TVA plans to cap emissions, looks to nuclear

By The Tennessean


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The Tennessee Valley Authority board made a commitment to cap its carbon emissions growth by 2020 in an effort to muzzle its contributions to climate change.

Proposals to find ways to increase renewable energy sources like solar power and to persuade customers to use less electricity — including by offering incentives — were approved, too.

The actions, which came as the agency recognizes its 75th anniversary, could mark a return to the leadership role TVA took in energy conservation in the 1970s but later dropped.

Nuclear power was listed among the "clean" energy sources that officials said would be looked to increasingly.

"The real objective is to reduce the carbon footprint," TVA CEO and President Tom Kilgore said after the meeting at the Marriott Shoals Hotel and Spa.

"Nuclear (power) does not produce carbon. I cannot argue that it doesn't produce radioactive waste that has to be dealt with."

But, with population growth in the region, large additional sources of energy are needed, he said, adding that nuclear power can provide that without putting more carbon in the air.

TVA, which is self-financing, is the largest public power producer in the country, providing virtually all of the electricity used in Tennessee and parts of six other states. good move, but no nukes

John McFadden, head of the nonprofit Tennessee Environmental Council in Nashville, said in a phone interview that he was "glad" about TVA's turn toward energy conservation and cleaner power, a move that some utilities made several years ago.

"It's obvious it's something we've really needed to do for a long time," he said. "All you have to do is look at the mountaintops in the Great Smoky Mountains and see all the dead trees.

"And Knoxville is the asthma capital.Â…

"They should have been leading the country in this."

Nuclear power, however, should not be in the mix, he added.

"We have no long-term plan to deal with nuclear waste," he said.

"You can't sell a kilowatt hour of nuclear power for what it costs to produce it. That's why the federal government is having to subsidize the nuclear industry."

TVA is still carrying billions of dollars of debt from its first spurt of nuclear plant building that took place in the 1970s and 1980s, he said.

One new TVA goal is a reduction within five years — in part through customers' energy efficiency — of 1,400 megawatts of electricity use at peak times. This would be the equivalent of building a nuclear reactor to provide energy on days during the summer and winter when energy use spikes.

"We do think it's a goal that's very achievable," said Joe Hoagland, TVA vice president for energy efficiency and demand response.

Pilot programs could include financial incentives to buy energy-efficient appliances and lights.

Making the 2020 date to halt growth in carbon emissions was viewed as more challenging. Most of TVA's electricity comes from coal, which releases carbon that adds to climate change.

Weather remains a stumbling block on another front.

TVA official Bill McCollum said drought could continue to hamper hydroelectric energy generation at its dams this summer.

"We still need significantly more than the normal amount of rainfall between now and June," McCollum said.

When its clean, relatively inexpensive hydroelectric production falls behind, TVA must buy more costly electricity from other producers.

Related News

Overturning statewide vote, Maine court energizes Hydro-Quebec's bid to export power

Maine Hydropower Transmission Line revived by high court after referendum challenge, advancing NECEC, Hydro-Quebec supply, Central Maine Power partnership, clean energy integration, grid reliability, and lower rates across New England pending land-lease ruling.

 

Key Points

A court-revived NECEC line delivering 1,200 MW of Hydro-Quebec hydropower via CMP to strengthen the New England grid.

✅ Maine high court deems retroactive referendum unconstitutional

✅ Pending state land lease case may affect final route

✅ Project could lower rates and cut emissions in New England

 

Maine's highest court on Tuesday breathed new life into a $1-billion US transmission line that aims to serve as conduit for Canadian hydropower, after construction starts drew scrutiny, ruling that a statewide vote rebuking the project was unconstitutional.

The Supreme Judicial Court ruled that the retroactive nature of the referendum last year violated the project developer's constitutional rights, sending it back to a lower court for further proceedings.

The court did not rule in a separate case that focuses on a lease for a 1.6-kilometre portion of the proposed power line that crosses state land.

Central Maine Power's parent company and Hydro-Québec teamed up on the project that would supply up to 1,200 megawatts of Canadian hydropower, amid the ongoing Maine-Quebec corridor debate in the region. That's enough electricity for one million homes.

Most of the proposed 233-kilometre power transmission line would be built along existing corridors, but a new 85-kilometre section was needed to reach the Canadian border, echoing debates around the Northern Pass clash in New Hampshire.

Workers were already clearing trees and setting poles when the governor asked for work to be suspended after the referendum in November 2021, mirroring New Hampshire's earlier rejection of a Quebec-Massachusetts proposal that rerouted regional plans. The Maine Department of Environmental Protection later suspended its permit, but that could be reversed depending on the outcome of legal proceedings.

The high court was asked to weigh in on two separate lawsuits. Developers sought to declare the referendum unconstitutional while another lawsuit focused on a lease allowing transmission lines to cross a short segment of state-owned land.

Supporters say bold projects such as this one, funded by ratepayers in Massachusetts, are necessary to battle climate change and introduce additional electricity into a region that's heavily reliant on natural gas, which can cause spikes in energy costs, as seen with Nova Scotia rate increases recently across the Atlantic region.

Critics say the project's environmental benefits are overstated — and that it would harm the woodlands in western Maine.

It was the second time the Supreme Judicial Court was asked to weigh in on a referendum aimed at killing the project. The first referendum proposal never made it onto the ballot after the court raised constitutional concerns.

Although the project is funded by Massachusetts ratepayers, the introduction of so much electricity to the grid would serve to stabilize or reduce electricity rates for all consumers, proponents contend, even as Manitoba Hydro rate hikes face opposition elsewhere.

The referendum on the project was the costliest in Maine history, topping $90 million US and underscoring deep divisions.

The high-stakes campaign put environmental and conservation groups at odds, and pitted utilities backing the project, amid the Hydro One-Avista backlash, against operators of fossil fuel-powered plants that stand to lose money.

 

Related News

View more

Hydroelectricity Under Pumped Storage Capacity

Pumped Storage Hydroelectricity balances renewable energy, stabilizes the grid, and provides large-scale energy storage using reservoirs and reversible turbines, delivering flexible peak power, frequency control, and rapid response to variable wind and solar generation.

 

Key Points

A reversible hydro system that stores energy by pumping water uphill, then generates flexible peak power.

✅ Balances variable wind and solar with rapid ramping

✅ Stores off-peak electricity in upper reservoirs

✅ Enhances grid stability, frequency control, and reserves

 

The expense of hydroelectricity is moderately low, making it a serious wellspring of sustainable power. The hydro station burns-through no water, dissimilar to coal or gas plants. The commonplace expense of power from a hydro station bigger than 10 megawatts is 3 to 5 US pennies for every kilowatt hour, and Niagara Falls powerhouse upgrade projects show how modernization can further improve efficiency and reliability. With a dam and supply it is likewise an adaptable wellspring of power, since the sum delivered by the station can be shifted up or down quickly (as meager as a couple of moments) to adjust to changing energy requests.

When a hydroelectric complex is developed, the task creates no immediate waste, and it for the most part has an extensively lower yield level of ozone harming substances than photovoltaic force plants and positively petroleum product fueled energy plants, with calls to invest in hydropower highlighting these benefits. In open-circle frameworks, unadulterated pumped storage plants store water in an upper repository with no normal inflows, while pump back plants use a blend of pumped storage and regular hydroelectric plants with an upper supply that is renewed to a limited extent by common inflows from a stream or waterway.

Plants that don't utilize pumped capacity are alluded to as ordinary hydroelectric plants, and initiatives focused on repowering existing dams continue to expand clean generation; regular hydroelectric plants that have critical capacity limit might have the option to assume a comparable function in the electrical lattice as pumped capacity by conceding yield until required.

The main use for pumped capacity has customarily been to adjust baseload powerplants, however may likewise be utilized to decrease the fluctuating yield of discontinuous fuel sources, while emerging gravity energy storage concepts broaden long-duration options. Pumped capacity gives a heap now and again of high power yield and low power interest, empowering extra framework top limit.

In specific wards, power costs might be near zero or once in a while negative on events that there is more electrical age accessible than there is load accessible to retain it; despite the fact that at present this is infrequently because of wind or sunlight based force alone, expanded breeze and sun oriented age will improve the probability of such events.

All things considered, pumped capacity will turn out to be particularly significant as an equilibrium for exceptionally huge scope photovoltaic age. Increased long-distance bandwidth, including hydropower imports from Canada, joined with huge measures of energy stockpiling will be a critical piece of directing any enormous scope sending of irregular inexhaustible force sources. The high non-firm inexhaustible power entrance in certain districts supplies 40% of yearly yield, however 60% might be reached before extra capaciy is fundamental.

Pumped capacity plants can work with seawater, despite the fact that there are extra difficulties contrasted with utilizing new water. Initiated in 1966, the 240 MW Rance flowing force station in France can incompletely function as a pumped storage station. At the point when elevated tides happen at off-top hours, the turbines can be utilized to pump more seawater into the repository than the elevated tide would have normally gotten. It is the main enormous scope power plant of its sort.

Alongside energy mechanism, pumped capacity frameworks help control electrical organization recurrence and give save age. Warm plants are substantially less ready to react to abrupt changes in electrical interest, and can see higher thermal PLF during periods of reduced hydro generation, conceivably causing recurrence and voltage precariousness.

Pumped storage plants, as other hydroelectric plants, including new BC generating stations, can react to stack changes in practically no time. Pumped capacity hydroelectricity permits energy from discontinuous sources, (for example, sunlight based, wind) and different renewables, or abundance power from consistent base-load sources, (for example, coal or atomic) to be put something aside for times of more popularity.

The repositories utilized with siphoned capacity are tiny when contrasted with ordinary hydroelectric dams of comparable force limit, and creating periods are regularly not exactly a large portion of a day. This technique produces power to gracefully high top requests by moving water between repositories at various heights.

Now and again of low electrical interest, the abundance age limit is utilized to pump water into the higher store. At the point when the interest gets more noteworthy, water is delivered once more into the lower repository through a turbine. Pumped capacity plans at present give the most monetarily significant methods for enormous scope matrix energy stockpiling and improve the every day limit factor of the age framework. Pumped capacity isn't a fuel source, and shows up as a negative number in postings.

 

Related News

View more

Four Facts about Covid and U.S. Electricity Consumption

COVID-19 Impact on U.S. Electricity Consumption shows commercial and industrial demand dropped as residential use rose, with flattened peak loads, weekday-weekend convergence, Texas hourly data, and energy demand as a real-time economic indicator.

 

Key Points

It reduced commercial and industrial demand while raising residential use, shifting peaks and weekday patterns.

✅ Commercial electricity down 12%; industrial down 14% in Q2 2020

✅ Residential use up 10% amid work-from-home and lockdowns

✅ Peaks flattened; weekday-weekend loads converged in Texas

 

This is an important turning point for the United States. We have a long road ahead. But one of the reasons I’m optimistic about Biden-Harris is that we will once again have an administration that believes in science.

To embrace this return to science, I want to write today about a fascinating new working paper by Tufts economist Steve Cicala.

Professor Cicala has been studying the effect of Covid on electricity consumption since back in March, when the Wall Street Journal picked up his work documenting an 18% decrease in electricity consumption in Italy.

The new work, focused on the United States, is particularly compelling because it uses data that allows him to distinguish between residential, commercial, and industrial sectors, against a backdrop of declining U.S. electricity sales over recent years.

Without further ado, here are four facts he uncovers about Covid and U.S. electricity demand during COVID-19 and consumption.

 

Fact #1: Firms Are Using Less
U.S. commercial electricity consumption fell 12% during the second quarter of 2020. U.S. industrial electricity consumption fell 14% over the same period.

This makes sense. The second quarter was by some measures, the worst quarter for the U.S. economy in over 145 years!

Economic activity shrank. Schools closed. Offices closed. Factories closed. Restaurants closed. Malls closed. Even health care offices closed as patients delayed going to the dentist and other routine care. All this means less heating and cooling, less lighting, less refrigeration, less power for computers and other office equipment, less everything.

The decrease in the industrial sector is a little more surprising. My impression had been that the industrial sector had not fallen as far as commercial, but amid broader disruptions in coal and nuclear power that strained parts of the energy economy, the patterns for both sectors are quite similar with the decline peaking in May and then partially rebounding by July. The paper also shows that areas with higher unemployment rates experienced larger declines in both sectors.

 

Fact #2: Households Are Using More
While firms are using less, households are using more. U.S. residential electricity consumption increased 10% during the second quarter of 2020. Consumption surged during March, April, and May, a reflection of the lockdown lifestyle many adopted, and then leveled off in June and July – with much less of the rebound observed on the commercial/industrial side.

This pattern makes sense, too. In Professor Cicala’s words, “people are spending an inordinate amount of time at home”. Many of us switched over to working from home almost immediately, and haven’t looked back. This means more air conditioning, more running the dishwasher, more CNN (especially last week), more Zoom, and so on.

The paper also examines the correlates of the decline. Areas in the U.S. where more people can work from home experienced larger increases. Unemployment rates, however, are almost completely uncorrelated with the increase.

 

Fact #3: Firms are Less Peaky
The paper next turns to a novel dataset from Texas, where Texas grid reliability is under active discussion, that makes it possible to measure hourly electricity consumption by sector.

As the figure above illustrates, the biggest declines in commercial/industrial electricity consumption have occurred Monday through Friday between 9AM and 5PM.

The dashed line shows the pattern during 2019. Notice the large spikes in electricity consumption during business hours. The solid line shows the pattern during 2020. Much smaller spikes during business hours.

 

Fact #4: Everyday is Like Sunday
Finally, we have what I would like to nominate as the “Energy Figure of the Year”.

Again, start with the pattern for 2019, reflected by the dashed line. Prior to Covid, Texas households used a lot more electricity on Saturdays and Sundays.

Then along comes Covid, and turned every day into the weekend. Residential electricity consumption in Texas during business hours Monday-Friday is up 16%(!).

In the pattern for 2020, it isn’t easy to distinguish weekends from weekdays. If you feel like weekdays and weekends are becoming a big blur – you are not alone.

 

Conclusion
Researchers are increasingly thinking about electricity consumption as a real-time indicator of economic activity, even as flat electricity demand complicates utility planning and investment. This is an intriguing idea, but Professor Cicala’s new paper shows that it is important to look sector-by-sector.

While commercial and industrial consumption indeed seem to measure the strength of an economy, residential consumption has been sharply countercylical – increasing exactly when people are not at work and not at school.

These large changes in behavior are specific to the pandemic. Still, with the increased blurring of home and non-home activities we may look back on 2020 as a key turning point in how we think about these three sectors of the economy.

More broadly, Professor Cicala’s paper highlights the value of social science research. We need facts, data, and yes, science, if we are to understand the economy and craft effective policies on energy insecurity and shut-offs as well.

 

Related News

View more

Nova Scotia Power says it now generates 30 per cent of its power from renewables

Nova Scotia Power Renewable Energy delivers 30% in 2018, led by wind power, hydroelectric and biomass, with coal and natural gas declining, as Muskrat Falls imports from Labrador target 40% renewables to cut emissions.

 

Key Points

It is the utility's 30% 2018 renewable mix and plan to reach 40% via Muskrat Falls while reducing carbon emissions.

✅ 18% wind, 9% hydro and tidal, 3% biomass in 2018

✅ Coal reliance fell from 76% in 2007 to 52% in 2018

✅ 58% carbon emissions cut from 2005 levels projected by 2030

 

Nova Scotia's private utility says it has hit a new milestone in its delivery of electricity from renewable resources, a trend highlighted by Summerside wind generation in nearby P.E.I.

Nova Scotia Power says 30 per cent of the electricity it produced in 2018 came from renewable sources such as wind power.

The utility says 18 per cent came from wind turbines, nine per cent from hydroelectric and tidal turbines and three per cent by burning biomass.

However, over half of the province's electrical generation still comes from the burning of coal or petroleum coke. Another 13 per cent come from burning natural gas and five per cent from imports, even as U.S. renewable generation hits record shares.

The utility says that since 2007, the province's reliance on coal-fired plants has dropped from 76 per cent of electricity generated to 52 per cent last year, as Prairie renewables growth accelerates nationally.

It says it expects to meet the province's legislated renewable target of 40 per cent in 2020, when it begins accessing hydroelectricity from the Muskrat Falls project in Labrador.

"We have made greener, cleaner energy a priority," utility president and CEO Karen Hutt said in a news release.

"As we continue to achieve new records in renewable electricity, we remain focused on ensuring electricity prices stay predictable and affordable for our customers, including solar customers across the province."

Nova Scotia Power also projects achieving a 58 per cent reduction in carbon emissions from 2005 levels by 2030.

 

Related News

View more

TransAlta Scraps Wind Farm as Alberta's Energy Future Blusters

Alberta Wind Energy Policy Changes highlight TransAlta's Riplinger cancellation amid UCP buffer zones for pristine viewscapes, regulatory uncertainty, and market redesign debates, reshaping Alberta's renewables investment climate and clean energy diversification plans.

 

Key Points

UCP rules and market shifts reshaping wind siting, permits, and finance, increasing uncertainty and delays for new projects.

✅ 35-km buffer near pristine viewscapes limits wind siting

✅ TransAlta cancels 300 MW Riplinger project

✅ Market redesign uncertainty chills renewables investment

 

The winds of change are blowing through Alberta's energy landscape today, and they're not necessarily carrying good news for renewable energy development. TransAlta, a major Canadian energy company, recently announced the cancellation of a significant wind farm project, citing a confluence of factors that create uncertainty for the future of wind power in the province. This decision throws a spotlight on the ongoing debate between responsible development and fostering a clean energy future in Alberta.

The scrapped project, the Riplinger wind farm near Cardston, Alberta, was envisioned as a 300-megawatt facility capable of providing clean electricity to the province. However, TransAlta pointed to recent regulatory changes implemented by the United Conservative Party (UCP) government, following the end of the renewable energy moratorium in Alberta, as a key reason for the project's demise. These changes include the establishment of a 35-kilometer buffer zone around designated "pristine viewscapes," which significantly restricts potential wind farm locations.

John Kousinioris, CEO of TransAlta, expressed frustration with the lack of clarity surrounding the future of renewable energy policy in Alberta. He highlighted this, along with the aforementioned rule changes, as major factors in the project's cancellation. TransAlta has also placed three other power projects on hold, indicating a broader concern about the current investment climate for renewable energy in the province.

The news has been met with mixed reactions. While some residents living near the proposed wind farm site celebrate the decision due to concerns about potential impacts on tourism and the environment, others worry about the implications for Alberta's clean energy ambitions, including renewable energy job growth in the province. The province, a major energy producer in Canada, has traditionally relied heavily on fossil fuels, and this decision might be seen as a setback for its goals of diversifying its energy mix.

The Alberta government defends its changes to renewable energy policy, arguing that they are necessary to ensure responsible development and protect sensitive ecological areas. However, the TransAlta decision raises questions about the potential unintended consequences of these changes. Critics argue that the restrictions might discourage investment in renewable energy and the province's ability to sell clean power to wider markets altogether, hindering Alberta's progress towards a more sustainable future.

Adding to the uncertainty is the ongoing process of redesigning Alberta's energy market. The aim is to incorporate more renewable energy sources, including solar energy expansion across the grid, but the details of this redesign remain unclear. This lack of transparency makes it difficult for companies like TransAlta to make sound investment decisions, further dampening enthusiasm for renewable energy projects.

The future of wind energy development in Alberta remains to be seen. TransAlta's decision to scrap the Riplinger project is a significant development, and it will be interesting to observe how other companies respond to the changing regulatory landscape, as a Warren Buffett-linked developer pursues a $200 million wind project in Alberta. Striking a balance between responsible development, protecting the environment, and fostering a clean energy future will be a crucial challenge for Alberta moving forward.

This situation highlights the complex considerations involved in transitioning to a renewable energy future, where court rulings on wind projects can influence policy and investment decisions. While environmental concerns are paramount, ensuring a stable and predictable investment climate is equally important. Open communication and collaboration between industry, government, and stakeholders will be key to navigating these challenges and ensuring Alberta can harness the power of wind energy for a sustainable future.

 

Related News

View more

From smart meters to big batteries, co-ops emerge as clean grid laboratories

Minnesota Electric Cooperatives are driving grid innovation with smart meters, time-of-use pricing, demand response, and energy storage, including iron-air batteries, to manage peak loads, integrate wind and solar, and cut costs for rural members.

 

Key Points

Member-owned utilities piloting load management, meters, and storage to integrate wind and solar, cutting peak demand.

✅ Time-of-use pricing pilots lower bills and shift peak load.

✅ Iron-air battery tests add multi-day, low-cost energy storage.

✅ Smart meters enable demand response across rural co-ops.

 

Minnesota electric cooperatives have quietly emerged as laboratories for clean grid innovation, outpacing investor-owned utilities on smart meter installations, time-based pricing pilots, and experimental battery storage solutions.

“Co-ops have innovation in their DNA,” said David Ranallo, a spokesperson for Great River Energy, a generation and distribution cooperative that supplies power to 28 member utilities — making it one of the state’s largest co-op players.

Minnesota farmers helped pioneer the electric co-op model more than a century ago, similar to modern community-generated green electricity initiatives, pooling resources to build power lines, transformers and other equipment to deliver power to rural parts of the state. Today, 44 member-owned electric co-ops serve about 1.7 million rural and suburban customers and supply almost a quarter of the state’s electricity.

Co-op utilities have by many measures lagged on clean energy. Many still rely on electricity from coal-fired power plants. They’ve used political clout with rural lawmakers to oppose new pollution regulations and climate legislation, and some have tried to levy steep fees on customers who install solar panels.

Where they are emerging as innovators is with new models and technology for managing electric grid loads — from load-shifting water heaters to a giant experimental battery made of iron. The programs are saving customers money by delaying the need for expensive new infrastructure, and also showing ways to unlock more value from cheap but variable wind and solar power.

Unlike investor-owned utilities, “we have no incentive to invest in new generation,” said Darrick Moe, executive director of the Minnesota Rural Electric Association. Curbing peak energy demand has a direct financial benefit for members.

Minnesota electric cooperatives have launched dozens of programs, such as the South Metro solar project, in recent years aimed at reducing energy use and peak loads, in particular. They include:

Cost calculations are the primary driver for electric cooperatives’ recent experimentation, and a lighter regulatory structure and evolving electricity market reforms have allowed them to act more quickly than for-profit utilities.

“Co-ops and [municipal utilities] can act a lot more nimbly compared to investor-owned utilities … which have to go through years of proceedings and discussions about cost-recovery,” said Gabe Chan, a University of Minnesota associate professor who has researched electric co-ops extensively. Often, approval from a local board is all that’s required to launch a venture.

Great River Energy’s programs, which are rebranded and sold through member co-ops, yielded more than 101 million kilowatt-hours of savings last year — enough to power 9,500 homes for a year.

Beyond lowering costs for participants and customers at large, the energy-saving and behavior-changing programs sometimes end up being cited as case studies by larger utilities considering similar offerings. Advocates supporting a proposal by the city of Minneapolis and CenterPoint Energy to allow residents to pay for energy efficiency improvements on their utility bills through distributed energy rebates used several examples from cooperatives.

Despite the pace of innovation on load management, electric cooperatives have been relatively slow to transition from coal-fired power. More than half of Great River Energy’s electricity came from coal last year, and Dairyland Power, another major power wholesaler for Minnesota co-ops, generated 70% of its energy from coal. Meanwhile, Xcel Energy, the state’s largest investor-owned utility, has already reduced coal to about 20% of its energy mix.

The transition to cleaner power for some co-ops has been slowed by long-term contracts with power suppliers that have locked them into dirty power. Others have also been stalled by management or boards that have been resistant to change. John Farrell, director of the Institute for Local Self-Reliance’s Energy Democracy program, said generalizing co-ops is difficult. 

“We’ve seen some co-ops that have got 75-year contracts for coal, that are invested in coal mines and using their newsletter to deny climate change,” he said. “Then you see a lot of them doing really amazing things like creating energy storage systems … and load balancing [programs], because they are unique and locally managed and can have that freedom to experiment without having to go through a regulatory process.”

Great River Energy, for its part, says it intends to reach 54% renewable generation by 2025, while some communities, like Frisco, Colorado, are targeting 100% clean electricity by specific dates. Its members recently voted to sell North Dakota’s largest coal plant, but the arrangement involves members continuing to buy power from the new owners for another decade.

The cooperative’s path to clean power could become clearer if its experimental iron-air battery project is successful. The project, the first of its kind in the country, is expected to be completed by 2023.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.