Battery in a drum rolled out

By Investor's Business Daily


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
A lithium-titanium battery pack in a rolling white drum can supply 300 watts of power from a 1 kilowatt-hour reserve.

That's enough to power a computer workstation for 2 or 3 days, or to recharge a cell phone almost indefinitely, according to Younicos, the German company that invented the pack.

The mobile energy storage unit, called Yill, is a couple of feet in diameter, about the size of a small bass drum, with a handle and wheels. It recharges in about four hours in a 220-volt electric outlet.

Related News

Sierra Club: Governor Abbott's Demands Would Leave Texas More Polluted and Texans in the Dark

Texas Energy Policy Debate centers on ERCOT and PUC directives, fossil fuels vs renewables, grid reliability, energy efficiency, battery storage, and blackout risks, shaping Texas power market rules, conservation alerts, and capacity planning.

 

Key Points

Policy fight over ERCOT/PUC rules weighing fossil fuels vs renewables and storage to bolster Texas grid reliability.

✅ ERCOT and PUC directives under political scrutiny

✅ Fossil fuel subsidies vs renewable incentives and storage

✅ Focus on grid reliability, efficiency, and blackout prevention

 

Earlier this week, Governor Abbott released a letter to the Public Utility Commission of Texas (PUC) and the Electric Reliability Council of Texas (ERCOT), demanding electricity market reforms that Abbott falsely claims will "increase power generation capacity and to ensure the reliability of the Texas power grid."

Unfortunately, Abbott's letter promotes polluting, unreliable fossil fuels, attacks safer clean energy options, and ignores solutions that would actually benefit everyday Texans.

"Governor Abbott, in a blatant effort to politicize Texans' energy security, wants to double down on fossil fuels, even though they were the single largest point of failure during both February's blackouts and June's energy conservation alerts," said Cyrus Reed, Interim Director & Conservation Director of the Lone Star Chapter of the Sierra Club.

"Many of these so-called solutions were considered and rejected most recently by the Texas Legislature. Texas must focus on expanding clean and reliable renewable energy, energy efficiency, and storage capacity, as voters consider funding to modernize generation in the months ahead.

"We can little afford to repeat the same mistakes that have failed to provide enough electricity where it is needed most and cost Texans billions of dollars. Instead of advocating for evidence-based solutions, Abbott wants to be a culture warrior for coal and gas, even as he touts grid readiness amid election season, even when it results in blackouts across Texas."

 

Related News

View more

International Atomic Energy Agency agency commends China's nuclear security

IAEA Nuclear Security Mission in China reviews regulatory frameworks, physical protection, and compliance at nuclear power plants, endorsing CAEA efforts, IPPAS guidance, and capacity building to strengthen safeguards, risk management, and global cooperation.

 

Key Points

An IAEA advisory visit assessing China's nuclear security, physical protection, and regulatory frameworks.

✅ Reviews laws, regulations, and physical protection measures

✅ Endorses CAEA, COE, and IPPAS-aligned best practices

✅ Recommends accelerated rulemaking for expanding reactors

 

The International Atomic Energy Agency commended China's efforts and accomplishments in nuclear security after conducting its first nuclear security advisory mission to the nation, according to the China Atomic Energy Authority.

The two-week International Physical Protection Advisory Service mission, from Aug 28to Saturday, reviewed the legislative and regulatory framework for nuclear security as well as the physical protection of nuclear material and facilities, including worker safety protocols during health emergencies.

An eight-member expert team led by Joseph Sandoval of the United States' Sandia National Laboratories visited Fangjiashan Nuclear Power Plant, part of the Qinshan Nuclear Power Station in Zhejiang province, to examine security arrangements and observe physical protection measures, where recognized safety culture practices can reinforce performance.

The experts also met with officials from several Chinese government bodies involved in nuclear security such as the China Atomic Energy Authority, National Nuclear Safety Administration and Ministry of Public Security.

The international agency has carried out 78 of the protection missions in 48 member states since 1995. This was the first in China, it said.

The China Atomic Energy Authority said on Tuesday that a report by the experts highly approves of the Chinese government's continuous efforts to strengthen nuclear safety, to boost the sustainable development of the nuclear power industry and to help establish a global nuclear security system.

