later, the modest Canadian airline got what McDougall refers to as their “e-plane” off the ground, pulling ahead of other electric flight projects, including those by big-name companies Airbus, Boeing and Rolls-Royce, and startups such as Eviation that later stumbled.

The test flight was followed years of work by Greg McDougall to make his airline more environmentally friendly (Credit: Diane Selkirk)

The project came together in record time considering how risk-adverse the aviation industry is, says McDougall. “Someone had to take the lead,” he says. “The reason I live in British Columbia is because of the outdoors: protecting it is in our DNA. When it came to getting the benefits from electric flight it made sense for us to step in and pioneer the next step.”

As the threat posed by the climate crisis deepens, there has been renewed interest in developing electric passenger aircraft as a way of reducing emissions
Electric flight has been around since the 1970s, but it’s remained limited to light-weight experimental planes flying short distances and solar-powered aircraft with enormous wingspans yet incapable of carrying passengers. But as the threat posed by the climate crisis deepens, there has been renewed interest in developing electric passenger aircraft as a way of reducing emissions and airline operating costs, aligning with broader Canada-U.S. collaboration on electrification across transport.

Currently there are about 170 electric aircraft projects underway internationally –up by 50% since April 2018, according to the consulting firm Roland Berger. Many of the projects are futuristic designs aimed at developing urban air taxis, private planes or aircraft for package delivery. But major firms such as Airbus have also announced plans to electrify their own aircraft. It plans to send its E-Fan X hybrid prototype of a commercial passenger jet on its maiden flight by 2021. But only one of the aircraft’s four jet engines will be replaced with a 2MW electric motor powered by an onboard battery.

This makes Harbour Air something of an outlier. As a coastal commuter airline, it operates smaller floatplanes that tend to make short trips up and down the coastline of British Columbia and Washington State, which means its aircraft can regularly recharge their batteries after a point-to-point electric flight along these routes. The company sees itself in a position to retrofit its entire fleet of floatplanes and make air travel in the region as green as possible.

This could bring some advantages. The efficiency of a typical combustion engine for a plane like this is fairly low – a large proportion of the energy from the fuel is lost as waste heat as it turns the propeller that drives the aircraft forward. Electrical motors have fewer moving parts, meaning there’s less maintenance and less maintenance cost, and comparable benefits are emerging for electric ships operating on the B.C. coast as well.

Electrical motors have fewer moving parts, meaning there’s less maintenance and less maintenance cost
Erika Holtz, Harbour Air’s engineering and quality manager, sees the move to electric as the next major aviation advancement, but warns that one stumbling block has been the perception of safety. “Mechanical systems are much better known and trusted,” she says. In contrast people see electrical systems as a bit unknown – think of your home computer. “Turning it off and on again isn’t an option in aviation,” she adds.

But it’s the possibility of spurring lasting change in aviation that’s made working on the Harbour Air/magniX project so exciting for Holtz. Aviation technology has stagnated over the past decades, she says. “Although there have been incremental improvements in certain technologies, there hasn't been a major development change in aviation in 50 years.”

 

Related News

View more

Cancelling Ontario's wind project could cost over $100M, company warns

White Pines Project cancellation highlights Ontario's wind farm contract dispute in Prince Edward County, involving IESO approvals, Progressive Conservatives' legislation, potential court action, and costs to ratepayers amid green energy policy shifts.

 

Key Points

The termination effort for Ontario's White Pines wind farm contract, triggering legal, legislative, and cost disputes.

✅ Contract with IESO dates to 2009; final approval during election

✅ PCs seek legislation insulating taxpayers from litigation

✅ Cancellation could exceed $100M; cost impact on ratepayers

 

Cancelling an eastern Ontario green energy project that has been under development for nearly a decade could cost more than $100 million, the president of the company said Wednesday, warning that the dispute could be headed to the courts.

Ontario's governing Progressive Conservatives said this week that one of their first priorities during the legislature's summer sitting would be to cancel the contract for the White Pines Project in Prince Edward County.

Ian MacRae, president of WPD Canada, the company behind the project, said he was stunned by the news given that the project is weeks away from completion.

"What our lawyers are telling us is we have a completely valid contract that we've had since 2009 with the (Independent Electricity System Operator). ... There's no good reason for the government to breach that contract," he said.

The government has also not reached out to discuss the cancellation, he said. Meanwhile, construction on the site is in full swing, he said.

"Over the last couple weeks we've had an average of 100 people on site every day," he said. "The footprint of the project is 100 per cent in. So, all the access roads, the concrete for the base foundations, much of the electrical infrastructure. The sub-station is nearing completion."

The project includes nine wind turbines meant to produce enough electricity to power just over 3,000 homes annually, even as Ontario looks to build on an electricity deal with Quebec for additional supply. All of the turbines are expected to be installed over the next three weeks, with testing scheduled for the following month.

MacRae couldn't say for certain who would have to pay for the cancellation, electricity ratepayers or taxpayers.

"Somehow that money would come from IESO and it would be my assumption that would end up somehow on the ratepayers, despite legislation to lower electricity rates now in place," he said. "We just need to see what the government has in mind and who will foot the bill."

Progressive Conservative house leader Todd Smith, who represents the riding where the project is being built, said the legislation to cancel the project will also insulate taxpayers from domestic litigation over the dismantling of green energy projects.

"This is something that the people of Prince Edward County have been fighting ... for seven years," he said. "This shouldn't have come as a surprise to anybody that this was at the top of the agenda for the incoming government, which has also eyed energy independence in recent decisions."

Smith questioned why Ontario's Independent Electricity System Operator gave the final approval for the project during the spring election campaign.

"There's a lot of questions about how this ever got greenlighted in the first place," he said. "This project was granted its notice to proceed two days into the election campaign ... when (the IESO) should have been in the caretaker mode."

Terry Young, the IESO's vice president of policy, engagement and innovation, said the agency could not comment because of the pending introduction of legislation to cancel the deal, following a recent auditor-regulator dispute that drew attention to oversight.

NDP Leader Andrea Horwath said the new Tory government is behaving like the previous Liberal government by cancelling energy projects and tearing up contracts amid ongoing debates over Ontario's hydro mess and affordability. She likened the Tory plan to the Liberal gas plant scandal that saw the government relocate two plants at a substantial cost to taxpayers.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified