Horizon Utilities launches smart growth customer connection policy

By Horizon Utilities Corporation


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Recently, Horizon Utilities Corporation officially launched its innovative Smart Growth-inspired customer connection policy.

Developed in support of local economic development, HorizonÂ’s new connection policy and infill development database provides incentives for companies to choose repurposed, existing commercial and industrial buildings.

HorizonÂ’s new policy reduces connection charges and start-up costs for companies that choose infill properties over greenfield developments in Hamilton.

Companies locating where HorizonÂ’s electrical equipment and capacity are already in place will no longer be required to pay a system charge, as is currently the case with other utilities.

Tying customer connection fees to a Smart Growth-inspired development strategy means businesses pay only the direct costs associated with their move to an infill property.

Horizon has also created an infill database for vacant buildings and properties to help companies identify locations with low start-up costs. It includes the critical cost elements of its utility assets at the street, valuable customer electric assets left behind in the plant and transmission station capacities serving the business park. Horizon is also able to bring its conservation incentives to assist with retrofit costs.

"This is great news for the region and a shining example of Smart Growth development," said Glen Murray, Ontario Minister of Transportation and Infrastructure. "Encouraging urban intensification in the commercial and industrial sectors is an added benefit to the local infrastructure investments our government is making."

“Horizon Utilities’ innovative infill connection policy will help City of Hamilton Economic Development attract businesses from across the province looking to reduce their relocation or development costs as they evaluate potential sites,” said Bob Bratina, Mayor, City of Hamilton. “Companies now have a greater incentive to choose serviced, infill locations in Hamilton rather than anywhere else.”

“Our new approach to customer connection costs provides significant benefits for companies that locate in repurposed buildings because there are little or no direct startup costs. No other local distribution company in Ontario is offering this kind of program to their municipalities in support of economic development and community sustainability,” said Max Cananzi, President and CEO, Horizon Utilities.

Related News

Duke Energy Florida's smart-thinking grid improves response, power restoration for customers during Hurricane Ian

Self-healing grid technology automatically reroutes power to reduce outages, speed restoration, and boost reliability during storms like Hurricane Ian in Florida, leveraging smart grid sensors, automation, and grid hardening to support Duke Energy customers.

 

Key Points

Automated smart grid systems that detect faults and reroute power to minimize outages and accelerate restoration.

✅ Cuts outage duration via automated fault isolation

✅ Reroutes electricity with sensors and distribution automation

✅ Supports storm resilience and faster field crew restoration

 

As Hurricane Ian made its way across Florida, where restoring power in Florida can take weeks in hard-hit areas, Duke Energy's grid improvements were already on the job helping to combat power outages from the storm.

Smart, self-healing technology, similar to smart grid improvements elsewhere, helped to automatically restore more than 160,000 customer outages and saved nearly 3.3 million hours (nearly 200 million minutes) of total lost outage time.

"Hurricane Ian is a strong reminder of the importance of grid hardening and storm preparedness to help keep the lights on for our customers," said Melissa Seixas, Duke Energy Florida state president. "Self-healing technology is just one of many grid improvements that Duke Energy is making to avoid outages, restore service faster and increase reliability for our customers."

Much like the GPS in your car can identify an accident ahead and reroute you around the incident to keep you on your way, self-healing technology is like a GPS for the grid. The technology can quickly identify power outages and alternate energy pathways to restore service faster for customers when an outage occurs.

Additionally, self-healing technology provides a smart tool to assist crews in the field with power restoration after a major storm like Ian, helping reduce outage impacts and freeing up resources to help restore power in other locations.

Three days after Hurricane Ian exited the state, Duke Energy Florida wrapped up restoration of approximately 1 million customers. This progress enabled the company to deploy more than 550 Duke Energy workers from throughout Florida, as well as contractors from across the country, to help restore power for Lee County Electric Cooperative customers.

Crews worked in Cape Coral and Pine Island, one of the hardest-hit areas in the storm's path, as Canadian power crews have in past storms, and completed power restoration for the majority of customers on Pine Island within approximately one week after arriving to the island.

Prior to Ian in 2022, smart, self-healing technology had helped avoid nearly 250,000 extended customer outages in Florida, similar to Hydro One storm recovery efforts, saving around 285,000 hours (17.1 million minutes) of total lost outage time.

Duke Energy currently serves around 59% of customers in Florida with self-healing capabilities on its main power distribution lines, with a goal of serving around 80% over the next few years.

 

Related News

View more

Iran supplying 40% of Iraq’s need for electricity

Iran Electricity Exports to Iraq address power shortages and blackouts, supplying 1,200-1,500 MW and gas for 2,500 MW, amid sanctions, aging grid losses, rising peak demand, and TAVANIR plans to expand cross-border energy capacity.