The report identifies the positive roles played by the State Nuclear Security Technology Center and its subsidiary, the Center of Excellence on Nuclear Security, in enhancing China's nuclear security capability and supporting regional and global cooperation in the field, such as bilateral cooperation agreements that advance research and standards, officials at the China Atomic Energy Authority said.

"A strong commitment to nuclear security is a must for any state that uses nuclear power for electricity generation and that is planning to significantly expand this capacity by constructing new power reactors," said Muhammad Khaliq, head of the international agency's nuclear security of materials and facilities section. "China'sexample in applying IAEA nuclear security guidance and using IAEA advisory services demonstrates its strong commitment to nuclear security and its enhancement worldwide."

The report notes that along with the rapid growth of China's nuclear power sector, challenges have emerged when it comes to the country's nuclear security mechanism and management, as highlighted by grid reliability warnings during pandemics in other markets.

It suggests that the Chinese government accelerate the making of laws and regulations to better govern this sector.

Deng Ge, director of the State Nuclear Security Technology Center, said the IAEAmission would help China strengthen its nuclear security since the nation could learn from other countries' successful experience, including on-site staffing measures to maintain critical operations, and find out its weaknesses for rectification.

Deng added that the mission's report can help the international community understand China's contributions to the global nuclear security system and also offer China's best practices to other nations.

 

Related News

View more

First Nuclear Reactors Built in 30 Years Take Shape at Georgia Power Plant

Vogtle Units 3 and 4 are Westinghouse AP1000 nuclear reactors under construction in Waynesboro, Georgia, led by Southern Nuclear, Georgia Power, and Bechtel, adding 2,234 MWe of carbon-free baseload power with DOE loan guarantees.

 

Key Points

Vogtle Units 3 and 4 are AP1000 reactors in Georgia delivering 2,234 MWe of low-carbon baseload electricity.

✅ Each unit: Westinghouse AP1000, 1,117 MWe capacity.

✅ Managed by Southern Nuclear, built by Bechtel.

✅ DOE loan guarantees support financing and risk.

 

Construction is ongoing for two new nuclear reactors, Units 3 and 4, at Georgia Power's Alvin W. Vogtle Electric Generating Plant in Waynesboro, Ga. the first new nuclear reactors to be constructed in the United Stated in 30 years, mirroring a new U.S. reactor startup that will provide electricity to more than 500,000 homes and businesses once operational.

Construction on Unit 3 started in March 2013 with an expected completion date of November 2021. For Unit 4, work began in November 2013 with a targeted delivery date of November 2022. Each unit houses a Westinghouse AP1000 (Advanced Passive) nuclear reactor that can generate about 1,117 megawatts (MWe). The reactor pressure vessels and steam generators are from Doosan, a South Korean firm.

The pouring of concrete was delayed to 2013 due to the United States Nuclear Regulatory Commission issuing a license amendment which permitted the use of higher-strength concrete for the foundations of the reactors, eliminating the need to make additional modifications to reinforcing steel bar.

The work is occurring in the middle of an operational nuclear facility, and the construction area contains many cranes and storage areas for the prefabricated parts being installed. Space also is needed for various trucks making deliveries, especially concrete.

The reactor buildings, circular in shape, are several hundred feet apart from one another and each one has an annex building and a turbine island structure. The estimated total price for the project is expected in the $18.7 billion range. Bechtel Corporation, which built Units 1 and 2, was brought in January 2017 to take over the construction that is being overseen by Southern Nuclear Operating Company (SNOC), which operates the plant.

The project will require the equivalent of 3,375 miles of sidewalk; the towers for Units 3 and 4 are 60 stories high and have two million pound CA modules; the office space for both units is 300,000 sq. ft.; and there are more than 8,000 construction workers over 30 percent being military veterans. The new reactors will create 800 permanent jobs.

Southern Nuclear and Georgia Power took over management of the construction project in 2017 after Westinghouse's Chapter 11 bankruptcy. The plant, built in the late 1980s with Unit 1 becoming operational in 1987 and Unit 2 in 1989, is jointly owned by Georgia Power (45.7 percent), Oglethorpe Power Corporation (30 percent), Municipal Electric Authority of Georgia (22.7 percent) and Dalton Utilities (1.6 percent).

"Significant progress has been made on the construction of Vogtle 3 and 4 since the transition to Southern Nuclear following the Westinghouse bankruptcy," said Paul Bowers, Chairman, President and CEO of Georgia Power. "While there will always be challenges in building the first new nuclear units in this country in more than 30 years, we remain focused on reducing project risk and maintaining the current project momentum in order to provide our customers with a new carbon-free energy source that will put downward pressure on rates for 60 to 80 years."

The Vogtle and Hatch nuclear plants currently provide more than 20 percent of Georgia's annual electricity needs. Vogtle will be the only four-unit nuclear facility in the country. The energy is needed to meet the rising demand for electricity as the state expects to have more than four million new residents by 2030.

The plant's expansion is the largest ongoing construction project in Georgia and one of the largest in the state's history, while comparable refurbishments such as the Bruce reactor overhaul progress in Canada. Last March an agreement was signed to secure approximately $1.67 billion in additional Department of Energy loan guarantees. Georgia Power previously secured loan guarantees of $3.46 billion.

The signing highlighted the placement of the top of the containment vessel for Unit 3, echoing the Hinkley Point C roof lift seen in the U.K., which signified that all modules and large components had been placed inside it. The containment vessel is a high-integrity steel structure that houses critical plant components. The top head is 130 ft. in diameter, 37 ft. tall, and weighs nearly 1.5 million lbs. It is comprised of 58 large plates, welded together with each more than 1.5 in. thick.

"From the very beginning, public and private partners have stood with us," said Southern Company Chairman, President and CEO Tom Fanning. "Everyone involved in the project remains focused on sustaining our momentum."

Bechtel has completed more than 80 percent of the project, and the major milestones for 2019 have been met, aligning with global nuclear milestones reported across the industry, including setting the Unit 4 pressurizer inside the containment vessel last February, which will provide pressure control inside the reactor coolant system. More specialized construction workers, including craft labor, have been hired via the addition of approximately 300 pipefitters and 350 electricians since November 2018. Another 500 to 1,000 craft workers have been more recently brought in.

A key accomplishment occurred last December when 1,300 cu. yds. of concrete were poured inside the Unit 4 containment vessel during a 21-hour operation that involved more than 100 workers and more than 120 truckloads of concrete. In 2018 alone, more than 23,000 cu. yds. of concrete were poured part of the nearly 600,000 cu. yds. placed since construction started, and the installation of more than 16,200 yds. of piping.

Progress also has been solid for Unit 3. Last January the integrated head package (IHP) was set inside the containment vessel. The IHP, weighing 475,000 lbs. and standing 48 ft. tall, combines several separate components in one assembly and allows the rapid removal of the reactor vessel head during a refueling outage. One month earlier, the placement of the third and final ring for containment vessel, and the placement of the fourth and final reactor coolant pump (RCP, 375,000 lbs.), were executed.

"Weighing just under 2 million pounds, approximately 38 feet high and with a diameter of 130 feet, the ring is the fourth of five sections that make up the containment vessel," stated a Georgia Power press release. "The RCPs are mounted to the steam generator and serve a critical part of the reactor coolant system, circulating water from the steam generator to the reactor vessel, allowing sufficient heat transfer for safe plant operation. In the same month, the Unit 3 shield building with additional double-decker panels, was placed.

According to a construction update from Georgia Power, a total of eight six-panel sections have been placed, with each one measuring 20 ft. tall and 114 ft. wide, weighing up to 300,000 lbs. To date, more than half of the shield building panels have been placed for Unit 3. The shield building panels, fabricated in Newport News, Va., provide structural support to the containment cooling water supply and protect the containment vessel, which houses the reactor vessel.

Building the reactors is challenging due to the design, reflecting lessons from advanced reactors now being deployed. Unit 3 will have 157 fuel assemblies, with each being a little over 14 ft. long. They are crucial to fuelling the reactor, and once the initial fueling is completed, nearly one-third of the fuel assemblies will be replaced for each re-fuelling operation. In addition to the Unit 3 containment top, placement crews installed three low-pressure turbine rotors and the generator rotor inside the unit's turbine building.

Last November, major systems testing got underway at Unit 3 as the site continues to transition from construction toward system operations. The Open Vessel Testing will demonstrate how water flows from the key safety systems into the reactor vessel ensuring the paths are not blocked or constricted.

"This is a significant step on our path towards operations," said Glen Chick, Vogtle 3 & 4 construction executive vice president. "[This] will prepare the unit for cold hydro testing and hot functional testing next year both critical tests required ahead of initial fuel load."

It also confirms that the pumps, motors, valves, pipes and other components function as designed, a reminder of how issues like the South Carolina plant leak can disrupt operations when systems falter.

"It follows the Integrated Flush process, which began in August, to push water through system piping and mechanical components that feed into the Unit 3 reactor vessel and reactor coolant loops for the first time," stated a press release. "Significant progress continues ... including the placement of the final reinforced concrete portion of the Unit 4 shield building. The 148-cubic yard placement took eight hours to complete and, once cured, allows for the placement of the first course of double-decker panels. Also, the upper inner casing for the Unit 3 high-pressure turbine has been placed, signifying the completion of the centerline alignment, which will mean minimal vibration and less stress on the rotors during operations, resulting in more efficient power generation."

The turbine rotors, each weighing approximately 200 tons and rotating at 1,800 revolutions per-minute, pass steam through the turbine blades to power the generator.

The placement of the middle containment vessel ring for Unit 4 was completed in early July. This required several cranes to work in tandem as the 51-ft. tall ring weighed 2.4 million lbs. and had dozens of individual steel plates that were fabricated on site.

A key part of the construction progress was made in late July with the order of the first nuclear fuel load for Unit 3, which consists of 157 fuel assemblies with each measuring 14 ft. tall.

On May 7, Unit 3 was energized (permanently powered), which was essential to perform the testing for the unit. Prior to this, the plant equipment had been running on temporary construction power.

"[This] is a major first step in transitioning the project from construction toward system operations," Chick said.

Construction of the north side of the Unit 3 Auxiliary Building (AB) has progressed with both the floor and roof modules being set. Substantial work also occurred on the steel and concrete that forms the remaining walls and the north AB roof at elevation.

 

Related News

View more

California's Next Electricity Headache Is a Looming Shortage

California Electricity Reserve Mandate requires 3.3 GW of new capacity to bolster grid reliability amid solar power volatility, peak demand, and wildfire-driven blackouts, as CPUC directs PG&E, Edison, and Sempra to procure resource adequacy.

 

Key Points

A CPUC order for utilities to add 3.3 GW of reserves, safeguarding grid reliability during variable renewables and peaks

✅ 3.3 GW procurement to meet resource adequacy targets

✅ Focus on grid reliability during peak evening demand

✅ Prioritizes renewables, storage; limits new fossil builds

 

As if California doesn’t have enough problems with its electric service, now state regulators warn the state may be short on power supplies by 2021 if utilities don’t start lining up new resources now.

In the hopes of heading off a shortfall as America goes electric, the California Public Utilities Commission has ordered the state’s electricity providers to secure 3.3 additional gigawatts of reserve supplies. That’s enough to power roughly 2.5 million homes. Half of it must be in place by 2021 and the rest by August 2023.

The move comes as California is already struggling to accommodate increasingly large amounts of solar power that regularly send electricity prices plunging below zero and force other generators offline so the region’s grid doesn’t overload. The state is also still reeling from a series of deliberate mass blackouts that utilities imposed last month to keep their power lines from sparking wildfires amid strong winds. And its largest power company, PG&E Corp., went bankrupt in January.

Now as natural gas-fired power plants retire under the state’s climate policies, officials are warning the state could run short on electricity on hot evenings, when solar production fades and commuters get home and crank up their air conditioners. “We have fewer resources that can be quickly turned on that can meet those peaks,” utilities commission member Liane Randolph said Thursday before the panel approved the order to beef up reserves.

The 3.3 gigawatts that utilities must line up is in addition to a state rule requiring them to sign contracts for 15% more electricity than they expect to need. Some critics question the need for added supplies, particularly after the state went on a plant-building boom in the 2000s.

But California’s grid managers say the risk of a shortfall is real and could be as high as 4.7 gigawatts, especially during heat waves that test the grid again. Mark Rothleder, with the California Independent System Operator, said the 15% cushion is a holdover from the days before big solar and wind farms made the grid more volatile. Now it may need to be increased, he said.

“We’re not in that world anymore,” said Rothleder, the operator’s vice president of state regulatory affairs. “The complexity of the system and the resources we have now are much different.”

The state’s three major utilities, PG&E, Edison International and Sempra Energy, will be largely responsible for securing new supplies. The commission banned fossil fuels from being used at any new power generators built to meet the requirement — though it left the door open for expansions at existing ones.

Some analysts argue California is exporting its energy policies to Western states, making electricity more costly and less reliable.

PG&E said in an emailed statement that it was pleased the commission didn’t adopt an earlier proposal to require 4 gigawatts of additional resources. Edison similarly said it was “supportive.” Sempra didn’t immediately respond with comment.

 

Extending Deadlines

The pending plant closures are being hastened by a 2020 deadline requiring California’s coastal generators to stop using aging seawater-cooling systems. Some gas-fired power plants have said they’ll simply close instead of installing costly new cooling systems. So the commission on Thursday also asked California water regulators to extend the deadline for five plants.

The Sierra Club, meanwhile, called on regulators to turn away from fossil fuels altogether, saying their decision Thursday “sets California back on its progress toward a clean energy future.”

The move to push back the deadline also faces opposition from neighboring towns. Redondo Beach Mayor Bill Brand, whose city is home to one of the plants in line for an extension, told the commission it wasn’t necessary, since California utilities already have plenty of electricity reserves.

“It’s just piling on to that reserve margin,” Brand said.

 

Related News

View more

Spain plans switch to 100% renewable electricity by 2050

Spain 2050 Renewable Energy Plan drives decarbonisation with wind and solar, energy efficiency, fossil fuel bans, and Paris Agreement targets, enabling net-zero power, emissions cuts, and just transition measures for workers and coal regions.

 

Key Points

A roadmap to 100 percent renewable power by 2050, deep emissions cuts, and a just transition aligned with Paris goals.

✅ Adds 3,000 MW of wind and solar each year through 2030

✅ Bans new fossil fuel drilling, hydrocarbon extraction, and fracking

✅ Targets 35% energy efficiency gains and 35% green power by 2030

 

Spain has launched an ambitious plan to switch its electricity system entirely to renewable sources, similar to California's 100% clean electricity mandate, by 2050 and completely decarbonise its economy soon after.

By mid-century, as EU electricity demand projections suggest increases, greenhouse gas emissions would be slashed by 90% from 1990 levels under Spain’s draft climate change and energy transition law.

To do this, the country’s social democratic government is committing to installing at least 3,000MW of wind and solar power capacity every year in the next 10 years ahead.

New licences for fossil fuel drills, hydrocarbon exploitation and fracking wells, will be banned, and a fifth of the state budget will be reserved for measures that can mitigate climate change. This money will ratchet upwards from 2025.

Christiana Figueres, a former executive secretary of the UN’s framework convention on climate change (UNFCCC), hailed the draft Spanish law as “an excellent example of the Paris agreement”. She added: “It sets a long-term goal, provides incentives on scaling up emissions technologies and cares about a good transition for the workforce.”

Under the plan, “just transition” contracts will be drawn up, similar to the £220m package announced in October, that will shut most Spanish coalmines in return for a suite of early retirement schemes, re-skilling in clean energy jobs, and environmental restoration. These deals will be partly financed by auction returns from the sale of emissions rights.

The government has already scrapped a controversial “sun tax” that halted Spain’s booming renewables sector earlier this decade, even as IEA analysis finds solar the cheapest electricity worldwide, and the new law will also mandate a 35% electricity share for green energy by 2030.

James Watson, chief executive of the SolarPower Europe trade association, said the law was “a wake-up call to the rest of the world” amid debate on the global energy transition today.

Energy efficiency will also be improved by 35% within 11 years, and government and public sector authorities will be able to lease only buildings that have almost zero energy consumption.

Laurence Tubiana, chief executive of the European Climate Foundation, and former French climate envoy who helped draft the Paris accord, described the agreement as groundbreaking and inspirational. “By planning on going carbon neutral, Spain shows that the battle against climate change is deadly serious, that they are ready to step up and plan to reap the rewards of decarbonisation,” she said.

However, the government’s hold on power is fragile. With just a quarter of parliamentary seats it will depend on the more leftwing Podemos and liberal Ciudadanos parties to pass the climate plan.

No dates were included in the legislation for phaseouts of coal or nuclear energy, and, echoing UK net zero policy shifts, a ban on new cars with petrol or diesel engines was delayed until 2040.

 

Related News

View more

U.S. Electric Vehicle Market Share Dips in Q1 2024

U.S. EV Market Share Dip Q1 2024 reflects slower BEV adoption, rising PHEV demand, affordability concerns, charging infrastructure gaps, tax credit shifts, range anxiety, and automaker strategy adjustments across the electric vehicle market.

 

Key Points

Q1 2024 EV and hybrid share slipped as BEV sales lag, PHEVs rise, and affordability and charging concerns temper demand.

✅ BEV share fell to 7.0% as affordable models remain limited

✅ PHEV sales rose 50% YoY, easing range anxiety concerns

✅ Policy shifts and charging gaps weigh on consumer adoption

 

The U.S. electric vehicle (EV) market, once a beacon of unbridled growth, appears to be experiencing a course correction. Data from the U.S. Energy Information Administration (EIA) reveals that the combined market share of electric vehicles (battery electric vehicles, or BEVs) and hybrids dipped slightly in the first quarter of 2024, marking the first decline since the onset of the COVID-19 pandemic, even as EU EV share rose during lockdowns in 2020.

This news comes as a surprise to many analysts who predicted continued exponential growth for the EV market. While overall sales of electric vehicles surged into 2024 and did increase by 7% compared to Q1 2023, this growth wasn't enough to keep pace with the overall rise in vehicle sales. The result: a decline in market share from 18.8% in Q4 2023 to 18.0% in Q1 2024.

Several factors may be contributing to this shift. One potential culprit is a slowdown in battery electric vehicle sales. BEVs saw their share of the market dip from 8.1% to 7.0% in the same period. This could be attributed to a lack of readily available affordable options, with many popular EV models still commanding premium prices and concerns that EV supply may miss demand in the near term.

Another factor could be the rising interest in plug-in hybrid electric vehicles (PHEVs). PHEV sales witnessed a significant jump of 50% year-over-year, reflecting how gas-electric hybrids are getting a boost from major automakers, potentially indicating a consumer preference for vehicles that offer both electric and gasoline powertrain options, addressing concerns about range anxiety often associated with BEVs.

Industry experts offer mixed interpretations of this data. Some downplay the significance of the dip, attributing it to a temporary blip, even though EVs remain behind gas cars in total sales. They point to the ongoing commitment from major automakers to invest in EV production and the potential for new, more affordable models to hit the market soon.

Others express more concern, citing Europe's recent EV slump and suggesting this might be a sign of maturing consumer preferences. They argue that simply increasing the number of EVs on the market might not be enough. Automakers need to address issues like affordability, charging infrastructure, and range anxiety to maintain momentum.

The role of government incentives also remains a question mark. The federal tax credit for electric vehicles is currently set to phase out gradually, potentially impacting consumer purchasing decisions in the future. Continued government support, through incentives or infrastructure development, could be crucial in maintaining consumer interest.

The coming quarters will be crucial in determining the long-term trajectory of the U.S. EV market, especially after the global electric car market's rapid expansion in recent years. Whether this is a temporary setback or a more lasting trend remains to be seen. Addressing consumer concerns, ensuring a diverse range of affordable EV options, and continued government support will all be essential in ensuring the continued growth of this critical sector.

This development also presents an opportunity for traditional automakers. By capitalizing on the growing PHEV market and addressing consumer concerns about affordability and range anxiety, they can carve out a strong position in the evolving automotive landscape.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.