 

Key Points

Energy flows from Iran supply Iraq with 1,200-1,500 MW plus gas yielding 2,500 MW, easing shortages and blackouts.

✅ 1,200-1,500 MW direct power; gas adds 2,500 MW generation

✅ Iraq exempt on Iranian gas, but faces US pressure

✅ Aging grid loses 25%; $30B upgrades needed

 

“Iran exports 1,200 megawatts to 1,500 megawatts of electricity to Iraq per day, reflecting broader regional power trade dynamics, as Iraq is dealing with severe power shortages and frequent blackouts,” Hamid Hosseini said.

As he added, Iran also exports 37 million to 38 million cubic meters of gas to the country, much of it used in combined-cycle power plants to save energy and boost generation.

On September 11, Iraq’s electricity minister, Luay al Khateeb, said the country needs Iranian gas to generate electricity for the next three or four years, as energy cooperation discussions continue between Baghdad and Tehran.

Iraq was exempted from sanctions concerning Iranian gas imports; however, the U.S. has been pressing all countries to stop trading with Tehran.

Iraq's population has been protesting to authorities over power cuts. Iran exports 1,200 megawatts of direct power supplies and its gas is converted into 2,500 MW of electricity. According to al Khateeb, the current capacity is 18,000 MW, with peak demand of 25,000 MW possible during the hot summer months when consumption surges, a figure that rises every year.

Any upgrades would need investment of at least $30 billion, with grid rehabilitation efforts underway to modernize infrastructure, as the grid is 50 years old and loses 25 percent of its capacity due to Isis attacks.

In late July, Managing Director of Gharb (West) Regional Electricity Company Ali Asadi said Iran has high capacity and potential to export electricity up to twofold of the current capacity to neighboring Iraq, as it eyes transmitting electricity to Europe to serve as a regional hub as well.

He pointed to the new strategy of Iran Power Generation, Transmission & Distribution Management Company (TAVANIR) for increasing electricity export to neighboring Iraq and reiterated, “the country enjoys high potential to export 1,200 megawatts electricity to neighboring Iraq,” while Iraq is also exploring nuclear power plants to tackle electricity shortages.

 

Related News

View more

Alberta Ends Moratorium on Renewable Energy Projects

Alberta Ends Renewable Energy Moratorium, accelerating wind and solar deployment while prioritizing grid stability, reliability, and infrastructure upgrades to attract investment, cut emissions, meet climate targets, and integrate renewables into the provincial power system.

 

Key Points

It is Alberta's decision to lift a pause on new wind and solar projects while enhancing grid reliability.

✅ Resumes wind and solar development across Alberta.

✅ Focuses on grid stability and infrastructure upgrades.

✅ Aims to attract investment and meet climate targets.

 

The Alberta government has announced the end of a temporary suspension on the development of new renewable energy projects, as the power grid operator prepares to accept green energy bids across the market. This pause, which had been in place since May 2023, was initially implemented to evaluate the effects of rapid growth in renewable energy installations on the province's power grid and overall energy system. However, the decision to lift the moratorium reflects a shift in the government’s approach to balancing energy needs and environmental goals.

The suspension was introduced amid concerns that the swift expansion of wind and solar energy projects, including documented challenges with solar energy expansion in the province, could place undue stress on Alberta's electrical grid and infrastructure. Officials expressed worries about the ability of the grid to handle the increased load and the potential need for upgrades to accommodate new renewable energy sources. The government aimed to assess the implications of this growth and determine appropriate measures to ensure that the energy system could support both existing and future demands.

The moratorium drew significant criticism from various sectors, including renewable energy companies, environmental advocates, and local communities. Critics argued that the pause was detrimental to Alberta's efforts to transition to cleaner energy sources and meet climate targets, citing cases like TransAlta scrapping a wind farm amid policy uncertainty. They pointed out that halting projects could delay investments and job creation associated with the renewable energy sector, potentially impeding progress towards a more sustainable energy future.

In response to these concerns, the Alberta government conducted further reviews and consultations. The decision to cancel the pause reflects the government’s recognition of the importance of advancing renewable energy initiatives while also addressing the need for grid stability and infrastructure development. By ending the moratorium, the government aims to support the continued growth of renewable energy projects and maintain momentum in the shift towards greener energy solutions.

The lifting of the moratorium is expected to have a positive impact on the renewable energy industry in Alberta. Several planned projects that were put on hold can now proceed, leading to renewed investment and economic benefits, including a renewable energy surge that could power 4,500 jobs across the province. The government’s decision signals a commitment to integrating renewable energy sources into the provincial grid in a way that ensures both reliability and sustainability.

Going forward, the Alberta government plans to implement measures to better manage the integration of renewable energy into the existing power infrastructure. This includes addressing any potential challenges related to grid capacity and ensuring that the growth of renewable energy projects aligns with the province's overall energy strategy, as recent federal procurement such as a $500M green electricity contract with an Edmonton company underscores demand that integration efforts must accommodate. The goal is to create a balanced approach that supports the development of clean energy while maintaining the stability and efficiency of the energy system.

The end of the moratorium aligns with Alberta’s broader objectives to reduce greenhouse gas emissions and promote environmental sustainability within a province recognized as a powerhouse for both green energy and fossil fuels in Canada. The government’s approach reflects a willingness to adapt policies and strategies in response to evolving industry needs and environmental priorities. By removing the pause, Alberta demonstrates its commitment to fostering a diverse and resilient energy sector that can meet both current and future demands.

The decision to cancel the moratorium is also seen as a move to reinforce Alberta’s position as a leader in renewable energy development. With the lifting of restrictions, the province can continue to attract investment in clean energy projects, as neighboring jurisdictions such as B.C. streamline clean energy approvals to accelerate deployment, enhance its reputation as a progressive energy market, and contribute to global efforts to address climate change.

In summary, the Alberta government’s decision to lift the pause on renewable energy projects represents a significant shift in its approach to energy policy. The move reflects an acknowledgment of the importance of advancing renewable energy while addressing the practical challenges associated with grid management and infrastructure development. By ending the moratorium, Alberta aims to support the growth of clean energy initiatives and maintain its commitment to sustainability and environmental responsibility.

 

Related News

View more

UK must start construction of large-scale storage or fail to meet net zero targets.

UK Hydrogen Storage Caverns enable long-duration, low-carbon electricity balancing, storing surplus wind and solar power as green hydrogen in salt formations to enhance grid reliability, energy security, and net zero resilience by 2035 and 2050.

 

Key Points

They are salt caverns storing green hydrogen to balance wind and solar, stabilizing a low-carbon UK grid.

✅ Stores surplus wind and solar as green hydrogen in salt caverns

✅ Enables long-duration, low-carbon grid balancing and security

✅ Complements wind and solar; reduces dependence on flexible CCS

 

The U.K. government must kick-start the construction of large-scale hydrogen storage facilities if it is to meet its pledge that all electricity will come from low-carbon electricity sources by 2035 and reach legally binding net zero targets by 2050, according to a report by the Royal Society.

The report, "Large-scale electricity storage," published Sep. 8, examines a wide variety of ways to store surplus wind and solar generated electricity—including green hydrogen, advanced compressed air energy storage (ACAES), ammonia, and heat—which will be needed when Great Britain's electricity generation is dominated by volatile wind and solar power.

It concludes that large scale electricity storage is essential to mitigate variations in wind and sunshine, particularly long-term variations in the wind, and to keep the nation's lights on. Storing most of the surplus as hydrogen, in salt caverns, would be the cheapest way of doing this.

The report, based on 37 years of weather data, finds that in 2050 up to 100 Terawatt-hours (TWh) of storage will be needed, which would have to be capable of meeting around a quarter of the U.K.'s current annual electricity demand. This would be equivalent to more than 5,000 Dinorwig pumped hydroelectric dams. Storage on this scale, which would require up to 90 clusters of 10 caverns, is not possible with batteries or pumped hydro.

Storage requirements on this scale are not currently foreseen by the government, and the U.K.'s energy transition faces supply delays. Work on constructing these caverns should begin immediately if the government is to have any chance of meeting its net zero targets, the report states.

Sir Chris Llewellyn Smith FRS, lead author of the report, said, "The need for long-term storage has been seriously underestimated. Demand for electricity is expected to double by 2050 with the electrification of heat, transport, and industrial processing, as well as increases in the use of air conditioning, economic growth, and changes in population.

"It will mainly be met by wind and solar generation. They are the cheapest forms of low-carbon electricity generation, but are volatile—wind varies on a decadal timescale, so will have to be complemented by large scale supply from energy storage or other sources."

The only other large-scale low-carbon sources are nuclear power, gas with carbon capture and storage (CCS), and bioenergy without or with CCS (BECCS). While nuclear and gas with CCS are expected to play a role, they are expensive, especially if operated flexibly.

Sir Peter Bruce, vice president of the Royal Society, said, "Ensuring our future electricity supply remains reliable and resilient will be crucial for our future prosperity and well-being. An electricity system with significant wind and solar generation is likely to offer the lowest cost electricity but it is essential to have large-scale energy stores that can be accessed quickly to ensure Great Britain's energy security and sovereignty."

Combining hydrogen with ACAES, or other forms of storage that are more efficient than hydrogen, could lower the average cost of electricity overall, and would lower the required level of wind power and solar supply.

There are currently three hydrogen storage caverns in the U.K., which have been in use since 1972, and the British Geological Survey has identified the geology for ample storage capacity in Cheshire, Wessex and East Yorkshire. Appropriate, novel business models and market structures will be needed to encourage construction of the large number of additional caverns that will be needed, the report says.

Sir Chris observes that, although nuclear, hydro and other sources are likely to play a role, Britain could in principle be powered solely by wind power and solar, supported by hydrogen, and some small-scale storage provided, for example, by batteries, that can respond rapidly and to stabilize the grid. While the cost of electricity would be higher than in the last decade, we anticipate it would be much lower than in 2022, he adds.

 

Related News

View more

Californians Learning That Solar Panels Don't Work in Blackouts

Rooftop Solar Battery Backup helps Californians keep lights on during PG&E blackouts, combining home energy storage with grid-tied systems for wildfire prevention, outage resilience, and backup power when solar panels cannot supply nighttime demand.

 

Key Points

A home battery paired with rooftop solar, providing backup power and blackout resilience when the grid is down.

✅ Works when grid is down; panels alone stop for safety.

✅ Requires home battery storage; market adoption is growing.

✅ Supports wildfire mitigation and PG&E outage preparedness.

 

Californians have embraced rooftop solar panels more than anyone in the U.S., but amid California's solar boom many are learning the hard way the systems won’t keep the lights on during blackouts.

That’s because most panels are designed to supply power to the grid -- not directly to houses, though emerging peer-to-peer energy models may change how neighbors share power in coming years. During the heat of the day, solar systems can crank out more juice than a home can handle, a challenge also seen in excess solar risks in Australia today. Conversely, they don’t produce power at all at night. So systems are tied into the grid, and the vast majority aren’t working this week as PG&E Corp. cuts power to much of Northern California to prevent wildfires, even as wildfire smoke can dampen solar output during such events.

The only way for most solar panels to work during a blackout is pairing them with solar batteries that store excess energy. That market is just starting to take off. Sunrun Inc., the largest U.S. rooftop solar company, said some of its customers are making it through the blackouts with batteries, but it’s a tiny group -- countable in the hundreds.

“It’s the perfect combination for getting through these shutdowns,” Sunrun Chairman Ed Fenster said in an interview. He expects battery sales to boom in the wake of the outages, as the state has at times reached a near-100% renewables mark that heightens the need for storage.

And no, trying to run appliances off the power in a Tesla Inc. electric car won’t work, at least without special equipment, and widespread U.S. power-outage risks are a reminder to plan for home backup.

 

Related News

View more

Former B.C. Hydro CEO earns half a million without working a single day

B.C. Hydro Salary Continuance Payout spotlights executive compensation, severance, and governance at a Crown corporation after a firing, citing financial disclosure reports, Site C dam ties, and a leadership change under a new government.

 

Key Points

Severance-style pay for B.C. Hydro's fired CEO, via salary continuance and disclosed in public filings.

✅ $541,615 total compensation without working days

✅ Salary continuance after NDP firing; financial disclosures

✅ Later named Canada Post interim CEO amid strike

 

Former B.C. Hydro president and chief executive officer Jessica McDonald received a total of $541,615 in compensation during the 2017-2018 fiscal year, a figure that sits amid wider debates over executive pay at utilities such as Hydro One CEO pay at the provincial utility, without having worked a single day for the Crown corporation.

She earned this money under a compensation package after the in-coming New Democratic government of John Horgan fired her, a move comparable to Ontario's decision when the Hydro One CEO and board exit amid share declines. The previous B.C. Liberal government named her president and CEO of B.C. Hydro in 2014, and McDonald was a strong supporter of the controversial Site C dam project now going ahead following a review.

The current New Democratic government placed her on what financial disclosure documents call “salary continuance” effective July 21, 2017 — the day the government announced her departure — at a utility scrutinized in a misled regulator report that raised oversight concerns.

According to financial disclosure statements, McDonald remained on “salary continuance” until Sept. 21 of this year, and the utility has also been assessed in a deferred operating costs report released by the auditor general. During this period, she earned $272,659, a figure that includes benefits, pension and other compensation.

McDonald — who used to be the deputy minister to former premier Gordon Campbell — is now working for Canada Post, which appointed her as interim president and chief executive officer in March, while developments at Manitoba Hydro highlight broader political pressures on Crown utilities.

She started in her new role on April 2, 2018, and now finds herself in the middle of managing a postal carrier strike.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified